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A mathematical model is presented for the growth of yeast that incorporates

both dimorphic behaviour and nutrient diffusion. The budding patterns

observed in the standard and pseudohyphal growth modes are represented

by a bias in the direction of cell proliferation. A set of spatial indices is devel-

oped to quantify the morphology and compare the relative importance of

the directional bias to nutrient concentration and diffusivity on colony

shape. It is found that there are three different growth modes: uniform

growth, diffusion-limited growth (DLG) and an intermediate region in

which the bias determines the morphology. The dimorphic transition due

to nutrient limitation is investigated by relating the directional bias to the

nutrient concentration, and this is shown to replicate the behaviour obser-

ved in vivo. Comparisons are made with experimental data, from which it is

found that the model captures many of the observed features. Both DLG

and pseudohyphal growth are found to be capable of generating observed

experimental morphologies.

1. Introduction
Yeasts are unicellular organisms belonging to the fungal kingdom that are typi-

cally between 4 and 40 micrometres in diameter. In contrast with moulds,

which grow in elongated tubes of one or more cells called hyphae, yeasts typically

grow as individual unconnected cells, sometimes referred to as the yeast form.

Some species of yeast, designated dimorphic, can grow either in a colony of indi-

vidual cells or in a linked chain of elongated cells, referred to as a pseudohypha,

which resembles the tubular true hyphae of other fungi. The ale and baker’s yeast

Saccharomyces cerevisiae usually grows by budding in the yeast phase, but it can be

induced to switch to the pseudohayphal phase under certain stress conditions [1].

Yeast species such as Yarrowia lipolytica and Candida albicans are naturally

dimorphic and the switch from yeast-like to pseudohyphal growth is intrinsic

to the latter species’ activity as a human pathogen [2]. In addition, it has

been argued that yeast cells are a useful model eukaryotic organism [3]. This

diverse range of applications makes it of great interest to study the growth and,

in particular, the morphogenesis of yeast cells.

Yeast colony morphology is controlled by the manner in which individual

cells reproduce and the dimensions of the new cells produced. Typically, yeast

cells reproduce asexually through mitosis, in which new cells are formed from

protrusions, termed buds, that form on existing cells. In favourable growth con-

ditions, such as a nutrient-rich environment, two patterns of bud-site selection

are typically observed: the axial pattern and bipolar pattern [4], both of which

are illustrated in figure 1. In the axial pattern, exhibited by haploid cells, the

first bud forms near the bud scar, and subsequent buds form near previous
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Figure 1. The budding patterns exhibited by yeast cells. In each case an initial cell A produces daughters B1 and B2, while B1 produces the daughter C. In the axial
pattern new cells form near the birth scar. The bipolar pattern features daughter cells either near the birth scar or directly opposite. During pseudohyphal growth the
cells switch to distal-unipolar budding, in which daughter cells form opposite to the birth scar, cells are elongated and daughters remain attached to mother cells.
(Online version in colour.)

(a) (b) (c)

2 days 6 days 13 days

Figure 2. The onset of pseudohyphal growth in a yeast colony seeded from a single cell of S. cerevisiae strain S1278b (diploid, prototrophic) after (a) 2 days, (b) 6
days and (c) 13 days of growth on 55 mm plates with yeast nitrogen base (YNB) ase agar, at a depth of 2 mm (Difco

TM

YNB w/o amino acids and ammonium sulfate,
cat. no. 233520, with 2% glucose, 50 mM ammonium sulfate and 2% twice washed bacto agar). Plates were incubated at 308C. Images are a typical representation
of triplicate biological replicates. The scale bars represent (a, b) 500 mm and (c) 200 mm. The colony initially grows uniformly in all directions and so has a circular
boundary. By day 6, some evidence of filamentous growth has appeared, which is clearly visible by day 13.
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budding sites, while diploid cells undergo bipolar budding, in

which buds form at the opposite pole to that occupied by the

previous bud.

Environmental conditions can trigger a switch in the

growth patterns of both cell types, which alters the colony mor-

phology. One such example is pseudohyphal growth, such as

exhibited by the colony shown in figure 2. This growth pattern

is characterized by three features: (I) a change to the distal-

unipolar growth pattern; (II) the elongation of cells and (III)

the adhesion of daughter cells to their mother. In the distal-

unipolar pattern (figure 1) cells bud at the pole directly

opposite the bud scar, while the cell elongation causes the

axial aspect ratio to increase from approximately 1.5 up to 3.5

[5]. The chains of connected elongated cells that form during

pseudohyphal growth are known as pseudohyphae as they

resemble the single long hyphae cells of filamentous fungi.

Pseudohyphal growth of S. cerevisiae is typically triggered by

an external stress, such as the presence of fusel alcohols [6,7],

which is thought to be a type of quorum sensing [1], heat [8]

or low levels of mating pheromones [9]. Of particular interest

here is pseudohyphal growth in response to nutrient limitation,

which is a form of scavenging [1,5]. Through this response,

non-motile yeast cells are able to search for nutrients away

from the colony or invade a host organism [10].
Both experimental observations [11] and continuous

coupled reaction–diffusion models [12,13] have shown that

colonies of the motile bacterium Bacillus subtilis can produce

growth patterns reminiscent of pseudohyphal yeast. Exper-

imental studies [14–16] have shown that these patterns

depend on both the nutrient concentration and the compo-

sition of the growth medium, and similar observations have

been made for non-motile bacteria [15]. This suggests that bac-

terial colony morphology is influenced by diffusion-limited

growth (DLG), which arises due to the interaction between

cells and a second diffusing substance, such as nutrient or a

byproduct of cell growth. It is known that yeast colony shape

depends upon both the species of yeast and the limiting nutri-

ent [17], while comparisons between in vivo data and a

one-dimensional cellular automaton model coupled to a con-

tinuous nutrient model suggest that DLG alone does not

control the colony morphology for all yeast species and nutri-

ent types [18]. An off-lattice model has shown, however, that

changes to the cell growth pattern are not able to alter the mor-

phology without the inclusion of growth inhibition due to

crowding [19].

Mathematical modelling clearly provides a promising

avenue for identifying and quantifying the mechanisms that

lead to filamentous growth. Discrete lattice-based models
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have been used extensively to understand pattern formation in

cell colonies, such as the Eden model [20] and the diffusion-

limited aggregation model [21], which represent growth in

high and low nutrient concentrations, respectively. In the con-

text of a growing colony, the latter is referred to as DLG. The

interaction between growing cells and a diffusing species has

been represented implicitly by probabilistic growth rules [22],

through crowding effects [23], and using coupled cellular auto-

mata [24]. The effect of agar concentration and nutrient

availability on yeast colony morphology has been investigated

using coupled reaction–diffusion equations [25], while con-

tinuous models have also been used to analyse the stability

of the colony front, albeit in the context of bacterial growth

[13]. Using a hybrid model, comprising discrete non-motile

cells on a lattice and a continuous nutrient field, it has been

shown that DLG can be induced by increasing the nutrient

consumption rate of the cells [26].

To understand the mechanisms that influence colony

shape, we must be able to quantify the observed patterns. Bac-

terial colonies have been described by fractal dimension [11,14]

and related scaling laws [12], while fingers growing from

bacterial colonies have been quantified by the dimensionless

width and amplitude [13]. Yeast invasiveness has been classi-

fied using the total colony volume and invasive colony

volume [27,28], while a systematic analysis of 427 features

identified six as important for classifying colony morphology,

with the fractal dimension, average entropy texture within the

colony and the area of the colony structure the most important

features [29]. The size of the colony perimeter relative to that of

its area and the coefficient of variation of the colony boundary

as a function of angle have also been used to describe yeast

colonies [25]. Much use has been made of normalized spatial

counts [30,31] and pair correlation functions to describe spatial

patterns of cell colonies [32–36]. In particular, normalized

count functions and pair correlation functions have been

used to define measures of cell distributions in the radial and

angular directions for a growing colony of yeast cells [37].

While mathematical models have the potential to assist in

the classification of yeast strains and mutants, this can only be

realized if the simulated data can be compared with experimen-

tal data. Approximate Bayesian computation (ABC) allows the

generation of probability distributions for parameters of interest

[38,39], which provide more information than simple point esti-

mates such as would be generated using a least-squares match.

ABC algorithms require large numbers of simulations in order

to generate the required distributions, which means that these

techniques are only practical if the model solutions can be com-

puted efficiently. This requires a careful balance between model

accuracy and computational complexity.

Despite the substantial body of existing work, the models

developed so far do not provide a sufficient understanding

of the filamentous growth of yeast. In particular, no model

incorporates all three key features (I, II and III from above) of

pseudohyphal growth. Furthermore, there is little understand-

ing of how pseudohyphal and DLG interact and, consequently,

only a limited understanding of the conditions leading to fila-

ment-like patterns. We seek to address these questions using an

efficient mathematical model for the dimorphic growth of yeast

cells. Building upon the lattice-based discrete-time model

developed by Matsuura [24], cells are represented by squares

on a lattice, while a single species of nutrient is represented

by particles that perform a random walk through the lattice.

The changes in cell polarity and shape (properties I and II,
respectively) that occur during pseudohyphal growth are

modelled by modifying the original model of Matsuura [24]

to include a bias in the direction of the cell growth, while

cell–cell adhesion (property III) is enforced automatically by

specifying that all cells are non-motile.

The model is used to examine the influence of nutrient

diffusivity, nutrient concentration and the directional bias

on the observed growth pattern. This was not possible using

previous models, which did not incorporate both the diffusion

of nutrient and the key features of pseudohyphal growth. The

model thus offers a significant new insight into the relative

impact on the morphology of each phenomenon, providing,

for the first time, a theoretical understanding of the conditions

under which each is important. The change in morphology

that arises from pseudohyphal growth due to nutrient

deprivation is investigated by increasing the bias as the sur-

rounding nutrient concentration decreases. The morphology

is measured using spatial statistics based upon those devel-

oped by Binder et al. [37], which have been shown to be

suitable for use with experimental data. Using these statistics,

we identify the dominant growth mechanisms in different

regions of the parameter space. Importantly, the model

developed here is efficient while still capturing important bio-

logical features, making it highly suitable for use with ABC

algorithms and thus providing the first viable avenue for esti-

mating physical parameters from experimental observations

of pseudohyphal growth.

The remainder of this article is structured as follows. The

mathematical model and statistics are described in §2 and the

accuracy of the discrete nutrient model is discussed. In §3,

the model is used to examine the influence of directional

bias, nutrient concentration and nutrient diffusivity on the

morphology, and the dominant growth mechanisms are ident-

ified. Some experimental comparisons are discussed in §4,

while two extensions to the model are explored in §5. The

main conclusions are summarized in §6.
2. Mathematical model
2.1. Model description
We adapt the single-layer diffusion model introduced by

Matsuura [24], which is discrete in both time and space. Exam-

ining the experimental image in figure 2c, it is evident that a

small section of the colony boundary, which grows in the

radial direction, closely resembles rectilinear growth normal

to the boundary. As inspection of this region is sufficient for

determining the growth mode, we are thus able to determine

the morphology by simulating only a small section of the

boundary, which greatly reduces the number of computations

required in the simulations. This approach avoids the difficul-

ties of simulating a colony having a nearly circular boundary

on a rectangular grid. The yeast cells are thus confined to a

grid with Lx and Ly points in the x- and y-directions, respect-

ively. The total area of the lattice is A ¼ LxLy. Each point

within the grid may be occupied by at most one yeast cell,

with the number of cells at any time denoted by n and the cor-

responding average cell density defined by r ¼ n/A. It is

convenient to denote the initial number of cells n0, so that the

number of new cells is ng ¼ n 2 n0. A single nutrient species

is modelled by discrete packets containing mass m of nutrient

that move on the same grid as the yeast cells. Each site of the lat-

tice can hold any non-negative integral number of nutrient
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Figure 3. Illustration of the modified Matsuura [24] model with directional
bias. The yeast cells (grey cells) and nutrient packets (black dots) are confined
to a lattice. Yeast cells absorb nutrient and reproduce into neighbouring cells.
Cells reproduce away from their mother in the direction of the cell axis with
probability pd, with the remaining probability spread evenly between the two
directions perpendicular to the cell axis. Nutrient diffuses randomly through
the lattice.

Table 1. Typical parameter values for the modified form of the model
developed by Matsuura [24]. The parameters marked with an asterisk have
been chosen to match those in the original model.

parameter symbol value

absorption probability pa 0.5

reproduction probability pr 0.5

nutrient movement probability pm 0.8

directional bias pd 0 – 1

initial number of nutrient packets n0 102 – 105

initial nutrient concentration c0 1 – 7

maximum nutrient storage* ms 4

nutrient for reproduction* mr 3

number of nutrient steps s 1 – 37
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packets, regardless of whether that point is also occupied by a

yeast cell. As an initial condition, we place a line of Lx cells

across the row y¼ 1 of the grid, which matches the condition

used by Matsuura [24] and represents a small portion of a

colony boundary. We also specify the initial number of nutrient

packets n0, which are placed uniformly at random across the

domain to give a total initial nutrient mass of m0 ¼ mn0. The

initial average nutrient concentration is given by c0 ¼ m0/A,

which is not necessarily uniform across the domain. The

domain is taken to be periodic across the boundaries x¼ 1 and

x¼ Lx but not in the y-direction. For a grid point (x, y) not on a

boundary, we take the neighbouring cells to be the von Neu-

mann neighbourhood consisting of (x þ 1, y), (x 2 1, y), (x, y þ
1) and (x, y 2 1). On a periodic boundary, the y co-

ordinates are taken modulo Ly. On a non-periodic boundary,

any point that lies outside the domain is ignored. At this juncture,

we do not set values for the length, time and mass scales.

Given some state of the cells and nutrient, the state at the

next time step is found by performing three operations: yeast

cells may absorb nutrient; yeast cells may reproduce; and

nutrient packets may move throughout the lattice. These mech-

anisms, illustrated in figure 3, operate as follows. Every yeast

cell may absorb and store a nutrient packet with probability

pa provided that there is a nutrient packet on the same lattice

point and the cell contains less than the maximum nutrient

capacity ms. Every yeast cell with at least mass mr of nutrient

stored attempts to reproduce with probability pr by creating a

new yeast cell in a neighbouring unoccupied grid location.

As one neighbouring lattice site will always contain the

mother cell, each cell can reproduce in three directions and

hence can reproduce no more than three times. This limit

reflects the crowding that occurs within a yeast colony. If the

site selected for reproduction is occupied, then the reproduc-

tion event is aborted. When reproducing, the cell consumes

mr nutrient. Following Matsuura [24], we set ms ¼ 4; however,

any choice for ms is possible provided ms � mr. The original

model is modified so as to introduce a bias in the direction
of cell reproduction that depends upon cell polarity. The prox-

imal pole of the daughter cell is set to be the side adjacent to the

mother cell, with the distal pole on the opposite side. The cell

axis is defined to be the line joining these two poles.

A reproducing cell creates a daughter in the site adjacent to

its distal pole with probability pd, and otherwise creates the

daughter cell in either one of the two perpendicular sites with

probability (1 2 pd)/2, as illustrated in figure 3. Because no

more than one cell can occupy a given site, a cell cannot

create a daughter at the site adjacent to its proximal pole. The

case pd ¼ 1
3 corresponds to unbiased growth, while pd . 1

3

results in a bias towards growth in the direction of the cell

axis, and pd <
1
3 a bias towards perpendicular growth. The

exclusion rule means that each cell may reproduce no more

than three times. At each time step, every nutrient packet

walks randomly through the domain with probability pm, and

each selected packet moves s times at each iteration to one of

the four adjacent sites with equal probability. We choose to

vary s rather than pm so as to allow a comparison with the orig-

inal study by Matsuura [24]. Increasing s corresponds to

increasing the diffusivity of the nutrient. The model parameters

are summarized in table 1. Other features sometimes included

in models of cell growth, such as metabolic states, cell death

and subsequent lysis, and the production of cell waste products,

are not included for reasons of simplicity.
2.2. Quantifying the spatial pattern
To describe the influence of the model parameters on the

colony morphology, we require metrics that summarize the

spatial pattern of the cells. Binder et al. [37] established that

the morphology of disc-like yeast colonies could be quanti-

fied using scaled counts and a pair-correlation function

computed from experimental data, which were summarized

by three indices that measured: (i) the variation in the azi-

muthal direction; (ii) the variation in the radial direction;

and (iii) the local aggregation of cells. Here, we develop ana-

logues of the first two of these indices that are applicable to a

rectangular geometry and provide a sufficient description of

the pattern.

A colony of cells may be represented by a matrix M such that

Mðx; yÞ ¼ 0, if ðx, yÞ is unoccupied,
1, if ðx, yÞ is occupied,

�
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Figure 4. Examples of a lattice with Lx ¼ 4, Ly ¼ 3 and n ¼ 5 cells show-
ing distributions corresponding to (a) the smallest standard deviation smin

and (b) the largest standard deviation smax. These two extremes are used
to scale the standard deviations for other cell distributions. While these
distributions are not unique, the values of smin and smax are.
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so that the number of occupied sites is given by

n ¼
X
x,y

Mðx, yÞ,

with corresponding mean density r ¼ n/(LxLy). To describe the

pattern, the cells are placed into the sets

Sxð jÞ ¼ fðx, yÞ j x ¼ j, Mðx, yÞ ¼ 1g, j ¼ 1, . . . , Lx

and Syð jÞ ¼ fðx, yÞ j y ¼ j, Mðx, yÞ ¼ 1g, j ¼ 1, . . . , Ly,

with associated bin counts cx(j) ¼ Sx(j) and cy(j) ¼ jSy(j)j.
To quantify the horizontal pattern, we first compute the

standard deviation of cx( j ), given by

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lx

XLx

j¼1

ðcxð jÞ � mxÞ
2

vuut ,

where mx is the mean of cx( j ). For non-exclusion processes, the

standard deviation may be normalized by the value attained

when all cells reside in a single bin [30]. While this has also

been used as an upper bound for exclusion processes [31], if

the number of cells is larger than the bin size Ly, then this

upper bound can never be realized. If exclusion is considered,

then a smaller upper bound on the standard deviation is

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lx

n

Ly

� �
ðLy�mxÞ

2þðny�mxÞ
2þðLx�

n

Ly

� �
� 1Þm2

x

� �s
,

where ny ¼ n mod Ly. This corresponds to arranging the cells

so as to create as many full bins as possible and placing any left-

over cells in another bin. If the number of bins divides the

number of cells exactly, then it is possible to have an equal

number of cells in each bin, which corresponds to sx ¼ 0; how-

ever, such an arrangement is not always possible in an

exclusion process. In general, the minimum standard deviation

is given by

smin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lx
ðLx � nxÞ

n

Lx

� �
� mx

� 	2

þnx
n

Lx


 �
� mx

� 	2
" #vuut ,

where nx ¼ n mod Lx, which corresponds to arranging the

cells as evenly as possible across the bins. Examples of these

two distributions are shown in figure 4. When Lx divides n

exactly, this expression yields smin ¼ 0. We then define the

horizontal index

Ix ¼
sx � smin

smax � smin
[ [0, 1]: ð2:1Þ

This index provides a measure of the randomness in a

given pattern and is an analogue of the azimuthal index of

Binder et al. [37]. The index takes the value 0 for a pattern in

which the cells are spread as evenly as possible across each

value of x, and is unity when the cells are clustered in as few

bins as possible.

As an analogue for the second index, we first define the

total colony size R to be the maximum y index of the occupied

cells, while the size Rp of the non-filamentous portion of the

colony is defined to be the largest value of y at which cy attains

its maximum. The vertical index is then given by

Iy ¼ 1�
Rp

R
[ [0, 1]: ð2:2Þ

Larger values of Iy correspond to greater variation in the

y-direction.
2.3. Accuracy of the discrete nutrient model
Compared to a continuum model, the discrete nutrient model

employed here is advantageous as it facilitates the represen-

tation of the interaction between cells and nutrient packets,

avoiding the need to couple the discrete cell model to a numeri-

cal solution method for a continuous diffusion model. In using

this approximation, care must be taken to ensure the diffusion

solution is resolved sufficiently so that the final cell distribution

is independent of the number of nutrient packets. This is

assessed using the spatial indices defined in §2.2.

In the original formulation of Matsuura [24], each packet

in the model represents one unit of nutrient, which provides a

relatively coarse approximation to the true nutrient diffusion.

There is, however, no restriction on the nutrient content of

each packet. If the total starting nutrient mass m0 is spread

evenly across n0 nutrient packets, the mass of each packet is

m ¼ m0

n0
,

which may take on rational values. The original model of

Matsuura [24] corresponds to the case n0 ¼ m0 and, for any

fixed value of m0, increasing n0 provides a better approximation

to the continuum limit.

To investigate the accuracy of the discrete model, we first

consider a representative problem with nutrient diffusion

only and compare the solutions from the discrete model to

the continuous analogue. For the discrete problem, we con-

sider a domain with dimensions Lx ¼ Ly ¼ 100 initially

populated randomly with nutrient at lattice sites with coordi-

nates satisfying 46 � x � 55, with total mass m0 ¼ 105. The

number of steps is nominally set to s ¼ 1. The solution at

each iteration is averaged over all values of y to provide a

one-dimensional representation of the diffusion.

The corresponding continuum problem has domain half-

width L ¼ 49.5, while the populated region has half-width

a ¼ 5. When s ¼ 1 it is known that the nutrient concentration

at position x and time t, denoted by C(x, t), is governed by the

linear diffusion equation [40]. When s . 1, each nutrient

packet can undergo multiple motility events at a given time

step, which simply corresponds to a change in the diffusion

timescale. Taking this into account by rescaling time, the

continuum model for general s is governed by

@C
@t
¼ Dn

@2C
@x2

,

where Dn ¼ spm/4 is the coefficient of diffusion.

The packet concentrations from the discrete model calcu-

lated using different initial packet numbers n0 are plotted in
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Figure 5. (a) Solutions to the example diffusion problem at times 20 and 400, along with the initial condition. As the number of packets n0 increases, the averaged
simulation data approach the continuum solution. The data corresponding to 106 packets are indistinguishable from the continuum solution to graphical accuracy.
(b) The indices Ix and Iy plotted against n0 for 50 iterations of unbiased growth with s ¼ 2 and m0 ¼ 4 � 104 computed until r ¼ 0.5. The horizontal axis is
plotted on a logarithmic scale. The black vertical line marks the point at which m0 ¼ n0. The mean indices are approximately constant for n0 � m0.
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figure 5a, along with the initial condition and series solution

to the continuum model. As n0 increases, the discrete sol-

utions approach the continuum solution and, by n0 ¼ 106,

the discrete and continuum solutions are indistinguishable

at the plotted resolution.

While this analysis suggests that a large number of nutrient

packets are required in order to find an accurate solution to the

diffusion model, we are, ultimately, only interested in determin-

ing the values of the indices Ix and Iy. To investigate the

dependence of these on n0, we consider the full model with

both cell growth and nutrient diffusion for unbiased growth

with s ¼ 2 and m0 ¼ 4 � 104 on a lattice with Lx ¼ Ly ¼ 100, cor-

responding to the initial concentration c0 ¼ 4. The model is run

up to r ¼ 0.5 using values of n0 between 40 and 4 � 106. For

each value of n0 we compute 50 realisations and calculate the

averages of the associated indices. To facilitate a comparison

between different values of n0, the cells are allowed to absorb

multiple nutrient packets at each iteration up to a maximum

total mass of 1. The value of each index is plotted against n0

in figure 5b, from which we observe that both indices are

approximately constant for n0 � m0. The mean values of both

indices at n0 ¼ m0 have relative errors of no more than 0.06 com-

pared to the values found with the largest number of packets

n0 ¼ 4 � 106. This indicates that increasing the accuracy of the

discrete nutrient model beyond n0 ¼ m0 does not result in a

significant change in the spatial indices.

While results for only one set of parameters has been

shown here, we note that the same outcome is found when

using other values for s and c0. We thus conclude that accu-

rate values of Ix and Iy may be obtained for relatively small

values of n0. In particular, setting n0 ¼ m0 provides a good

estimate of the indices and this choice will be used for the

remainder of this study.
3. Directional bias and morphology
3.1. Unbiased growth
As a reference point, we first consider colony growth in the

absence of directional bias, which corresponds to setting

pd ¼ 1
3 and represents bipolar growth. Following previous

experimental [16] and mathematical studies [24,25], we investi-

gate how both the initial nutrient level and the nutrient

diffusivity affect the morphology. We take Lx ¼ Ly ¼ 100 and
consider initial nutrient concentrations c0 between 1 and 7,

and nutrient step numbers s varying from 1 to 37, which are

chosen to best illustrate the observed behaviour. For conven-

ience, we refer to each solution by the corresponding ordered

pair (s, c0). In each case, the solution is computed until r ¼

0.5, or until all the nutrient is consumed, so as to provide a com-

parison of the morphology between each set of parameters.

While there is enough nutrient for the colony to reach r ¼ 0.5

for simulations with c0 . 1.47, in practice some nutrient may

be stored within cells that are unable to reproduce, which

means that the simulation cannot reach the threshold density.

To illustrate the general behaviour for each set of parameters

(s, c0), we compute 50 realizations.

Representative morphologies for each pair (s, c0) are shown

in the phase diagram in figure 6. For s ¼ 1 and c0 � 2, the

colony grows into thin branches reminiscent of DLG growth.

Significantly, this suggests that the colony can undergo fila-

mentous growth without any bias in the direction of cell

growth. This behaviour was not shown in the corresponding

diagram given by Matsuura [24, fig. 6, p. 318] for the multilayer

version of the model. For 5 � s � 17 and c0 � 5, the colony

grows in thicker branches. If either s or c0 becomes sufficiently

large, then the colony grows uniformly, irrespective of the

value of the other parameter.

The changes in morphology are quantified by the spatial

indices Ix and Iy. To illustrate the general behaviour of the

colony growth we compute the mean value of each index

over 50 realizations. The mean values of the indices over

these realizations are denoted by �Ix and �Iy, respectively, and

are plotted in figure 7. The indices show that the greatest fila-

mentous growth, occurs at low values of s and c0, and that

this decreases as either s or c0 increases. While the indices all

share this general trend, the rate of change of each with respect

to s and c0 is not the same, which indicates that each index pro-

vides unique information about the spatial pattern. By

providing a quantitative measure of the morphology, the

plots in figure 7 represent an improvement on previous phase

diagrams, which classify morphology qualitatively, based on

observations, rather than measurements [15,16].

3.2. Biased growth
To illustrate the effect of directional bias on the morphology,

we consider two extreme cases: pd ¼ 0.2 and pd ¼ 0.8. In the

former case, daughter cells grow perpendicular to the cell
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axis, which runs between the proximal and distal poles, 80%

of the time, similar to the axial growth pattern; whereas, in

the latter, daughter cells grow from the distal pole 80% of

the time, which resembles the distal-unipolar growth pattern.

Solutions are computed for the same values of s and c0 as in

the unbiased case.

Typical colony shapes for pd ¼ 0.2 are plotted in figure 8a.

Notably, simulations with s � 13 and c0 � 4 produce filamen-

tous patterns despite a preference for perpendicular growth.

This behaviour is a form of DLG, similar to the behaviour

observed in non-motile bacteria at low-nutrient concen-

trations [16]. Representative colonies for pd ¼ 0.8 are shown

in figure 8b. The large value of pd results in straight filaments

that are typically longer than those for unbiased growth.

The changes in behaviour due to varying pd are quantified

by the mean values of the indices Ix and Iy, plotted in figure 9,
computed using 50 realizations for each pair (s, c0). By inspect-

ing the indices, the changes in morphology observed between

the two values of pd can be placed broadly into three categories.

When both s and c0 are small, the colonies display large index

values regardless of pd, such as at (s, c0) ¼ (1, 1). Similarly, large

values of both s and c0 generate colonies with low indices, as

seen for (s, c0) ¼ (37, 7). Within the intermediate region the

growth pattern depends strongly on the bias pd. For example,

colonies with (s, c0) ¼ (21, 3), show a significant increase in

both indices between pd ¼ 0.2 and 0.8. Thus, morphologies in

this region may be altered by adjusting the directional bias.

This matches the dimorphic behaviour of real-world yeast

colonies, which may exist within this parameter regime.

These three growth regimes may be delineated using one

of the spatial indices. We first define ~Ix to be the value of Ix for

distal-unipolar (biased) growth divided by the average value
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Figure 8. Typical simulated colonies with (a) axial ( pd ¼ 0.2) and (b) distal-unipolar growth ( pd ¼ 0.8) for initial nutrient concentrations c0 between 1 and 7, and
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computed for bipolar (unbiased) growth at the same par-

ameter values (s, c0). The three growth regimes are then

defined by the following criteria:

uniform: ~Ix � 1:3, Ix � 0:3 ð3:1aÞ

DLG: ~Ix � 1:3, Ix . 0:3 ð3:1bÞ

and intermediate : ~Ix . 1:3: ð3:1cÞ

These three regions, plotted in figure 10, partition the par-

ameter space with respect to s and c0 based upon how each
parameter pair is affected by the change to distal-unipolar

growth. Within the uniform and DLG regions the mor-

phology is relatively insensitive to the cell growth pattern,

remaining uniform or filamentous, respectively, regardless

of the growth pattern. The intermediate zone consists of a

region between the DLG and uniform zones in which the

morphology varies significantly with the growth pattern.

As discussed above, all simulations are computed until

the cell density r reaches 0.5 or all nutrient is consumed.

All of the colonies that do not achieve the target density lie
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in the region c0 � 3. In each case, the mean density increases

with the bias pd, meaning that colonies with a greater bias

produce a larger number of cells. This illustrates that the

growth mode of the cells has an impact on the survival

of the colony, and thus the ability to alter this growth

mode provides an evolutionary advantage.
4. Experimental case studies
4.1. Methodology
We consider two experimental case studies: the onset of fila-

mentous growth and very mature colony growth. For each

study, we seek to infer the dominant growth mode in the

experimental data by comparing the morphology with the

behaviour predicted by the model. We emphasize that these

comparisons are to illustrate general behaviour only and rig-

orous comparisons of model results with experimental data

are left for future work.

A yeast colony was seeded from a single cell of S1278b

(diploid, prototrophic) on 55 mm plates with yeast nitrogen

base (YNB) agar, at a depth of 2 mm (DifcoTM YNB w/o

amino acids and ammonium sulfate, cat. no. 233520, with

2% glucose, 50 mM ammonium sulfate and 2% twice

washed bacto agar). Plates were incubated at 308C. Each

image is a typical representation of three biological replicates.
4.2. Onset of filamentous growth
As an example of the onset of filamentous growth, we consider

the experimental image from figure 2c, which was taken 13

days after inoculation with a single cell, at which time the

colony had a diameter of approximately 3.2 mm. To identify

the growth mechanism that generated this pattern, we compare

this image to simulations of both unbiased growth (pd ¼ 1
3) and

biased growth ( pd ¼ 0.8). To achieve sufficient resolution in the



experiment(a) simulated, pd = 0.8(b) (c)simulated, pd = 1/3

Figure 11. Examples of the onset of filamentous growth. Shown are (a) an experimental image with Ix ¼ 0.266, (b) the fifth-best match using Ix with unbiased
growth (pd ¼ 1

3), which has parameters (s, c0) ¼ (13, 3) and comes from the DLG region, and (c) the best match for distal-unipolar growth ( pd ¼ 0.8), which has
parameters (s, c0) ¼ (29, 3) and comes from the intermediate region. The two simulated results yield similar morphologies but come from different growth regions,
which suggests that both mechanisms are able to produce comparable results.

experiment(a) simulated, c0 = 2 simulated, c0 = 3(b) (c)

Figure 12. An example of a very mature colony. (a) The experimental image was taken after 58 days of growth and converted into binary. The scale bar represents
2 mm. The experimental conditions are as described in §4.1. This colony has indices Ir ¼ 0.29 and Iu ¼ 0.113. Model simulations are computed using Lx ¼ Ly ¼

200 and s ¼ 1, with unbiased growth (pd ¼ 1
3) and initial nutrient concentrations (b) c0 ¼ 2, with indices Ir ¼ 0.27 and Iu ¼ 0.119, and (c) 3, with indices Ir ¼

0.23 and Iu ¼ 0.0936. The model simulations provide good quantitative and qualitative matches to the experimental behaviour, which suggests that it is not
possible to distinguish the filamentous growth of this colony from DLG.
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simulations, we set Lx ¼ 300 and Ly ¼ 100, and 50 realizations

were computed over the same range of parameters as in §3.

As the simulation represents only a small section of the bound-

ary, it is not appropriate to make a comparison using the

value of Iy, which must be computed from an entire colony.

The data and simulations are hence compared using Ix alone,

with the experimental image yielding Ix ¼ 0.266. For each

value of the bias pd, we rank the simulations by how closely

Ix matches the experimental value, select the top 100 cases

and identify to which of the three regions shown in figure 10

they correspond.

With unbiased growth, the best match is provided by

(s, c0) ¼ (1, 4) in the uniform region, for which Ix differs by

less than 1.2 � 1025, while the top 100 matches all lie within

8.5 � 1023 of the experimental value. We find that 81% of

these matches come from the DLG region, 7% are from the

intermediate region and 12% are from the uniform region.

For the biased example, the best match is given by (s, c0) ¼

(29, 3), which lies in the intermediate region, and differs from

the experimental value by only 8.6 � 1025. In contrast with

the unbiased example, the top 100 matches are more diverse,

comprising 18% DLG growth, 46% intermediate growth and

36% uniform growth.

While the composition of the top 100 results differs

between the unbiased and biased examples, each of these is

able to produce similar morphologies. To illustrate this, we

compare the best match from the DLG region computed

using unbiased growth, which was the fifth-best match overall

for unbiased growth, and the best match from the intermediate

region computed using biased growth, which was also the best

match overall for unbiased growth. These simulations had par-

ameters (s, c0) ¼ (13, 3) and (s, c0) ¼ (29, 3), respectively, and

are plotted in figure 11. Both simulated images show similar

behaviour and have values of Ix within 1.5 � 1024 of the
experimental image. Consequently, this model suggests that

it is impossible to tell DLG from pseudohyphal growth by

examining images using Ix alone.
4.3. Very mature colony growth
As a second case study, we consider the morphology of a

colony after 58 days of growth under the same conditions

as previously, shown in figure 12a, which represents a very

mature yeast colony. As a model comparison we use a

domain with Lx ¼ Ly ¼ 200 with seed cells placed at every

grid point within 60 units of the domain centre, which rep-

resents a region of uniform growth. This initial condition

reduces the number of computations required and avoids the

issues inherent in simulating colonies with circular boundaries

on a rectangular grid. We consider unbiased growth (pd ¼ 1
3)

and consider a range of parameters (s, c0), in each case comput-

ing the simulation until r ¼ 0.5 or all nutrient is consumed.

This value is chosen so as to provide a similar level of

growth to the experimental image. We aim only to compare

the growth patterns produced by the experimental colony

and the simulations, rather than make a precise match.

To compare the model simulations with the experimental

image, we use two of the spatial indices developed by Binder

et al. [37] for disc-like colonies that motivated the indices Ix

and Iy; respectively, these are Iu, which measures angular

variation, and Ir, which measures radial variation. To match

the definition of Ix we here define Iu to be the square root

of the version used by Binder et al. [37]. For both indices,

the data are grouped into 50 bins, which has been found

to provide sufficient resolution, with radial bins used to

compute Ir and angular bins used for Iu.
The experimental image in figure 12a has indices Ir ¼ 0.29

and Iu ¼ 0.113. Computing a single realization of the
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Figure 13. Typical simulated colonies for a domain with Lx ¼ Ly ¼ 100 and unbiased growth (pd ¼ 1
3) for initial nutrient concentrations c0 between 1 and 7, and
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model using (s, c0) ¼ (1, 2) produces a colony with Ir ¼ 0.27

and Iu ¼ 0.119, while a single realization with (s, c0) ¼ (1, 3)

produces a colony with Ir ¼ 0.23 and Iu ¼ 0.0936, both of

which are plotted in figure 12. Each simulation closely

resembles the experimental image qualitatively, while the

index values show that these also provide a good quantitative

match. Both sets of parameters lie within the DLG region,

while simulations outside of this region produce smaller indi-

ces that do not provide a good match to the experimental

image. Further, simulations with biased (pseudohyphal)

growth are able to produce similar patterns. This suggests

that, when measured by Ir and Iu, it is not possible to dis-

tinguish the filamentous growth of the colony in figure 12a
from a morphology produced by DLG alone.
5. Extensions
5.1. Ongoing nutrient consumption
As in the original formulation of Matsuura [24], it has been

assumed that the cells require a specified amount of stored

nutrient so as to reproduce but do not need to consume nutri-

ent to survive; however, in practice, cells require ongoing

nourishment for maintenance [41]. The consumption of nutri-

ent may be modelled by removing the limit ms on the total

amount of nutrient each cell can store. Typically colony

shapes with this restriction removed are shown in figure 13,

while the mean indices from 50 simulations for a range of

values for s and c0 are plotted in figure 14. This change in ms

causes increases in �Ix and �Iy, plotted in figure 13, compared

to the values obtained for limited nutrient consumption from

figure 6. This occurs because removing the storage limit

reduces the amount of nutrient available over the course
of the simulation, which leads to DLG and hence greater

non-uniform behaviour across almost all parameters.

By computing simulations with ongoing nutrient con-

sumption and pd ¼ 0.8, we are able to identify the three

growth regions (3.1), which are shown in figure 15. Including

ongoing nutrient consumption causes a shift in the location

of the three growth regions identified in §3, and thus must be

considered when predicting experimental results based on

known physical parameters. We emphasize, however, that

ongoing nutrient consumption does not affect the existence

of the three growth regions from §3 but only alters the values

of s and c0 at which they occur. While the model could be

further extended to include the degradation of stored nutrient

by the cells, this would again only alter the location of the

growth regions and hence is not considered here. Future

models that include ongoing nutrient consumption should

incorporate nutrient degradation in order to provide a more

realistic representation of this process.

5.2. Bias due to nutrient concentration
The examples considered thus far have demonstrated that

increasing the directional bias causes some colonies to

change from uniform to filamentous growth. In all of these

examples, the bias has been held constant throughout the

simulation; however, in practice the transition to pseudo-

hyphal growth of a yeast colony is typically attributed to

nutrient deprivation, which can occur either when the

medium contains little nutrient or when nutrient cannot dif-

fuse with sufficient speed to feed the colony. This transition

may be modelled by taking the initial bias to be pd ¼ 1
3, cor-

responding to uniform growth, and increasing this value

as the local nutrient concentration falls. For the purposes of

this study, we define the local concentration c at a given
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Figure 14. The mean values (a)�Ix and (b)�Iy of the indices from 50 iterations of simulated unbiased growth (pd ¼ 1
3) on a domain with Lx ¼ Ly ¼ 100 with Lx ¼
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Figure 15. The DLG, uniform and intermediate growth regions computed
with ongoing nutrient consumption from 50 iterations on a domain with
Lx ¼ Ly ¼ 100. In the intermediate region, the growth pattern depends
strongly on the directional bias; while, outside this region, the growth pattern
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Figure 16. The region used to define the local nutrient concentration. The
shaded locations represent all locations within two steps of the central
square, indicated by a thick border.
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cell to be the average concentration within the lattice points that

can be reached in at most two steps, as illustrated in figure 16.

We here consider two forms for this change. The first is a

linear transition from unbiased growth (pd ¼ 1
3) at nutrient

concentrations above some critical concentration ct to biased

growth ( pd ¼ 1) at local concentration c ¼ 0. This corresponds

to setting

pdðcÞ ¼
1� 2c

3ct
0 � c < ct,

1

3
c � ct:

8>><
>>:

In the second form, the growth is uniform (pd ¼ 1
3) for

local concentrations c . ct and jumps to a bias of 0.8

for 0 , c , ct, which is described by

pdðcÞ ¼
0:8 0 � c < ct,
1

3
c � ct:

8<
:

To facilitate a general investigation of this transition, the

value of ct is chosen to be the minimum amount of nutrient

required to reach r ¼ 0.5 with Lx ¼ Ly ¼ 100 and n0 ¼ 100,

so that

ct ¼
ðrA� n0Þmr

A
¼ 1:47:

In practice, the value of ct depends on the strain of yeast used

and must be determined experimentally.

Typical colony shapes for the two bias rules are shown

in figure 17 for a range of initial nutrient concentrations c0

and nutrient steps s, with cells coloured by the value of pd

of their mother cell at the time of birth. Comparing the

two cases, it is clear that the linear and step cases result

in noticeably different biases at each parameter pair (s, c0),

as indicated by the differences in colour between the

two figures. The mean indices �Ix and �Iy are computed

from 50 realizations of each pair of parameters and are

plotted in figure 18. Both indices indicate that similar patterns

are produced by both bias rules, with the most signifi-

cant difference being a larger value of �Ix at (5, 2) for the

step rule compared to the linear rule. This suggests that
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Figure 17. Typical simulated colony shapes with varying bias pd for initial nutrient concentrations c0 between 1 and 7, and nutrient steps s from 1 to 37. All
subfigures have the same axis limits. Shown are the results using the (a) linear and (b) step bias rules. Cells are coloured by the value of pd of their mother cell at
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170314

13
both the linear and step bias rules produce similar

colony morphologies, despite the differences in the bias pd

throughout the colonies.

Both of the bias rules cause increases in the indices at inter-

mediate values of s and c0 compared to the values for uniform

unbiased growth plotted in figure 7. This is in agreement

with the results from §3, where it was found that the growth

pattern is strongly dependent upon the bias at intermediate

values of s and c0. The increase in the indices also agrees
with the experimental observation that nutrient deprivation

leads to pseudohyphal growth.
6. Conclusion
We have developed a two-dimensional agent-based model for

the growth of yeast cells that incorporates both dimorphic

growth behaviour and nutrient diffusion. In this model,
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Figure 18. Mean values �Ix and �Iy of the indices for 50 realizations of simulated colony growth using the (a and b) linear and (c and d ) step bias rules. The mean
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non-motile yeast cells occupy sites on a lattice and absorb dis-

crete nutrient packets that walk randomly throughout the same

lattice. The growth pattern is specified by adjusting the bias in

the direction of cell proliferation. Improving on previous work,

this model accounts for all three key features of pseudohyphal

growth: (I) a change to the distal-unipolar growth pattern; (II)

the elongation of cells and (III) the adhesion of daughter cells to

their mother. The model developed captures the important

biological features of pseudohyphal growth while remaining

computationally efficient, and hence is highly suitable for use

with statistical inference methods, such as ABC algorithms,

to compute parameter estimates from experimental data. The

spatial patterns that develop were quantified using two indices

Ix and Iy, which are related to similar indices that have been

used by Binder et al. [37] to quantify experimental images of

yeast colonies. Larger values of these indices indicate stronger

filamentous patterns. Simple rules have been used to link

the bias to the nutrient level, which replicates the real-world

behaviour of yeast colonies.

In general, increasing the bias causes an increase in both

indices, indicating that the bias is correctly capturing the tran-

sition to pseudohyphal growth. By varying the initial nutrient

concentration and diffusivity, and comparing the average

value of Ix computed for a number of realizations, the par-

ameter space may be divided into three regions: the uniform

region, in which the colony front is smooth; the DLG region,
in which the front is always rough; and the intermediate

region, in which the morphology depends strongly upon the

bias level. If the transition to pseudohyphal growth is solely

due to budding pattern and cell length, then real-world colo-

nies probably exist in this region. Outside of the intermediate

region the morphology is largely determined by the nutrient

concentration and diffusivity.

Comparing simulations of unbiased and biased growth

showed that both DLG and pseudohyphal growth can produce

similar patterns, and both mechanisms can provide a good

match to experimental images when measured using the

spatial indices employed here. This suggests that both mechan-

isms may contribute to the morphology and that it is not

possible to distinguish DLG from pseudohyphal growth

using the indices alone without knowing the precise growth

conditions. The experimental results of Chen et al. [25] show

that yeast colony morphology changes as the agar concen-

tration varies between 1.5% and 6% with glucose (nutrient)

levels between 0.5% and 2%. The diffusion of sodium and cae-

sium has been measured in gels of up to 4% agar at 108C and

258C, from which it was found that the diffusion coefficient

could be approximated by Dn ¼ D0(1 2 0.023v), where D0 is

the diffusion coefficient in water andv is the weight percentage

of agar [42]. This suggests that the diffusivity varies little with

agar concentration. There is thus a need for a greater under-

standing of the role that nutrient diffusivity plays in yeast
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colony morphology; in particular, how this varies with agar

concentration, and how this interacts with pseudohyphal

growth patterns. The model developed here provides an

avenue for exploring these questions, which was not possible

using previous models. Furthermore, there is scope to use

this model to understand the growth of other microbial colo-

nies and to compare the dominant mechanisms leading to

non-uniform morphologies, providing a complete theory of

these processes.

The degree of pseudohyphal growth in the model may be

adjusted by varying the directional bias parameter. By tuning

this parameter using experimental data and, for example,

ABC algorithms, the model has the potential to facilitate

the identification of strain-specific growth characteristics,

paving the way for the development of strain-classification

schemes. The identification of strain-specific features is also

vital to the analysis of gene-deletion assays. Furthermore,

the greater understanding of yeast cell growth provided by

this model allows the cell behaviour to be explored and opti-

mized, either to encourage growth, such as is desired for food

production, or to prevent it, such as in the case of yeast

colony growth on medical equipment.

While the model considered here captured the general be-

haviour of yeast colony growth, all of the patterns were

constrained to a lattice. This limited the number of daughter

cells to three and constrained the patterns that could be rea-

lized. In practice, cells can produce approximately 24

daughters, and approximately seven when confined within a

colony, and bud in a variety of directions [43]. In addition,

the budding pattern of pseudohyphal growth and the corre-

sponding elongation of cells have both been represented by
an increase in the directional bias. These factors are likely to

have an influence on the colony morphology. Future work

will consider off-lattice models with fewer restrictions on cell

growth and that incorporate changes in cell shape explicitly.

Consideration must also be given to the effect on the nutrient

level of lysis products from dead cells.

Both DLG and pseudohyphal growth appear similar when

measured by Ix; however, it is possible that a more sophisti-

cated measure, including a combination of different metrics,

could distinguish these growth modes. Future work will thus

continue to investigate and develop suitable spatial measures,

along with techniques for categorizing colony morphology

using these measures.
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