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Maps of infectious disease—charting spatial variations in the force of infec-

tion, degree of endemicity and the burden on human health—provide an

essential evidence base to support planning towards global health targets.

Contemporary disease mapping efforts have embraced statistical modelling

approaches to properly acknowledge uncertainties in both the available

measurements and their spatial interpolation. The most common such

approach is Gaussian process regression, a mathematical framework com-

posed of two components: a mean function harnessing the predictive

power of multiple independent variables, and a covariance function yielding

spatio-temporal shrinkage against residual variation from the mean. Though

many techniques have been developed to improve the flexibility and fitting

of the covariance function, models for the mean function have typically been

restricted to simple linear terms. For infectious diseases, known to be driven

by complex interactions between environmental and socio-economic factors,

improved modelling of the mean function can greatly boost predictive

power. Here, we present an ensemble approach based on stacked generaliz-

ation that allows for multiple nonlinear algorithmic mean functions to be

jointly embedded within the Gaussian process framework. We apply this

method to mapping Plasmodium falciparum prevalence data in sub-Saharan

Africa and show that the generalized ensemble approach markedly

outperforms any individual method.
1. Introduction
Author summary. Infectious disease mapping provides a powerful synthesis

of evidence in an effective, visually condensed form. With the advent of

new web-based data sources and systematic data collection in the form of

cross-sectional surveys and health facility reporting, there is high demand

for accurate methods to predict spatial maps. The primary technique used

in spatial mapping is known as Gaussian process regression (GPR). GPR is

a flexible stochastic model that allows the modelling of disease-driving

factors such as the environment while also capturing unknown residual

spatial correlations in the data. We introduce a method that blends

state-of-the-art machine learning methods with GPR to produce a model

that substantially outperforms other methods commonly used in disease

mapping. The utility of this new approach also extends far beyond just

mapping and can be used for general machine learning applications across

computational biology, including Bayesian optimization and mechanistic

modelling.

Infectious disease mapping with model-based geostatistics [1] can provide a

powerful synthesis of the available evidence base to assist surveillance systems
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and support progress towards global health targets, revealing

the geographical bounds of disease occurrence and the spatial

patterns of transmission intensity and clinical burden. A recent

review found that, out of 174 infectious diseases with a strong

rational for mapping, only seven (4%) have thus far been com-

prehensively mapped [2]. The primary factor impeding

progress is a lack of accurate, population representative, geo-

positioned data. In recent years, this has begun to change as

increasing volumes of spatially referenced data are collected

from both cross-sectional household surveys and web-based

data sources (e.g. Health Map [3]), bringing new opportunities

for scaling up the global mapping of diseases. Alongside this

surge in new data, novel statistical methods are needed that

can generalize to new data accurately while remaining compu-

tationally tractable on large datasets. In this paper, we will

introduce one such method designed with these aims in mind.

Owing to both a long history of published research in the

field and a widespread appreciation among endemic

countries for the value of cross-sectional household surveys

as guides to intervention planning, malaria is an example

of a disease that has been comprehensively mapped. Over

the past decade, volumes of publicly available malaria preva-

lence data—defined as the proportion of parasite positive

individuals in a sample—have reached sufficiency to allow

for detailed spatio-temporal mapping [4]. From a statistical

perspective, the methodological mainstay of these malaria

prevalence mapping efforts has been GPR [5–8]. Gaussian

processes are a flexible semi-parametric regression technique

defined entirely through a mean function, m( . ), and a covari-

ance function, k( . , . ). The mean function models an

underlying trend, such as the effect of environmental/

socio-economic factors, while the covariance function applies

Bayesian shrinkage to residual variation from the mean such

that points close to each other in space and time tend towards

similar values. The resulting ability of Gaussian processes to

strike a parsimonious balance in the weighting of explained

and unexplained spatio-temporal variation has led to their

near exclusive use in contemporary studies of the geography

of malaria prevalence [1,4,7–10].

Outside of disease mapping, Gaussian processes have

been used for numerous applications in machine learning,

including regression [1,5,6], classification [5] and optimiz-

ation [11]; their popularity leading to the development of

efficient computational techniques and statistical parametri-

zations. A key challenge for the implementation of

Gaussian process models arises in the statistical learning (or

inference) of the underlying parameters controlling the

chosen mean and covariance functions. Learning is typically

performed using Markov chain Monte Carlo (MCMC) or by

maximizing the marginal likelihood [5], both of which are

made computationally demanding by the need to compute

large matrix inverses returned by the covariance function.

The complexity of this inverse operation is O(n3) in compu-

tation and O(n2) in storage in the naive case [5], which

imposes practical limits on data sizes [5]. MCMC techniques

may be further confounded by mixing problems in the

Markov chains. These challenges have necessitated the use

of highly efficient MCMC methods, such as Hamiltonian

MCMC [12] or posterior approximation approaches, such as

the integrated nested Laplace approximation [13], expectation

propagation [5,14,15] and variational inference [16,17].

Additionally, many frequentist approaches have been
developed including matrix free [18] and primal learning

approaches [19]. Many of these methods adopt finite-

dimensional representations of the covariance function

yielding sparse precision matrices, either by specifying a

fully independent training conditional structure [20] or by

identifying a Gaussian Markov random field approximation

to the continuous process [21].

Alongside these improved methods for inference, recent

research has focussed on model development to increase

the flexibility and diversity of parametrizations for the covari-

ance function, with new techniques using solutions to

stochastic partial differential equations (allowing for easy

extensions to non-stationary and anisotropic forms [21]), the

combination of kernels additively and multiplicatively [22],

and various spectral representations [23].

One aspect of Gaussian processes that has remained

largely neglected is the mean function which is often—

and indeed with justification in some settings—simply

set to zero and ignored. However, in the context of disease

mapping, where the biological phenomena are driven by a

complex interplay of environmental and socio-economic

factors [24], the mean plays a central role in improving

the predictive performance of Gaussian process models.

Furthermore, it has also been shown that using a

well-defined mean function can allow for simpler covari-

ance functions (and hence simpler, scalable inference

techniques) [25].

The steady growth of remotely sensed data with incred-

ible spatio-temporal richness [24] combined with well-

developed biological models [26] has meant that there is a

rich suite of environmental and socio-economic covariates

currently available. In previous malaria mapping efforts,

these covariates have been modelled as simple linear predic-

tors [7–9] that fail to capture complex nonlinearities and

interactions, leading to a reduced overall predictive per-

formance. Extensive covariate engineering can be

performed by introducing large sets of nonlinear and inter-

acting transforms of the covariates, but this brute force

combinatorial problem quickly becomes computationally

inefficient [4,24].

In the field of machine learning and data science, there has

been great success with algorithmic approaches that neglect the

covariance and focus on learning from the covariates alone

[27,28]. These include tree-based algorithms such as boosting

[29] and random forests [30], generalized additive spline

models [31,32], multivariate adaptive regression splines [33]

and regularized regression models [34]. The success of these

methods is grounded in their ability to manipulate the bias–

variance trade-off [35], capture interacting nonlinear effects

and perform automatic covariate selection. The technical chal-

lenges of hierarchically embedding these algorithmic methods

within the Gaussian process framework are forbidding and

many of the approximation methods that make Gaussian pro-

cess models computationally tractable would struggle with

their inclusion. Furthermore, it is unclear which of these

approaches would best characterize the mean function when

applied across different diseases and settings. In this paper,

we propose a simplified embedding method based on stacked

generalization [36,37] that focuses on improving the mean

function of a Gaussian process, thereby allowing for substan-

tial improvements in the predictive accuracy beyond what

has been achieved in the past.
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2. Material and methods
2.1. Gaussian process regression
We define our response, ys,t ¼ fy(s,t)[1], . . ., y(s,t)[n]g, as a vector of n
empirical logit transformed malaria prevalence surveys at

location–time pairs, (s, t)[i], with Xs,t ¼ f(x1:m)[1], . . ., (x1:m)[n]g
denoting a corresponding n � m design matrix of m covariates

(see section ‘Data, covariates and experimental design’). The like-

lihood of the observed response is P(ys,t j fs,t,Xs,t,u), which we will

write simply as P(y j f (s,t),u), suppressing the spatio-temporal

indices for ease of notation. Naturally, f (s, t) [¼ fs,t] is the realiz-

ation of a Gaussian process with mean function, mu( . ), and

covariance function, ku( . , . ), controlled by elements of a

low-dimensional vector of hyperparameters, u. Formally, the

Gaussian process is defined as an (s, t)-indexed stochastic process

for which the joint distribution over any finite collection of

points, (s, t)[i], is multivariate Gaussian with mean vector, mi ¼

m((s, t)[i] j u), and covariance matrix, Si,j ¼ k((s, t)[i], (s, t)[ j ] j u).

The Bayesian hierarchy is completed by defining a vector of

prior distributions for u, which may potentially include

hyperparameters for the likelihood (e.g. overdispersion in a

b-binomial) in addition to those on parametrizing the mean and

covariance functions, e.g. the mean function coefficients b. In hier-

archical notation, supposing for clarity an independent and

identically distributed (iid) normal likelihood with variance, s2
e :

u � p(u),

f (s,t) jXs,t,u � GP(mu,ku)

and y j f(s,t),Xs,t,u � N(f(s,t),0s2
e ):

9>>=
>>;

ð2:1Þ

Following Bayes theorem the posterior distribution resulting from

this hierarchy becomes

P(u, f (s, t) j y) ¼ P(y j f(s, t), u)P(f (s, t) j u)P(u)Ð Ð
P(y j f(s, t), u){dP(f (s, t)ju)}{dP(u)}

, ð2:2Þ

where the denominator in equation (2.2) is the marginal

likelihood, P(y).

Given the hierarchical structure in equation (2.1) and the con-

ditional properties of Gaussian distributions, the conditional

predictive distribution for the mean of observations, z [¼ zs0 ,t0],

at location–time pairs, (s0, t0)[ j ], for a given u is also Gaussian

with the form

z j y,u � N(m�, S�),

m� ¼ m(s0 ,t0)ju þ S(s0 ,t0),(s,t)juS
�1
y j (s,t),u(y� m(s,t) j u)

9=
; ð2:3Þ

and

S
� ¼ S(s0 ,t0)ju � S(s0 ,t0),(s,t) j uS

�1
y j (s,t),uS(s,t),(s0 ,t0)ju, ð2:4Þ

where Syj(s,t),u ¼ (Su þ 0s2
e ). For specific details on the parametri-

zation of S, see the appendix

When examining the conditional expectation in equation (2.4)

and splitting the summation into terms m(s0 ,t0)ju and

S(s0 ,t0),(s,t)juS
21
yj(s,t),u(y 2 m(s,t)ju), it is clear that the first specifies a

global underlying mean, while the second augments the

residuals from that mean by the covariance function. Clearly, if

the mean function fits the data perfectly, the covariance in the

second term of the expectation would drop out and, conversely,

if the mean function is zero, then only the covariance function

would model the data. This expectation therefore represents a

balance between the underlying trend and the residual correlated

noise.

In most applications of GPR, a linear mean function (mu ¼

Xs,tb) is used, where b is a vector of m coefficients. However,

when a rich suite of covariates is available, this linear mean

may be suboptimal, limiting the generalization accuracy of the

model. To improve on the linear mean, covariate basis terms

can be expanded to include parametric nonlinear transforms
and interactions, but finding the optimal set of basis is computa-

tionally demanding and often leaves the researcher open to data

snooping [38]. In this paper, we propose using an alternative

two-stage statistical procedure to first obtain a set of candidate

nonlinear mean functions using multiple different algorithmic

methods fit without reference to the assumed spatial covariance

structure and then include those means in the Gaussian process

via stacked generalization.

2.2. Stacked generalization
Stacked generalization [36], also called stacked regression [37],

is a general ensemble approach to combining different

models. In brief, stacked generalizers combine different models

together to produce a meta-model with equal or better predic-

tive performance than the constituent parts [39]. In the

context of malaria mapping, our goal is to fuse multiple

algorithmic methods with GPR to both fully exploit the infor-

mation contained in the covariates and model spatio-temporal

correlations.

To present stacked generalization, we begin by introducing

standard ensemble methods and show that stacked generaliz-

ation is simply a special case of this powerful technique. To

simplify notation, we suppress the spatio-temporal index and

dependence on u. Consider L models, with outputs
~yi(x),i ¼ 1, . . . ,L. The choice of these models is described in the

electronic supplementary material. We denote the true target

function as f (x) and can therefore write the regression equation

as yi(x) ¼ f (x) þ e i(x). The average sum-of-squares error for

model i is defined as Ei ¼ E[(~yi(x)� f(x))2]. Our goal is to esti-

mate an ensemble model across all L models, denoted as

M(~y1, . . . ,~yL). The simplest choice for C is an average across all

models M(~y1, . . . ,~yL) ¼ ~yavg(x) ¼ (1=L)
PL

i¼1 ~yi(x). However, this

average assumes that the error of all models are the same, and

that all models perform equally well. The assumption of equal

performance may hold when using variants of a single model

(i.e. bagging) but is unsuitable when very different models are

used. Therefore, a simple extension would be to use a weighted

mean across models M(~y1, . . . ,~yL) ¼ ~ywavg(x) ¼
PL

i¼1 bi~yi(x)

subject to constraints b . 08i,
PL

i¼1 b ¼ 1 (convex combinations).

These constraints prevent extreme predictions in well-

predicting models and impose the sensible inequality
~ymin(x) � ~ywavg(x) � ~ymax [37]. The optimal bs can be found by

quadratic programming or by Bayesian linear regression with a

Dirichlet/categorical prior on the coefficients. One particularly

interesting result of combining models using this constrained

weighted mean is the resulting decomposition of error into two

terms [40]

E½ð~ywavgðxÞ � f ðxÞÞ2� ¼
Xn

i¼1

biE½ð~yiðxÞ � f ðxÞÞ2�

�
Xn

i¼1

biE½ð~yiðxÞ � ~ywavgðxÞÞ
2�: ð2:5Þ

The above equation is a reformulation of the standard bias–

variance decomposition [35] where the first term describes the

average error of all models and the second (termed the ambigu-

ity) is the spread of each member of the ensemble around the

weighted mean, measuring the disagreement among models.

Equation (2.5) shows that combining multiple models with low

error but with large disagreements produces a lower overall

error. It should be noted that equation (2.5) makes the

assumption that y(x) ¼ f (x).

Combination of models in an ensemble as described above

can potentially lead to reductions in errors. However, the ensem-

ble models introduced so far are based only on training data and

therefore neglect the issue of model complexity and tell us noth-

ing about the ability to generalize to new data. To state this

differently, the constrained weighted mean model will always
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allocate the highest weight to the model that most over fits the

data. The standard method of addressing this issue is to use

cross-validation as a measure of the generalization error and

select the best performing of the L models. Stacked generaliz-

ation provides a technique to combine the power of ensembles

described above but also produces models that can generalize

well to new data. The principle idea behind stacked generaliz-

ation is to train L models (termed level 0 generalizers) and

generalize their combined behaviour via a second model

(termed the level 1 generalizer). Practically this is done by speci-

fying a K-fold cross-validation set, training all L level 0 models

on these sets and using the cross-validation predictions to train

a level 1 generalizer. This calibrates the level 1 model based on

the generalization ability of the level 0 models. After this level

1 calibration, all level 0 models are refitted using the full dataset

and these predictions are used in the level 1 model without refit-

ting. (This procedure is more fully described in algorithm 1 and

the schematic design shown in the electronic supplementary

material.) The combination of ensemble modelling with the abil-

ity to generalize well has made stacking one of the best methods

to achieve state-of-the-art predictive accuracy [37,39,41].

Algorithm 1. Stacked generalization algorithm: the algorithm

proceeds as follows. In lines 2–4 the covariates, response and

number of cross-validation folds are defined. Lines 6–9 fits all

level 0 generalizers to the full dataset. Lines 10–16 fits all level

0 generalizers to cross-validation datasets. Lines 17–18 fits a

level 1 generalizer to the cross-validation predictions and line

19 returns the final output by using the level 1 generalizer to

predict on the full predictions.

1: Procedure STACK M covariate and response input

2: Input X as a n � m design matrix

3: Input y as a n vector of responses

4: Input v cross-validation folds

5: choose l, L(y,X) models M level 0 generalizers

6: define n � l matrix P M matrix of predictions

7: for i 1, l do

8: fit Li(y,X)

9: predict P�,i ¼ Li(y,X)

10: split X,y into fg1, . . . gvg groups fXg1
, . . . ,Xgv

g and fyg1
, . . .

,ygv
g M training set

11: add remaining samples to fXg1
, . . . ,Xgv

g and fyg1
, . . .

,ygv
g M testing set

12: define n � l matrix H M matrix cross-validation

of predictions

13: for i 1, l do

14: for j 1, v do

15: fit Li(ygj ,Xgj )

16: predict H=gj ,i ¼ Li(y=gj ,X=gj )

17: choose L�(y,H) model M level 1 generalizer

18: fit L�(y,H)

19: Return L�(y,P) M final prediction output

Defining the most appropriate level 1 generalizer based on a

rigorous optimality criterion is still an open problem, with most

applications using the constrained weighted mean specified

above [37,39]. Using the weighted average approach can be

seen as a general case of cross-validation, where standard

cross-validation would select a single model by specifying a

single bi as 1 and all other bis as zero. Additionally, it has

been shown that using the constrained weighted mean method

will perform asymptotically as well as be the best possible

choice among the family of weight combinations [39].

Here, we suggest using GPR as the level 1 generalizer.

Revisiting equation (2.3), we can replace m(s0 ,t0)ju with a

linear stacked function m(s0 ,t0)ju ¼
PL

i¼1 bi~yi(s
0,t0) across L level

0 generalizers, where the subscript denotes predictions from
the ith level 0 generalizer (see algorithm 1). We also impose

inequality constraints on bi such that bi . 08i,
PL

i¼1 bi ¼ 1.

This constraint allows the bs to approximately sum to one

and helps computational tractability. It should be noted that

empirical analysis suggests that simply imposing bi . 08i is

practically sufficient [37].

The intuition in this extended approach is that the stacked

mean of the Gaussian process uses multiple different methods

to exploit as much predictive capacity from the covariates as

possible and then leaves the spatio-temporal residuals to be

captured through the Gaussian process covariance function.

In the electronic supplementary material, we prove that this

approach yields all the benefits of using the constrained

weighted mean (equation (2.5)) but allows for a further

reduction in overall error from the covariance function of the

Gaussian process.

We note here that that stacked generalizers are distinct from

Bayesian model averaging (BMA). Stacked generalizers expand

and change the hypothesis space from which the learning algor-

ithm chooses a function (e.g. from single decision trees to a linear

combination of them) and can take a variety of different forms.

BMA, however, weights hypotheses from the original space

according to a fixed formula [42]. Owing to these fundamental

differences, previous studies have suggested that the stacking

has better robustness properties than BMA in the most important

settings [43].
2.3. Data, covariates and experimental design
The hierarchical structure most commonly used in infectious dis-

ease mapping is that shown in equation (2.1). In malaria studies,

our response data are discrete random variables representing the

number of individuals testing positive for the Plasmodium falci-
parum malaria parasite, Nþ, out of the total number tested, N,

at a given location. If the response is aggregated from the indi-

vidual household level to a cluster or enumeration area level,

the centroid of the component sites is used as the spatial position

datum. The ratio of Nþ to N is defined as the parasite rate or

prevalence and is a key epidemiological parameter measuring

transmission intensity. The response data were additionally

transformed via the empirical logit [1,4]. Pre-modelling stan-

dardization of the available prevalence data for age and

diagnostic type has also been performed on the data used here,

as described in depth in [4,7]. Our analysis is performed over

sub-Saharan Africa with the study area and dataset partitioned

into four epidemiologically distinct regions [7]—eastern Africa,

western Africa, north eastern Africa and southern Africa—each

of which was modelled separately (figure 1). The data used in

this study are identical to that recently published by Bhatt et al.
[4], and the collection process has been described in detail

previously [4,7,8].

All the malaria response data are freely available through an

online data explorer portal found at http://www.map.ox.ac.uk/.

All the covariate grids are freely available and can be accessed

at https://earthengine.google.com/datasets/. The code used

in this analysis is freely available at https://codeshare.io/

5wnRn7. Fitting and analysis was performed in the R program-

ming language using the INLA, H2O, mgcv and Earth

packages. More information can be found in the electronic

supplementary material.

The covariates (i.e. independent variables) used in this

research consist of raster layers spanning the entire continent at

a 2.5 arc-min (5 km � 5 km) spatial resolution. The majority of

these raster covariates were derived from high temporal resol-

ution satellite images that were first gap-filled [44] to eliminate

missing data (resulting primarily from persistent cloud cover

over equatorial forests) and then aggregated to create a dynamic

(i.e. temporally varying) dataset for every month throughout the

http://www.map.ox.ac.uk/
http://www.map.ox.ac.uk/
https://earthengine.google.com/datasets/
https://earthengine.google.com/datasets/
https://codeshare.io/5wnRn7
https://codeshare.io/5wnRn7
https://codeshare.io/5wnRn7
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Figure 1. (a) Plot of the 23 131 prevalence surveys conducted between 2000 and 2015. The survey data are age and diagnostic standardized and presented as a
continuum of blue to red from 0 to 1. (b) Study area of stable malaria transmission in sub-Saharan Africa. Our analysis was performed on four zones—western
Africa, north eastern Africa, eastern Africa and southern Africa

Table 1. List of environmental, socio-demographic and land type covariates used.

variable class variable(s) source type

temperature land surface temperature (day, night and diurnal-flux) MODIS product dynamic monthly

temperature suitability temperature suitability for P. falciparum modelled product dynamic monthly

precipitation mean annual precipitation WorldClim synoptic

vegetation vigour enhanced vegetation index MODIS derivative dynamic monthly

surface wetness tasselled cap wetness MODIS derivative dynamic monthly

surface brightness tasselled cap brightness MODIS derivative dynamic monthly

IGBP landcover fractional landcover MODIS product dynamic annual

IGBP landcover pattern landcover patterns MODIS derivative dynamic annual

terrain steepness SRTM derivatives MODIS product static

flow & topographic wetness topographically redistributed water SRTM derivatives static

elevation digital elevation model SRTM static

human population AfriPop modelled products dynamic annual

infrastructural development accessibility to urban centres and night-time lights modelled product and VIIRS static

moisture metrics aridity and potential evapotranspiration modelled products synoptic

rsif.royalsocietypublishing.org
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study period (2000–2015). The list of covariates is presented in

table 1 and detailed information on individual covariates can be

found here [24,26,44]. The set of monthly dynamic covariates was

further expanded to include lagged versions of the covariate at

two-month, four-month and six-month lags. The main objective

of this study was to judge the predictive performance of the various

generalization methods and therefore no variable selection or

thinning of the covariate set was performed. It should be noted,

however, that many of the level 0 generalizers performed variable

selection automatically (e.g. elastic net regression).

The resolution used throughout was defined by the covariate

grids at 5 km � 5 km. The prevalence points were therefore

snapped to the centroid of the pixel containing them. If multiple

cluster points were contained within the same pixel at the same

time, then they were aggregated. Likewise, the spatial field,

which can be projected or evaluated at any spatial resolution,
was taken as the value of the spatial field at the centroid of

the pixel.

The level 0 generalizers used were gradient-boosted trees

[29,45], random forests [30], elastic net regularized regression

[34], generalized additive splines [27,32] and multivariate adap-

tive regression splines [33]. The level 1 generalizers used were

stacking using a constrained weighted mean and stacking

using GPR. We also fitted a standard Gaussian process for

benchmark comparisons with the level 0 and 1 generalizers.

Stacked fitting was performed following algorithm 1. Full analy-

sis and K-fold cross-validation was performed five times and

then averaged to reduce any bias from the choices of cross-

validation set. The averaged cross-validation results were used

to estimate the generalization error by calculating the mean

squared error (MSE (y 2 f )2)), mean absolute error (MAEjy 2 fj )
and the correlation.
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3. Results
The results of our analysis are summarized in figure 2, where

pairwise comparisons of MSE versus MAE versus correlation

are shown. Across the eastern, southern and western African

regions (figure 2a,b,d ), we found a consistent ranking pattern

in the generalization performance with the stacked Gaussian

process approach presented in this paper outperforming all

other methods. The constrained weighted mean stacked

approach was the next best method followed by the standard

Gaussian process (with a linear mean) and gradient-boosted

trees. Random forests, multivariate adaptive regression

splines and generalized additive splines all had similar per-

formance, and the worst performing method was the elastic

net regularized regression. For the north eastern region

(figure 2c), again the stacked Gaussian process approach

was the best performing method but the standard Gaussian

process performed better than the constrained weighted

mean stacked approach, though only in terms of MAE

and MSE.

One average, across all regions, the stacked Gaussian pro-

cess approach reduced the MAE and MSE by 9% (1–13%)

(values in parentheses are the minimum and maximum

across all regions) and 16% (2–24%), respectively, and

increased the correlation by 3% (1–5%) over the next best

constrained weighted mean approach, thereby empirically

reinforcing the theoretical bounds derived in the electronic

supplementary material proof. When compared with the

widely used elastic net linear regression, the relative perform-

ance increase of the Gaussian process stacked approach is

stark, with reduced MAE and MSE of 25% (12–33%) and

25% (19–30%), respectively, and increase in correlation by

39% (20–50%).

Compared to the standard Gaussian process previously

used in malaria mapping, the stacked Gaussian process

approach reduced MAE and MSE by 10% (3–14%) and

18% (9–26%), respectively, and increased the correlation by

6% (3–7%).

Consistently across all regions, the best non-stacked

method was the standard Gaussian process with a linear

mean function. Of the level 0 generalizers gradient-boosted

trees were the best performing method, with performance

close to that of the standard Gaussian process. The standard

Gaussian process only had a modest improvement over

gradient-boosted trees with average reductions in MAE and

MSE of 4% (1–8%) and 7% (1–13%), respectively, and

increases in correlation of 3% (1–7%).

Figure 3 shows the predicted map for all level 0 general-

izers and the stacked Gaussian process approach for 2011 in

the eastern Africa region. There are clear similarities in the

high and low regions across all maps and a strong correspon-

dence to previous approaches [4,7,8]. The final ensemble map

can be seen as a consensus of the individual level 0 maps

where the stacking algorithm weights each map according to

generalization performance. This is why the final stacked

Gaussian process map most resembles the gradient-boosted

tree approach (the best predicting method; figure 2a) as

opposed to the elastic net regularized linear regression

approach (the worst predicting method). However, some idio-

syncrasies of the gradient-boosted approach, such as the sharp

transition line in southern Tanzania, are corrected in the

stacked Gaussian process approach owing to the other level

0 methods and the addition of spatio-temporal correlation.
4. Discussion
All the level 0 generalization methods used in this paper have

been previously applied to a diverse set of machine learning

problems and have track records of good generalizability

[27]. For example, in closely related ecological applications,

these level 0 methods have been shown to far surpass classi-

cal learning approaches [46]. However, as introduced by

Wolpert [36], rather than picking one level 0 method, an

ensemble via a second generalizer has the ability to improve

prediction beyond that achievable by the constituent parts

[40]. Indeed, in all previous applications [36,37,39,47] ensem-

bling by stacking has consistently produced the best

predictive models across a wide range of regression and

classification techniques. The most popular level 1 generali-

zer is the constrained weighted mean with convex

combinations. The key attraction of this level 1 generalizer

is the ease of implementation and theoretical properties

[39,40]. In this paper, we show that, for disease mapping,

stacking using Gaussian processes is more predictive and

generalizes better than both single level 0 generalizers in iso-

lation and the more common stacking approach using a

constrained weighted mean.

The key benefit of stacking is summarized in equation

(2.5) where the total error of an ensemble model can be

reduced by using multiple, very different, but highly predic-

tive models. However, stacking using a constrained weighted

mean only ensures that the predictive power of the covariates

are fully used and does not exploit the predictive power that

could be gained from characterizing any residual covariance

structure. The standard Gaussian process suffers from the

inverse situation where the covariates are underexploited

and predictive power is instead gained from leveraging

residual spatio-temporal covariance. In a standard Gaussian

process, the mean function is usually paramaterized through

simple linear basis functions [48] that are often unable to

model the complex nonlinear interactions needed to correctly

capture the true underlying mean. This inadequacy is best

highlighted by the poor generalization performance of the

elastic net regularized regression method across all regions.

The trade-off between the variance explained by the covari-

ates versus that explained by the covariance function will

undoubtedly vary from setting to setting. For example, in

the eastern, southern and western African regions, the con-

strained weighted mean stacking approach performs better

than the standard Gaussian process and the level 0

gradient-boosted trees generalizer performs almost as well

as the standard Gaussian process. For these regions, this

shows a strong influence of the covariates on the underlying

process. By contrast, for the north eastern African region, the

standard Gaussian process does better than both the con-

strained weighted mean approach (in terms of error not

correlation) and all of the level 0 generalizers, suggesting a

weak influence of the covariates. However, for all zones,

the stacked Gaussian process approach is consistently the

best approach across all predictive metrics. By combining

both the power of Gaussian processes to characterize a com-

plex covariance structure, and multiple algorithmic

approaches to fully exploit the covariates, the stacked Gaus-

sian process approach combines the best of both worlds

and predicts well in all settings.

This paper introduces one way of stacking that is tailored

for spatio-temporal data. However, the same principles are
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Figure 2. Comparisons of cross-validation MSE versus MAE versus correlation. Level 1 generalizers and the standard Gaussian process are shown in blue and all level
0 generalizers are shown in red. SGP, stacked Gaussian process; CWM, stacked constrained weighted mean; GP, standard Gaussian process; GBM, gradient-boosted
trees; GAS, generalized additive splines; FR, random forests; MARS, multivariate adaptive regression splines and LIN, elastic net regularized linear regression. (a)
Eastern Africa, (b) southern Africa, (c) north eastern Africa and (d ) western Africa. (Online version in colour.)
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applicable to purely spatial or purely temporal data, settings

in which Gaussian process models excel. Additionally, there is

no constraint on the types of level 0 generalizers that can be

used; dynamical models of disease transmission, e.g. Malaria
mechanistic models [49,50] can be fitted to data and used as

the mean function within the stacked framework. Using dyna-

mical models in this way can constrain the mean to include

known biological mechanisms that can potentially improve
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Figure 3. Predicted prevalence maps for eastern Africa in 2011 for gradient-boosted trees (GBM), random forests (FR), elastic net regularized linear regression (LIN),
multivariate adaptive regression splines (MARS), generalized additive splines (GAS) and the new stacked Gaussian process (SGP).
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generalizability, allow for forecast predictions and help

restrict the model to only plausible functions when data

are sparse. Finally, multiple different stacking schemes can

be designed (see the electronic supplementary material for
details) and relaxations on linear combinations can be

implemented [47].

Gaussian processes are increasingly being used for

expensive optimization problems [51] and Bayesian
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quadrature [52]. In current implementations, both of these

applications are limited to low-dimensional problems typi-

cally with less than 10 parameters. Future work will explore

the potential for stacking to extend these approaches to

high-dimensional settings. The intuition is that the level 0

generalizers can accurately and automatically learn much of

the latent structure in the data, including complex features

like non-stationarity, which are a challenge for Gaussian

processes. Learning this underlying structure through the

mean can leave a much simpler residual structure [25] to be

modelled by the level 1 Gaussian process.

In this paper, we have focused primarily on prediction,

that is neglecting any causal inference and only searching

for models with the lowest generalization error. Determining

causality from the complex relationships fitted through the

stacked algorithmic approaches is difficult, but empirical

methods such as partial dependence [29] or individual con-

ditional expectation [53] plots can be used to approximate

the marginal relationships from the various covariates. Simi-

lar statistical techniques can also be used to determine

covariate importance.

Increasing volumes of data and computational capacity

afford unprecedented opportunities to scale up infectious dis-

ease mapping for public health uses [54]. Maps of diseases

and socio-economic indicators are increasingly being used

to inform policy [4,55], creating demand for methods to pro-

duce accurate estimates at high spatial resolutions. Many of

these maps can subsequently be used in other models but,

in the first instance, creating these maps requires continuous

covariates, the bulk of which come from remotely sensed

sources. For many indicators, such as HIV or tuberculosis,

these remotely sensed covariates serve as proxies for complex

phenomenan and as such, the simple mean functions in stan-

dard Gaussian processes are insufficient to predict with
accuracy and low generalization error. The stacked Gaussian

process approach introduced in this paper provides an intui-

tive, easy-to-implement method that predicts accurately

through exploiting information in both the covariates and

covariance structure.
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