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Efficient measurement and factorization of high-order
drug interactions in Mycobacterium tuberculosis
Murat Cokol,1,2,3* Nurdan Kuru,3 Ece Bicak,4 Jonah Larkins-Ford,1,2,5 Bree B. Aldridge1,2,6*

Combinations of three or more drugs are used to treat many diseases, including tuberculosis. Thus, it is important
to understand how synergistic or antagonistic drug interactions affect the efficacy of combination therapies. However,
our understanding of high-order drug interactions is limited because of the lack of both efficient measurement
methods and theoretical framework for analysis and interpretation. We developed an efficient experimental sampling
and scoringmethod [diagonal measurement of n-way drug interactions (DiaMOND)] tomeasure drug interactions
for combinations of any number of drugs. DiaMOND provides an efficient alternative to checkerboard assays,
which are commonly used to measure drug interactions. We established a geometric framework to factorize
high-order drug interactions into lower-order components, thereby establishing a roadmapof how touse lower-order
measurements to predict high-order interactions. Our framework is a generalized Loewe additivity model for
high-order drug interactions. Using DiaMOND, we identified and analyzed synergistic and antagonistic antibiotic
combinations against Mycobacterium tuberculosis. Efficient measurement and factorization of high-order drug
interactions by DiaMOND are broadly applicable to other cell types and disease models.
INTRODUCTION
Combinations with three or more drugs are the cornerstone of treat-
ment for many diseases including cancer, HIV, and tuberculosis (TB).
Therefore, it is important to understand how combining drugs changes
treatment efficacy. In synergistic or antagonistic drug interactions, drugs
in combination may be, respectively, more or less effective than what is
expected from the individual drugs. Treatments that include a synergis-
tic combination achieve the same efficacy with a relatively lower total
dose, potentially improving efficacy, alleviating side effects, and
shortening treatment (1, 2).

TB treatment remains difficult, and combinations of three or more
drugs (high-order combinations) are the standard of care for active TB.
The current treatment regimen for drug-sensitive TB uses a four-drug
combination for 2 months, followed by a two-drug combination for at
least 4months (3). Drug-resistant TB therapy ismore arduous, involving
long-term, high-order combinations of antibiotics with severe side
effects (4).Despite the critical importanceof this information for treatment,
high-order interactions are rarelymeasured and analyzed in any disease.
For example, because of the high number ofmeasurements required to
measure three-way interactions by the standard checkerboard assay,
there is a relative scarcity of thesemeasurements. Targeted studies that
have sought to predict three-way interactions from pairwise measure-
ments in Escherichia coli have found that pairwise and three-way inter-
action measurements are correlated (5, 6). These prediction methods
are likely to be useful in prioritizing combinations for further study,
but cannot fill the need for experimental measurement of high-order
interactions. In the case of TB, we lack measurement of high-order
drug interactions and reliable, systematic measurement of pairwise
interactions against Mycobacterium tuberculosis (Mtb), the causative
agent of TB. Therefore, drug interactions are not routinely considered
in drug regimen design (7–11). Thus, a more efficient methodology to
measure drug interactionswould enable us not only to comprehensively
measure pairwise interactions but also to interrogate high-order drug
combinations and establish tools to predict high-order synergistic
combinations for further testing early in preclinical regimen design.

The absence of systematic studies of high-order drug interactions is
due to three significant challenges. The first challenge is the experimental
measurement of high-order drug interactions. Pairwise drug interac-
tions are traditionallydeterminedbya two-dimensional (2D) checkerboard
assay (Fig. 1A). To evaluate D = 10 different doses for each drug in a
pairwise combination, the response to D2 = 100 dose combinations
must bemeasured, which requires the preparation andmeasurement
of cell growth in one microplate. A high-order drug interaction among
n drugs can be determined using a high-dimension checkerboard assay
(12). However, this measurement technique is very expensive and can
be logistically prohibitive (13): If D doses are used for each drug, then
Dn dose combinations need to be assessed. If, for example, we were to
measure a five-way drug interaction (n = 5) at a resolution of 10 doses
for each drug (D = 10), a 5D checkerboard assay necessitates the mea-
surement of cell response in 105 combinations, requiring 1000 micro-
plates. Another serious limitation is that these tests would require vast
amounts of drugs, and the cost and availability of drugs, especially
natural products, preclude such experiments. Because we lack efficient
measurement procedures, drug interactions of four or more drugs
remain uncharacterized, and there are few examples in literature that
report three-way drug interactions.

Ideally, drug interactions are scored from a checkerboard assay
relative to the simple null model, indicating that the interaction of a
drug with itself is additive (14, 15). Thus, with the Loewe additivity
model, if a combination’s effect is higher or lower than additivity, the
combination is synergistic or antagonistic, respectively (Fig. 1A).We
may visualize this intuitive interpretation of the checkerboard by
evaluating the contour of a common phenotype (isobole). A straight
contour indicates additivity, whereas concave and convex contours are
observed in synergistic and antagonistic interactions, respectively (Fig.
1A). The shape of this curve is quantified using the fractional inhibitory
concentration (FIC), the standard metric of interaction scores. In the
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Fig. 1. DiaMOND for measuring pairwise drug interactions. (A) Simulated 2D checkerboard assay as demonstration of additive (left), synergistic (middle), and
antagonistic (right) pairwise drug combinations. In each assay, one drug is linearly increased on each axis, and growth inhibition (white to blue color bar) is recorded for each
concentration combination. A combination of a drugwith itself will yield linear isophenotypic contours (isoboles). Drug combinations with linear, concave, or convex isoboles are
classified as additive, synergistic, or antagonistic, respectively. To efficiently approximate the isoboles, DiaMOND samples the most information-rich dose responses of the
checkerboard: the single-drug dose responses (white rectangles) and the 1:1 two-drug combination dose response (yellow rectangle; along the diagonal of the checkerboard).
The dashed blue line connecting the observed single-drug dose responses approximates the additivity isobole for a given phenotype (for example, IC50), and the intersection of
this line with the two-drug dose response is the expected dose in the null model (e1; blue diamond). The circles indicate the drug doses that result in the particular phenotype for
eachdose response. In this setting, theblue diamond (e1)will be the samedistance as, closer to, or further from the origin in additive, synergistic, or antagonistic combinations. The
circles are colored by drug interaction type throughout themanuscript: white, additivity; green, synergy, red, antagonism. (B) DiaMOND experimental setup tomeasure pairwise
drug interactions requires three dose-response experiments, where drugdose is linearly increased. Twodose responses are single-drugdose responses. In the third dose-response
experiment (yellow rectangle), a 1:1 mixture of drug X and drug Y is linearly increased. This mixture has half the concentration of both drug X and drug Y, and its dose response is
the dose response of the diagonal sampling shown in (A). The expected dose (e1), shown by a blue diamond, is calculated using the geometric argument described in (A). When
the observed dose is the same as, less than, ormore than the expected dose, additivity, synergy, or antagonism is concluded, respectively. The brackets illustrate the expected (e1)
and observed (o2) doses for the two-drug dose response (see also fig. S1). (C) All pairwise interactions among nine antibiotics tested inMtb. The dose response of nine antibiotics
and all 36 pairwise combinations is shown. Circles or blue diamondsmark the observed or expected IC50, respectively. Circles smaller or larger than expectation aremarked
by green or red, indicating synergy or antagonism. FIC2 scores obtained by dividing observed with expected IC50 are shown on the right of each two-drug dose response.
(D) Hierarchical clustering of the pairwise interactions among nine antibiotics. The geometric mean of two biological replicates is represented. (E) Validation of two
synergies and one antagonism via the traditional checkerboardmethod inMtb. Simulated dose-response data are shown in blue gradient, and experimentally determined
dose-response data are shown in grayscale gradient throughout.
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absence of an efficient checkerboard assay, the Blissmultiplicativemodel
has become a commonly used scoring system for determining drug in-
teractions. The Bliss multiplicative model defines the expected pheno-
type [such as median inhibitory concentration (IC50) for 50% growth
inhibition] as the multiplication of the phenotype induced by each drug,
and therefore, Bliss scoring enables an efficient experimental setupwhere
measurement at only four conditions is adequate to score a pairwise in-
teraction.Hence, Bliss scoring is useful for understanding the interaction
of drugs at therapeutically relevant concentrations (16). Despite this ad-
vantage in efficiency, the Bliss model lacks a null model; therefore, one
cannot do a control drug interaction experiment that, by definition, will
result in noninteraction (17). The same drug’s combination with itself
might result in synergy, independence, or antagonism, depending on the
concentration chosen to sample thedrug’s dose response (18). In contrast,
the Loewe additivity model produces a single interaction score, which is
an integration of the whole range of concentrations that may be com-
bined. Thus, a measurement methodology that is more efficient than a
traditional checkerboard with Loewe additivity scoringwould empower
systematic measurement of pairwise and high-order drug interactions.

The second challenge is the evaluation and interpretation of high-
order drug interactions. When two drugs are combined, the measured
interaction is simply their pairwise interaction. However, when three
drugs are combined, the measured interaction encapsulates three pair-
wise interactions and one three-way interaction. A three-way interac-
tion, therefore, may refer to either (i) a total observed interaction,
which compares the three-way combination effect with single drugs,
or (ii) an emergent interaction, which compares the three-way combi-
nation effect with the expectation from the underlying pairwise interac-
tions. For example, a three-way combination would have emergent
synergy if the total interaction is more synergistic than the expectation
based on the three pairwise interactions alone. In this setting, if pairwise
interactions were antagonistic and total interaction was additive, then
the emergent three-way interactionmust be synergistic. Understanding
the emergent effect of a high-order interaction that is not predicted by
lower-order combinations requires a scoring framework to factorize
high-order interaction scores into meaningful components. Score fac-
torizationwas recently developed for three-way interactions scoredwith
the Bliss independencemodel (19), but no such framework exists for the
factorization of high-order drug interactions using intuitive Loewe ad-
ditivity scoring.

The third challenge is predicting the strongest synergies among the
large number of possible high-order drug combinations to facilitate ef-
ficient prioritization of optimal drug regimens. As noted above, the ex-
perimental measurement of even one five-way drug interaction is
prohibitively expensive. However, there are, for example, 15,504 differ-
ent five-way combinations possible among 20 drugs. An experimental
screen of high-order drug interactions is therefore not possible, and
finding synergistic high-order combinations requires the development
of tools to predict synergistic combinations. Two recent studies used
Bliss scoring to analyze three-way drug interactions in E. coli and in
cancer cells and found that they are largely determined by the pairwise
interactions among the constituent drugs (5, 6). Neither of these studies,
however, systematically evaluated or analyzed the emergent interactions
of high-order combinations. Several pairwise drug interaction screens
have reported that synergy is rare, whereas antagonism is more com-
mon than additivity and synergy (20–23). Because any experimental
search for synergy will necessarily screen a very small percentage for
high-order combinations, the ability to predict high-order interactions
is essential to prioritize candidate synergistic high-order combinations.
Cokol et al., Sci. Adv. 2017;3 : e1701881 11 October 2017
The absence of an efficient measurement technique for drug inter-
actions has limited the ability to fully pursue these challenges to system-
aticallymeasure drug interactions, understand central questions about
high-order drug interactions, and prioritize synergistic combinations
in preclinical testing. Here, we present a methodology that uses a diag-
onal sampling of the checkerboard assay to efficiently measure and
score pairwise or high-order drug interactions, which extends on the
theoretical work of Berenbaum (24). Our methodology, DiaMOND
(diagonal measurement of n-way drug interactions), requires only n +
1 dose responses and produces the FIC of the n-way drug interaction.
We used DiaMOND to measure all pairwise interactions among nine
TB antibiotics and all possible high-order combinations among five
antibiotics in Mtb, revealing synergies in three pairwise, three three-
way, and two four-way combinations.With these drug interaction data,
we generalized the Loewe additivity model to systematically explore
high-order drug combinations and develop a framework that factorizes
the components of a high-order drug interaction to resolve contribu-
tions from each emergent drug interaction. We demonstrate that
high-order interactions can often be predicted by their lower-order
combinations, but we also identified one three-way drug combination
with strong emergent antagonism, highlighting the importance of
measuring high-order interactions. Our study provides a unifying
framework to measure, score, classify, and predict high-order drug
interactions. We applied DiaMOND to identify and analyze synergistic
drug combinations against Mtb; however, DiaMOND’s application is
not limited to drug studies in Mtb and may also be used to systemat-
ically and efficiently measure and analyze the interactions of multiple
drugs, cytokines, or other molecules on cellular behavior.
RESULTS
Diagonal sampling method to measure pairwise
drug interactions
Pairwise drug interactions are traditionallymeasured by a 2D checker-
board assay. Examples of checkerboards for additive, synergistic, and
antagonistic pairs are shown in Fig. 1A with simulated values. The
synergy or antagonism of a drug pair is assessed by the shape of the
isobole (or contour of the chosen phenotype, such as IC50 for 50%
growth inhibition). For two drugs, X and Y, Loewe additivity is defined
as X

IC50X
þ Y

IC50Y
¼ FIC2.Ona checkerboard assay, anFIC2=1corresponds

to the straight line connecting IC50X and IC50Y (Fig. 1A). Synergistic
pairs achieve the same phenotype with lower concentrations of the
combined drugs and their checkerboards have a concave contour,
giving FIC2 scores between 0 and 1 (Fig. 1A, middle), and checker-
boards of antagonistic pairs have convex contours with FIC2 scores >
1 (Fig. 1A, right).

We sought to minimize the number of measurements required by
this assay and reasoned that the entirety of the checkerboard was not
necessary to quantify the curvature of the contour. Instead, we aimed to
sample the checkerboard in regions that provide the most information
about the shape of the contour. To do so, we measure three dose re-
sponses for each pairwise interaction: (i) the dose response for drug
X, (ii) the dose response for drug Y, and (iii) the dose response for an
equipotent (1:1)mixture of drugX and drugY (referred to hereafter as a
two-drug dose response). These dose responses correspond to the hori-
zontal, vertical, and diagonal (yellow) rectangles drawn on each
checkerboard inFig. 1A. For eachdose response, one can identify thedose
that produces a specified phenotype response, such as IC50. In Fig. 1A,
we show how a line connecting the IC50 values for drug X, drug Y, and
3 of 11
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the two-drug combination approximates the contour. To quantify the
curvature from these three dose responses, the expected IC50 (e1; blue
diamonds in Fig. 1A) of the two-combination dose response is com-
puted on the basis of the null hypothesis that the expected interaction
is additive. Thus, e1 is the distance from the origin to the intersection
of the straight line connecting IC50 values of single drugs with the two-
drug dose response (bracketed in Fig. 1B and see fig. S1 andmethod S1
for calculation of e1 given two IC50 values).

The curvature of the contour can be approximated by the ratio of the
observed IC50 of the two-drug combination (o2; circles in the two-drug
dose responses in Fig. 1A) to the expected IC50 in additivity (e1; blue
diamonds in Fig. 1A). We therefore define the FIC of a pairwise com-
bination (FIC2) as

FIC2 ¼ o2
e1

ð1Þ

TheFIC, in both traditional checkerboard assays andwithDiaMOND,
is not only a measure of contour curvature but also a quantification of
the relative efficacy of the combination compared to single drugs. For
example, an FIC2 score of 1 (Fig. 1B, left) corresponds to an additive
interaction, whereas 0.5 (synergy) or 2 (antagonism) indicate that half
or double the dose leads to the same effect, respectively (see fig. S1 for
examples of step-by-step calculations of FIC2 given two single-drug and
one two-drug dose responses).

The experimental setup for DiaMOND is shown in Fig. 1B, with
simulated examples of additivity, synergy, and antagonism. The assay
requires two single-drug dose responses and just one two-drug dose
response, where the two-drug dose response is a 1:1 mixture of drug X
and drug Y concentrations used for the single dose responses (Fig. 1B
and fig. S1). This mixture will have half the concentration of both drug
X and drug Y, and its dose response will be the dose response of the
diagonal sampling shown in Fig. 1A (yellow outline).

Experimental measurement of pairwise drug
interactions in Mtb
We used DiaMOND to measure all the pairwise interactions among
nine first- and second-line antibiotics (Table 1) against Mtb. We gen-
erated the dose response for nine antibiotics individually and the two-
drug combination dose response for the 36 pairwise combinations, each
in biological duplicate. For each two-drug dose response, the expected
IC50 (e1) was computed using single-drug IC50 values. Figure 1C shows
one of our experimental screens, where the expected IC50 for each com-
bination is indicated with a blue diamond. To compute FIC2 (Eq. 1), the
observed IC50 of the combinations (o2; shownwith a circle) was divided
by the expected IC50 (e1). The FIC2 scores were highly correlated between
biological replicates (Spearman’s correlation r = 0.86, P < 3.7 × 10−9;
fig. S2). The expected and observed drug concentrations used for FIC
calculations are not limited to IC50 values, and any measureable
parameter from a dose responsemay be used. Because IC50 is broadly
used to measure drug sensitivity in microbes and in cancer cell lines,
we chose IC50 for this study. However, dose responses are usually non-
linear, and therefore the FICsmay depend on the choice of what level
of growth inhibition is used in the FIC calculations (for example, IC50

versus IC30 versus IC70). Taking advantage of the single-drug and two-
drug dose responses measured with DiaMOND, we reanalyzed these
data and computed FIC2 scores using IC30, IC40, IC60, and IC70. We
found that the FIC scores correlated significantly in this range (fig.
S3), suggesting that the FIC is not highly dependent on the choice of
Cokol et al., Sci. Adv. 2017;3 : e1701881 11 October 2017
inhibition level. We conclude that DiaMOND’s measurement layout
and scoring (FIC2) are reliable and robust.

To visualize the overall pattern of synergy and antagonism in the
36 pairwise combinations and the similarities in overall interaction
patterns among the nine antibiotics, we show the geometric mean of
interaction scores (FIC2) from both replicate experiments in Fig. 1D.
We used a geometric mean rather than an arithmetic mean because the
FIC is a ratio and therefore must be averaged by a geometric mean. For
example, an FIC score of 0.5means half the dose is required for the same
effect and a score of 2 means that double the dose is required for the
same effect. If we imagine two (noisy) experiments of the same pair that
gives scores of 0.5 and 2, the conclusion would be that these drugs are
additive. The arithmetic mean of 0.5 and 2 is 1.25, erroneously suggest-
ing antagonism. However, the geometric mean of 0.5 and 2 is 1, and is
scored correctly as additive.

In agreement with previous studies, pairwise synergy was rare and
antagonism was common in our pairwise measurement set (20–23).
However, we identified three pairs with strong and reproducible synergy:
clofazimine + bedaquiline, clofazimine + isoniazid, and pretomanid +
rifampicin. Of these, synergy between clofazimine and isoniazid and
that between clofazimine and bedaquiline have been previously reported
(25, 26), but the synergy between pretomanid and rifampicin against
Mtb is novel. Other interactions such as the antagonism betweenmoxi-
flaxocin and rifampicin and that between moxifloxacin and linezolid
have been reported previously (16, 27). We note the tendency of
moxiflaxocin to exhibit antagonism with nearly all antibiotics tested.
Rifampicin + isoniazid was found to be mildly antagonistic, consistent
with patient studies that showed antagonismor additivity depending on
treatment dose (28–30). The lower bound and upper bound of FIC2 in
this set were 0.45 (bedaquiline + clofazimine and clofazimine + isoniazid)
and 1.90 (bedaquiline + moxiflaxocin), respectively. These FIC2 values
correspond to combinations with approximately double or half the po-
tency of the single drugs. We validated the clofazimine + bedaquiline
and pretomanid+ rifampicin synergy and themoxifloxacin+pretomanid
antagonism using traditional checkerboard assays (Fig. 1E). We con-
clude thatDiaMOND is an efficient and robustway tomeasure pairwise
drug interactions, and we report a novel synergistic antibiotic pairing
that had not yet been reported among TB drugs.
Table 1. The drugs used in this study, their abbreviations, target
processes, and the minimum inhibitory concentrations (MICs).
Drug
 Abbreviation
 Target process
 MIC (mg/ml)
Bedaquiline
 BDQ
 ATP synthase
 0.6
Clofazimine
 CLZ
 DNA replication
 2.8
Ethionamide
 ETA
 Mycolic acid
 3
Ethambutol
 ETH
 Mycolic acid
 1.5
Isoniazid
 INH
 Mycolic acid
 0.18
Linezolid
 LIN
 Protein synthesis
 3
Moxifloxacin
 MOX
 DNA gyrase
 0.35
Pretomanid
 PRE
 Protein synthesis
 0.8
Rifampicin
 RIF
 RNA polymerase
 0.06
4 of 11
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Diagonal sampling method to measure high-order
drug interactions
In both DiaMOND and the traditional checkerboard assay, the exper-
imental setup of a three-way drug interaction is an extension of the pair-
wise measurement technique. With a checkerboard assay, a 3D dose
space is sampled exhaustively and the curvature of the contour as a
plane (as opposed to a line for the pairwise assay) is measured (Fig. 2A).
With DiaMOND, we instead sample the most information-rich areas
of the 3Ddose spacewith the goal ofmeasuring the contour curvature.
Like pairwise drug combinations, for three-way drug interactions, we
measure the single-drug dose responses (X, Y, and Z) and the combi-
nation dose response (a 1:1:1 mixture of the three drugs). DiaMOND
defines an additivity plane using the IC50 for individual drugs, as shown
in Fig. 2A, with simulated examples. The distance from the origin to the
intersection of this planewith the three-drug dose response is defined as
the expected IC50 of the combination, given single drugs (e1; seemethod
S1 for calculation of e1 given three IC50 values). The comparison of the
observed IC50 (o3) and e1 is then used to obtain a three-way interaction
FIC3 score

FIC3 ¼ o3
e1

ð2Þ
Cokol et al., Sci. Adv. 2017;3 : e1701881 11 October 2017
DiaMOND can be directly scaled to measure the interaction score
for combinations with any number of drugs. To produce an FICn score
for an n-way combination, one needs n single-drug dose responses and
one n-drug combination mixture dose response, totaling n + 1 dose-
response experiments. Using the IC50 for each of the n single drugs,
DiaMOND defines a hyperplane (the contour of additivity). The dis-
tance from the origin to the intersection of this hyperplane with the
n-drug dose response is defined as the expected IC50 of the combina-
tion, given single drugs (e1). Calculation of e1 given IC50 measurements
of n drugs is given in method S1. For example, measuring a five-way
interaction would only take six dose-response experiments and, hence,
can fit into one microplate, making DiaMOND 1000 times more effi-
cient than a 5D checkerboard assay.

FICn is calculated as before

FICn ¼ on
e1

ð3Þ

Experimental measurement of high-order interactions in Mtb
Thus, having developed an efficient method to measure high-order
drug interactions, we next sought to use this method to find high-order
synergistic combinations in Mtb. We applied DiaMOND to five anti-
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Fig. 2. DiaMOND for measuring high-order drug interactions. (A) Top: The blue surface connecting the IC50 of three single drugs is used to define the additive
expectation. As in the 2D case, the expected dose based on additivity is determined by finding the intersection of the three-drug combination dose response and the
blue surface. If the observed IC50 of the equipotent mixture of three drugs is smaller than, equal to, or larger than the additive expectation, synergy, additivity, or
antagonism is concluded, respectively. Bottom: DiaMOND experimental setup to measure three-way drug interactions requires four dose-response experiments where
drug dose is linearly increased. Three dose responses are single-drug dose responses. In the fourth dose-response experiment, a 1:1:1 mixture of drug A, drug B, and
drug C is linearly increased. Expected dose, shown by a blue triangle, is geometrically calculated (method S1). When the observed dose is less than, identical to, or more
than the expected dose, synergy, additivity, or antagonism is concluded, respectively. (B) Experimental measurement of all pairwise, three-way, four-way, and five-way
interactions among five antibiotics in Mtb. Dose response of five antibiotics and all possible combinations are shown in duplicate. Circles or blue triangles mark the
observed or expected IC50, respectively. Circles smaller or larger than expectation are marked by green or red, indicating synergy or antagonism. FICn scores obtained
by dividing observed with expected IC50 in this replicate are shown on the right of each n-drug dose response. Simulated dose-response data are shown in blue
gradient, and experimentally determined dose-response data are shown in grayscale.
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biotics that showed pairwise synergy in the pairwise screen: bedaqui-
line, clofazimine, isoniazid, pretomanid, and rifampicin. We used
DiaMOND to measure the interaction of a five-way combination of
these antibiotics. This interaction was close to additivity (FIC5 = 0.93).
To explore this interaction further, we measured all the pairwise,
three-way, and four-way combination dose responses for these drugs
in biological duplicate (Fig. 2B). Using DiaMOND, we then computed
the interaction scores among all combinations of these five antibiotics
(10 FIC2 values, 10 FIC3 values, 5 FIC4 values, and 1 FIC5 value). Our
resultswere reproducible amongduplicates (r=0.56,P<3×10−3; fig. S4).

To interpret FIC scores as synergistic, additive, or antagonistic, we
generated a model of experimental error. Because a drug is, by defini-
tion, additive with itself, the FICn values obtained from interactionmea-
surements of a drug against itself are expected to be 1, and any deviation
from this is due to experimental error. We measured the FICn of isoni-
azid against itself for pairwise, three-way, four-way, and five-way com-
binations (fig. S5). As expected, the FICn scores from these experiments
centered around 1 (mean = 1.00) with an SD of 0.09. We calculated a
95% confidence interval for additivity as 0.82 to 1.18; therefore, com-
binations with scores smaller or larger than this range are significantly
synergistic or antagonistic.

To identify synergistic (and antagonistic) high-order drug combina-
tions againstMtb, we evaluated the geometricmean of two replicates.We
discovered one three-way combination (bedaquiline + clofazimine +
isoniazid) with particularly strong three-way synergy (FIC3 = 0.62). In
addition, we identified the three-way combinations bedaquiline +
clofazimine + rifampicin and bedaquiline + pretomanid + rifampicin
and four-way combinations bedaquiline + clofazimine + isoniazid +
rifampicin and clofazimine + isoniazid + pretomanid + rifampicin as
synergistic high-order combinations. We validated the three-way syn-
ergy of bedaquiline + clofazimine + isoniazid using a traditional 3D
checkerboard of drug concentration combinations where each drug
was increased linearly in one axis in a 6 × 6 × 6 matrix (fig. S6). We
conclude that the DiaMOND approach can efficiently and reliably
measure high-order drug interactions.

Factorization method of high-order drug interaction scores
We observed many high-order synergistic combinations from our ex-
haustive search among five Mtb drugs. This was not unexpected, be-
cause these five drugs were selected for having synergistic pairwise
combinations. We next asked whether the high-order interactions
scores (FICs) were due entirely to the strength of the underlying lower-
order interactions. Thus, we aimed to quantify distinct contributions of
the FICn: (i) the emergent interactions of the n-way interactions and
(ii) the lower-order interactions that underlie the n-way interaction.
DiaMOND can precisely break down an FICn score into these two
components (fig. S7). We will first demonstrate this factorization for
a three-way combination and then describe a general model for n-way
combinations.

The expected value e1 used for FIC3 scoring above was calculated
using the IC50 of three individual drugs. Alternatively, we can define
expectation based on the strengths of the pairwise interactions. To do
so, we construct an expected surface (magenta plane) with the IC50 of
the three two-drug dose responses (Fig. 3A). This plane is then the
expected contour of additivity accounting for the underlying interac-
tions of the three pairwise interactions that comprise the three-drug
combination. We define e2 as the distance from the origin to the inter-
section of this surfacewith the three-drug dose response. e2 corresponds
to the expected concentration to give IC50 if there is additivity among
Cokol et al., Sci. Adv. 2017;3 : e1701881 11 October 2017
three pairwise combinations. Notably, calculation of e1 and e2 requires
three IC50 values, supplied from single-drug or two-drug dose re-
sponses, respectively. e1 = e2 if pairwise combinations are overall addi-
tive. If the e2 plane is closer to the origin than the e1 plane (e2 < e1), then
pairwise combinations are overall synergistic, whereas if e2 > e1, then
pairwise combinations are overall antagonistic.

We observe that

FIC3 ¼ o3
e1

¼ o3
e2

⋅
e2
e1

ð4Þ

This operation factorizes a three-way drug interaction into two com-
ponents: (i) o3/e2 is a measure of how different the three-way effect is
than what would be expected given the two-drug dose-response results.
We define o3/e2 as emergent FIC3 (eFIC3), using the same term used by
Deshpande et al. (16) in their analysis with the Bliss multiplicative
model. (ii) e2/e1 is a measure of the total effect of three pairwise inter-
actions among three drugs. We define e2/e1 as lower-order FIC2

(lFIC2). Therefore, the total FIC3 score may be factored directly into
emergent and lower-order components (see also fig. S7).

Emergent and lower-order scores (eFIC3 and lFIC2, respectively)
are interpreted like the FIC, with 1 for additivity, <1 for synergy, or >1
for antagonism. For example, when each of the drug pairs in a three-way
combination is additive, there is no net effect of drug interaction coming
from pairwise interactions (lFIC2 = 1; Fig. 3B, left). In this case, the in-
teraction score is due to the emergent three-way interaction; hence,
FIC3 = eFIC3. When pairs in a three-way combination are synergistic
(lFIC2 < 1) or antagonistic (lFIC2 > 1), this agreement is not necessarily
true. For example, if the observed IC50 falls between e1 and e2, FIC3 and
eFIC3 will have opposite interaction types (indicated by “*” in Fig. 3B).
We note that both eFIC3 and lFIC2 scores for a particular combination
are expected to correlate with FIC3, explaining the previous success in
predicting three-way synergy using pairwise interactions (17, 18).

lFIC2 can be approximated by the geometric mean of the FIC2

scores of the three pairwise combinations (fig. S7). Then, FIC3 can be
factorized as a product of eFIC3 and the geometric mean of three FIC2

scores (FIC2)

FIC3 ¼ o3
e1

¼ o3
e2

⋅
e2
e1

¼ eFIC3 ⋅ lFIC2 ≈ eFIC3 ⋅ FIC2 ð5Þ

The recursive factorization of a four-way drug interaction is shown
in method S2. The factorization of an n-order drug interaction is
generalized from these examples. For n-way interactions, the expected
plane that accounts for the lower-order interactions (en−1) is defined as
the multidimensional plane defined by all the (n − 1)–way drug com-
binations. Therefore, we may write the following to factorize an n-way
drug interaction into two components

FICn ¼ on
e1

¼ on
en�1

⋅
en�1

e1
¼ eFICn ⋅ lFICn�1≈ eFICn ⋅ FICn�1 ð6Þ

Each of the FICn−1 may also be represented as ðeFICn�1 ⋅ FICn�2Þ,
and the equation above takes a recursive form. It is solved as

FICn ≈ FIC2 ⋅ ∏
n

k¼3
eFICk ð7Þ
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Fig. 3. DiaMOND for measuring emergent high-order drug interactions. (A) Each circle indicates an observed IC50 in either single-drug or two-drug dose responses
for a three-drug combination. The expected surfaces obtained by connecting the IC50 values observed in two-drug combinations are shown in magenta. For clarity, only
one two-drug axis [X + Y]/2 is shown as a magenta line. If the observed IC50 of the equipotent mixture of three drugs is smaller than, equal to, or larger than the
pairwise expectation, emergent synergy, additivity, or antagonism is concluded, respectively. The blue triangle represents the expected surface given single-drug IC50
values. When pairwise interactions are additive, synergistic, or antagonistic, the expectation given pairs (magenta triangle) will be equal to, smaller than, or larger than
the expectation given singles, respectively (blue triangles). (B) Simulated dose responses are given for single drugs, pairwise drugs, and possible outcomes for three-
drug dose responses. The blue and magenta triangles mark the additive expectation given single drugs or pairwise combinations, respectively. The top and bottom of
the circles representing the observed IC50 values are colored according to the interaction given singles (FICn) and emergent interaction (eFICn) that would be concluded.
While two interaction types are the same when drug pairs are additive, a three-drug pair may have opposite interaction types when pairs are synergistic or antagonistic
(indicated by “*”). Simulated dose-response data are shown in blue gradient. (C) All interaction scores for two-, three-, four-, and five-way combinations among five
antibiotics are shown as a network representation. Nodes are specific combinations, whose contents are indicated by the barcode. The color of a combination shows
the FICn or eFICn (geometric mean of two replicates) of a combination, whereas the size corresponds to deviation from additivity (FICn = 1). Edges are drawn between
each combination that differs by one drug.
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FIC2 can also be represented as ðeFIC2⋅ FIC1Þ. Drugs are additive
with themselves; therefore, FIC1 is 1, which makes FIC2 = eFIC2. By
substituting this equivalency, Eq. 7 is transformed into the following
equation that allows the quantification of each lower-order emergent
interaction’s effect on the final high-order drug interaction observed.

FICn ≈ ∏
n

k¼2
eFICk ð8Þ

Thus, DiaMOND’s measurements may be simply analyzed to parse
total interaction scores into the product of the geometricmean of emer-
gent interaction scores for each lower-interaction group (fig. S7). From
this factorization, we can quantify the extent to which each lower-order
component influences the FICn score of a high-order drug interaction.

Factorization of high-order drug interaction measurements
in Mtb
To understand the relative contribution of the lower-order combina-
tions and the emergent interaction of the high-order combinations to
the overall FIC, we used this framework to factorize each of the high-
order FICnwemeasured above into emergent (eFICn) and lower-order
interactions (lFICn−1) (fig. S7). Using the two-, three-, and four-drug
dose responses among five TB antibiotics, we computed the eFICn score
for each high-order interaction experiment (20 three-way, 10 four-way,
and 2 five-way).We used the geometricmean of two replicates as eFICn

of a combination to evaluate the interactions (see the Supplementary
Materials). The FICn and eFICn scores for all combinations are shown
as nodes on a tree in Fig. 3C, where addition or subtraction of a drug
is indicated with an edge. The most striking eFICn score was 1.3 for
clofazimine + pretomanid + rifampicin. This emergent antagonism
makes this three-way combination additive, despite the expected synergy
given pairwise combinations. To a weaker extent, the same explanation
applies for the five-way combination, for which synergy would be the
expectation given lower-order interactions. An antagonistic eFIC5

score of 1.14 pushes the FIC5 score to 0.93, close to an additive interac-
tion. FIC4 and eFIC4 scores for clofazimine + isoniazid + pretomanid +
rifampicin were 0.78 and 0.9, respectively, indicating that this four-way
combination is synergistic and also has emergent synergy. This contrasts
with the three-way synergy of bedaquiline + clofazimine + rifampicin,
which is synergistic (FIC3 = 0.78), but has no emergent synergy (eFIC3 =
1.06), suggesting that this three-way synergy is primarily due to pairwise
synergies.

To understand howmuch the underlying components contribute
to the overall higher-order interactions, we next evaluated the corre-
lations of emergent and lower-order interaction scores to overall FICn

in our full experimental set (fig. S7). Emergent interaction scores (eFICn)
significantly correlated with total interaction scores (FICn) (Spearman’s
r = 0.45, P = 9.6 × 10−3; Fig. 4A). Therefore, emergent interactions,
which are independent of low-order interactions, are an important
component of a high-order drug interaction.We next calculated a lower-
order interaction score (lFICn−1) for each combination by dividing
FICn with eFICn. lFICn−1 scores correlated with FICn, indicating that
lower-order interactions also correlated with high-order interaction
scores (r = 0.55, P < 1.0 × 10−3). However, eFICn and lFICn−1 scores
did not have a significant correlation (r = −0.35, P = 5.2 × 10−2).
Together, our analysis suggests that both lower-order interactions and
emergent interactions correlate with the overall high-order interaction,
but that the lower-order and emergent interactions are independent of
each other.
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Finally, we used our measured and calculated component scores to
test the theoretical predictions made by our factorization methodology.
lFICn−1 significantly correlated with the geometric mean of FICn−1

(FICn�1 ; r = 0.97, P = 2.8 × 10−21; figs. S7 and S8), verifying the approx-
imation used in Eq. 6. The multiplication of eFICn and FICn�1 also
significantly correlated with FICn (r = 0.97, P = 3.1 × 10−20; Fig. 4B),
in agreement with Eq. 8.

Prediction of high-order interactions using lower-order
emergent drug interactions
With DiaMOND, we have established the methodology for efficient
measurement and analysis of pairwise and high-order drug combina-
tions. However, systematic searches for synergistic high-order combi-
nations are impeded by the large number of combinations, and even the
improved efficiency of DiaMOND’s measurement procedure cannot
fully enable systematic experiments. Previouswork has shown that pair-
wise interactions could largely predict three-way drug interactions (5, 6).
These studies suggest that prediction of three-way interactions from the
nature of the underlying pairwise interactions, if quantitatively tractable,
may enable us to enrich candidates for synergistic three-way combina-
tions for further measurement.

We next aimed to use our high-order drug interaction scores and
their factorization into emergent and lower-order contributions to test
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Fig. 4. The relationship between high-order interactions and their compo-
nents. Three-, four-, and five-way interactions are denoted by triangles, squares,
and stars, respectively. Each data point is obtained by factorization of one high-
order interaction experiment. In each comparison, FICn is shown on the y axis. (A)
Emergent interactions significantly correlate with FICn (Spearman’s r = 0.45, P = 9.6 ×
10−3). (B) The product of emergent interaction and the geometric mean of all FICn−1
scores strongly correlates with FICn (Spearman’s r = 0.97, P = 3.1 × 10−20). (C) The
geometric mean of all pairwise interactions among the drugs in a high-order com-
bination is not significantly correlated with FICn (Spearman’s r = 0.33, P = 0.06). How-
ever, FIC2 significantly correlates with FIC3, which is observed by the trend of
triangles (Spearman’s r = 0.55, P = 1.2 × 10−2). (D) The multiplication of the geometric
mean of the emergent interaction scores for all orders strongly correlated with FICn
(Spearman’s r = 0.90, P = 1.6 × 10−12).
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the hypothesis that lower-order interactions could be used for data-
driven prediction of high-order interactions. The factorization of
high-order interactions provides an immediate way to predict FICn

(see above). Experimentally determined emergent interaction scores
(eFIC) can be used inEq. 8 to produce an approximation for FICn, using
the definition of eFIC2 = FIC2 to simplify the recursive formula. As we
have already determined all eFIC2, eFIC3, eFIC4, and eFIC5 scores
for all combinations in our screen, we next calculated the eFIC2 scores
for all three-way, four-way, and five-way interactions; the eFIC3 scores for
all four-way and five-way interactions; and the eFIC4 score for the five-
way interaction.According toEq. 8, eachof these eFICk score sets equally
influencesahigh-orderdruginteractionscoreFICn.Themultiplicationof
each of these eFICk score sets and eFICn of a high-order combination
should approximate the FICn of the combination (see fig. S7 for
examples of eFIC2 and FIC3 calculation). The final approximation of
FICn depends on the data quality of experimental measurements of
lower-order interactions, highlighting the importance of reproducibility
in the prediction of high-order drug interactions.

When all combinationswere considered, pairwise scoresðeFIC2Þdid
not significantly correlate with high-order interaction scores (FICn; r =
0.33, P = 0.06; Fig. 4C). However, when only three-way interactions
were considered (triangles), pairwise interaction scores (eFIC2Þ signif-
icantly correlated with the interactions at high order (FICn; r = 0.55, P =
1.2 × 10−2). These observations suggest that a simple geometric mean
of all FIC2 scores is a good predictor of three-way interaction scores,
but that pairwise scores could not predict interactions of more than
three drugs. In contrast, we find a significant but weaker correlation
when eFIC3 and eFIC4 scores are included to predict FICn for four-
way and five-way interactions, respectively (r = 0.45, P = 9.9 × 10−3),
suggesting that lower-order interactions influence but do not strong-
ly predict overall FIC. This suggests that the knowledge of all lower-
order emergent interactions has some predictive potential, even in
the absence of eFICn. When the high-order combination’s eFICn is
also considered, the agreement between prediction and experiments
was very strong (r = 0.90, P = 1.6 × 10−12) (Fig. 4D). Therefore, we
conclude that the prediction of high-order drug interactions can be
achieved by systematically measuring emergent interaction scores.
These scores can be combined in Eq. 8 to make interaction predictions
on high-order combinations and rank these combinations by likelihood
of synergy.
DISCUSSION
Here, we present DiaMOND, a methodology to make robust measure-
ments for pairwise or higher-order drug interactions. DiaMOND relies
on the construction of dose responses for drug mixtures and compar-
ison with the dose response of component drugs under the Loewe
additivity model for drug interactions. Sampling a small part of the tra-
ditionally used experimental setup allows efficient measurements for
pairwise or high-order drug interactions. DiaMOND’s efficiency also
enables the practical use of Loewe additivity in producing immediately
interpretable and widely used FIC interaction scores for combinations
of many drugs. Drug interaction measurement by DiaMOND is broadly
applicable for any agent that results in a specified phenotype. Here, we
successfully applied DiaMOND to measure pairwise and high-order in-
teractions among antibiotics effective against Mtb. We propose
DiaMOND as an alternative to checkerboard assays for drug interaction
measurements, especially for high-order interactions. The robustness of
DiaMOND, despite the difficulty of working with slow-growing myco-
Cokol et al., Sci. Adv. 2017;3 : e1701881 11 October 2017
bacteria, suggests that DiaMOND may be applied to other challenging
experimental systems.

With precise measurement of interactions among many drugs, we
can evaluate the current guidelines and consider alternative regimens in
search of better drug combination options for latent, drug-sensitive, and
drug-resistant TB. Here, we uncovered surprisingly strong drug syner-
gies including pairwise (bedaquiline + clofazimine, pretomanid+ rifam-
picin), three-way (bedaquiline + clofazimine + isoniazid), and four-way
(bedaquiline + clofazimine + isoniazid + rifampicin) combinations.
Interestingly, none of the high-order interactions were as synergistic
as pairwise synergies. However, note that multidrug regimens are often
used to block resistance evolution paths (31). Although the identified
three-way and four-way synergistic combinations have weaker synergy
than pairwise combinations, they may be more effective against
resistance.Of particular interest is the tendency ofmoxifloxacin to show
frequent antagonism, including with rifampicin (32) or pretomanid,
because moxifloxacin is used in combination with these antibiotics
in clinical trials (33, 34). These observations are a reminder that synergy
that is observed in vitro is not necessarily associated with a better treat-
ment, because resistance evolution, adverse drug interactions, combina-
tion pharmacokinetics/pharmacodynamics, and other considerations
may influence treatment success. Given the toxicity and adverse side
effects of many second-line antibiotics and drugs in the development
pipeline of TB therapeutics, a detailed, systematic, and quantitatively
rigorous understanding of drug synergies and antagonisms may help
accelerate the design of multidrug regimens for testing in animals and
in adaptive clinical trials (3).

Apart frommeasuring a high-order interaction, DiaMONDcan also
factorize a high-order drug interaction into components.Here, we char-
acterize a straightforward relationship between the three basic types of
interaction scores: The total score is a product of the emergent inter-
action of the high-order interaction and the geometric means of each
lower-order interaction group. This breakdown of interaction scores,
applied to our compendium of drug interaction scores in Mtb, enabled
us to address several important questions. First, we established that lower-
order interactions are moderate predictors of high-order interactions.
This may help us use easy-to-measure pairwise interactions to apply
data-driven design of screens for high-order drug interactions instead
of exhaustive searches. Even with the efficacy of DiaMOND, an ex-
haustive search of all high-order combinations among 20 drugs is not
practical because this would take 100,000 microplates, whereas a
comprehensive pairwise interaction screen requires many fewer plates
(by four orders ofmagnitude). Second, despite the good predictive value
of low-order interactions to higher orders, there were strong emergent
interaction scores, highlighting the importance of experimental verifi-
cation of high-order drug interaction measurements in the design of
multidrug regimens.

DiaMOND’s conceptual framework to study specific drug interac-
tionsmay be adapted to study interactions in amore nuancedway. For
example, in TB, some interactions can be synergistic or antagonistic
in animal models or during the course of clinical treatment depending
on treatment timing and dose (16, 28–30). The dose dependencymay be
due to scoring by the Blissmethodology, which can yield fundamentally
different interaction scores depending on drug concentration, or the
dose dependencies may be due to contours of the checkerboard that
are convex in one combination-dose region and concave in another.
The DiaMONDmethodology can be customized to identify interactions
that are inherently dose dependent by expanding the regions of geomet-
ric sampling.
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Combination therapy is used not only to treat TB and other infec-
tious diseases but also for many cancers. With combination therapies, we
have the opportunity to combine synergistic drugs but have been limited
by a practical inability to systematically measure and prioritize drug
combinations for testing. The DiaMOND methodology is efficient, in-
expensive, and intuitive, and therefore may be used to develop a more
balanced emphasis ondata-drivenmodeling and experimental verification
in preclinical drug regimen design for a broad range of disease models.
METHODS
Strains and culturing
A pantothenate and leucine auxotrophic strain of Mtb H37Rv was used
for experiments (29). Bacteria were grown to mid-log phase with
shaking at 37°C, in 7H9 medium supplemented with 0.05% Tween
80, 0.2% glycerol, 10% BBL Middlebrook OADC enrichment (VWR),
leucine (50 mg/ml), and pantothenate (24 mg/ml).

Growth inhibition assays
Drugs were dissolved in dimethyl sulfoxide and stored at −20°C. The
minimum inhibitory concentration for each drug is given in Table 1.
Assays were performed in clear, flat-bottom 384-well microplates by
dispensing nanoliter volumes of drugs using a digital drug dispenser
(D300e Digital Dispenser, HP). Dispense locations were randomized
within each plate using the software to minimize the plate position
effect. Mid-log phase cultures were diluted to an optical density
(OD) of 0.05 in fresh supplemented 7H9 medium, and 50-ml diluted
cells were added to each well. Plates were sealed with aluminum plate
seals and incubated without shaking at 37°C. After 5 days, aluminum
seals were replaced with optically clear plate seals, and growthmeasure-
ments (OD600) were made (Synergy HT, BioTek).

Data analysis
Using the randomizationmap from the digital dispense software, plate
measurement data were reconstituted and analyzed (MATLAB, Math-
works), as described in Results and methods S1 and S2.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/10/e1701881/DC1
fig. S1. Data analysis pipeline to calculate FIC2 scores from dose-response growth data.
fig. S2. Scatterplot of replicate interaction scores (FIC2) for all pairwise drug combinations
shown in Fig. 1 (C and D).
fig. S3. Correlation among FIC2 scores calculated at different levels of growth inhibition
(IC30, IC40, IC50, IC60, and IC70) from the pairwise interaction data set described in Fig. 1 (C and D).
fig. S4. Scatterplot of replicate interaction scores (FICn) obtained for all two-way (FIC2),
three-way (FIC3), four-way (FIC4), and five-way (FIC5) drug combinations in two replicates for
the experiment shown in Fig. 2B.
fig. S5. Dose responses of isoniazid in combination with itself in one-way, two-way, three-way,
four-way, and five-way combinations.
fig. S6. 3D isobole of the checkerboard assay for the isoniazid + clofazimine + bedaquiline interaction.
fig. S7. DiaMOND factorization model schematic.
fig. S8. Scatterplot of the calculated lower-order (lFICn−1) interaction scores and the geometric
mean of FICn−1 scores (FICn�1) from the high-order measurements described in Figs. 2 and 3.
method S1. Derivation and formulas to calculate expectation doses.
method S2. DiaMOND equation for four-drug combination derived from Eq. 5, approximation,
and recursion.
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