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Abstract

Changes in behavior are necessary to apply genomic discoveries to practice. We prospectively 

studied medication changes made by providers representing eight different medicine specialty 

clinics whose patients had submitted to preemptive pharmacogenomic genotyping. An institutional 

clinical decision support (CDS) system provided pharmacogenomic results using traffic light 

alerts: green/genomically favorable, yellow/genomic caution, red/high risk. The influence of 

pharmacogenomic alerts on prescribing behaviors was the primary endpoint. 2279 outpatient 

encounters were analyzed. Independent of other potential prescribing mediators, medications with 

high pharmacogenomic risk were changed significantly more often than prescription drugs lacking 

pharmacogenomic information (odds ratio [OR]=26.2 [9.0–75.3], p<0.0001). Medications with 

cautionary pharmacogenomic information were also changed more frequently (OR=2.4 [1.7–3.5], 

p<0.0001). No pharmacogenomically high-risk medications were prescribed during the entire 

study when physicians consulted the CDS tool. Pharmacogenomic information improved 

prescribing in patterns aimed at reducing patient risk, demonstrating that enhanced prescription 

decision-making is achievable through clinical integration of genomic medicine.

Keywords

pharmacogenomics; implementation; clinical decision support; prescribing behavior; precision 
medicine

INTRODUCTION

Approximately two million patients per year experience adverse drug reactions, and 100,000 

deaths occur as a direct result(1). Moreover, common drug efficacy rates are only 50–

60%(2). Genetic variation has been shown to contribute to inter-individual differences in 

adverse reactions and efficacy for hundreds of drugs(3–5). Leveraging this information may 

be a potential path to safer and more effective prescribing. Because of this, 

pharmacogenomics has been a logical arena in which to explore and solve larger barriers to 

genomic implementation in the era of precision medicine(6). Obstacles include lack of 

routine availability of genetic tests, limited provider education about genomics, and the need 

for facile clinical decision support (CDS) tools that integrate into workflows(7, 8).

Many groups are currently working to address these barriers, leading to various, often 

customized, implementation solutions(9–20). Inclusion of genetic information within Food 

and Drug Administration (FDA) labels and the development of pharmacogenomic guidelines 

(pharmgkb.org/page/cpic) are important forward strides(21). As with any clinical innovation, 

the true utility of an implementation intervention is measured by physician adoption and 

user response(22). For example, in a study examining physician responses to interruptive 

drug-drug interaction alerts, 93% were overridden or ignored(23). Underlying causes of 

physician reluctance to follow clinical guidance include limitations in awareness, lack of 

O’Donnell et al. Page 2

Clin Pharmacol Ther. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



agreement, and clinical inertia(24). Understanding clinician prescribing behaviors in 

response to genomic information is an essential next step.

Our institutional genomic implementation program, The 1200 Patients Project, was initiated 

five years ago to overcome obstacles to clinical translation of pharmacogenomics by 

preemptively genotyping patients and making available to treating physicians patient-

specific results at clinical visits, accompanied by CDS(25, 26). Utilizing this approach, we 

aimed to examine prospectively the impact of available pharmacogenomic information on 

physician prescribing behaviors. We hypothesized that pharmacogenomic results delivered 

via a CDS tool would significantly alter prescribing decisions, especially for high-risk 

medications. We also sought to identify limitations to physician use of genomic information 

to guide future iterations of implementation efforts.

RESULTS

Participants, Clinic Visits, and Medication Changes

Seventeen providers representing a diverse cohort of eight different medicine primary care 

and subspecialty clinics from two metropolitan outpatient locations were approached for 

participation, and every provider who was invited to participate agreed. These providers, 

along with study staff, then recruited patients to the study over a four-year period. The 

percentage of patients who agreed to participate when approached was 87%. Of these 1,108 

consenting patients, 930 gave a blood sample for genotyping (the remaining 178 patients 

who consented but never provided a blood sample consisted almost entirely of patients who 

signed consent at a ‘new patient’ (first visit) with a study physician at our institution, yet 

never returned to our medical center for any further medical care thus never submitting a 

blood sample) and 868 patients had results available to providers at the time of data cut-off. 

The final patients included for analysis were those who returned for at least one clinic visit 

with a study provider after their pharmacogenomic results became available (n=547). All 

such clinic visits for these patients were analyzed over a three-year period (October 1, 2012–

September 11, 2015). This yielded 2279 clinic visits by these patients with their enrolling 

providers during the study period, with an average of 3.8 (range 1–26) visits per patient-

provider pair. This corresponded to 415 of the 547 patients having multiple visits with their 

treating provider during the study. Additionally, 47 patients had visits with more than one 

study provider. Detailed demographic and clinical information about the participating 

patients and providers is shown in Table 1. Measured characteristics of the provider group 

suggest that these physicians had modest baseline knowledge of and minimal to no 

experience with using pharmacogenomics prior to this study, characteristics which mirror 

those described for a recently-surveyed 10,000 U.S. physician cohort(7).

At 25% of visits, at least one medication change occurred, representing 812 total medication 

changes (221 discontinuations/395 medications started/196 dose changes). The most 

frequent changes are in Table 2.

O’Donnell et al. Page 3

Clin Pharmacol Ther. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CDS Tool Accessions to Consider Pharmacogenomic Information

The first component of adoption that we sought to establish was physician accession of 

pharmacogenomic information. Of evaluable visits, 69% were associated with a dedicated 

login into our institutional pharmacogenomic results CDS system, also called the Genomic 

Prescribing System (GPS). Composite login rates were 83%, 74%, and 59% in years 1, 2, 

and 3 of the study, respectively. Each enrolled provider accessed the system on multiple 

occasions. Interestingly, the likelihood of a physician accessing the GPS was significantly 

higher at visits where those providers were making a medication change (Odds Ratio 

[OR]=1.61 [1.24–2.09], p<0.0001), although causality cannot be concluded from this 

association and it is equally possible that the cause and effect were actually the opposite.

Analysis of physician and patient factors influencing GPS access identified that physicians 

on busier clinical days were significantly less likely to log-in (mean 10.6 patients/clinic for 

no login visits versus 8.4 patients/clinic for login visits, p<0.0001). Other analyzed factors 

were not compelling (Supplementary Table 1).

Physician Responses to Pharmacogenomic Alerts

Table 3 summarizes the pharmacogenomic information viewed by providers during the 

study. In total, 34.2% of all medications on patients’ active drug lists had associated alerts 

(i.e., either a favorable green light [20.9%], cautionary yellow light [12.8%], or high-risk red 

light [0.5%]). These alerts reflect the prevalence of clinical pharmacogenomic information 

that was available about the medications being taken by patients throughout the study. The 

remaining medications (65.8% of drugs on patients’ active drug lists) had no known 

actionable pharmacogenomic information.

To evaluate the primary study endpoint, we sought to measure the composite prescribing 

influence of available, potentially actionable pharmacogenomic information compared 

against the prescribing of drugs for which there was no pharmacogenomic guidance. To 

evaluate this, we examined how frequently providers changed medications when 

pharmacogenomic information was viewed, and we stratified the analysis by degree of 

pharmacogenomic risk. Importantly, we found that the OR of a red light medication being 

changed was 26.2 [9.0–75.3] (p<0.0001) compared to a drug without any pharmacogenomic 

information (Table 3). Similarly, when compared to green light medications, the OR of a red 

light medication being changed was 23.3 [7.8–69.5] (p<0.0001). Yellow risk medications 

had an OR of change=2.4 [1.7–3.5] (p<0.0001) compared to drugs without 

pharmacogenomic information (Table 3). When compared to green light medications, the 

OR of a yellow light medication being changed was 2.1 [1.4–3.4] (p=0.001). The only 

variable that differed between these medication changes was the presence (or absence) of 

potentially actionable pharmacogenomic information, meaning that the observed differences 

in rates of prescribing changes were likely directly due to the pharmacogenomic information 

provided. There was no difference in the rate of change for green light drugs compared to 

drugs without pharmacogenomic information, suggesting that physicians interpreted green 

lights (genetically favorable) as not warranting modification.
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Interestingly, medication changes in response to pharmacogenomic risk alerts did not always 

occur the first time the provider viewed the alert, instead requiring repeat delivery before 

inducing a prescribing change. For example, 51% (27/53) of yellow alert changes occurred 

at the first delivery, while 49% (26/53) happened at a subsequent delivery.

Among the most frequently changed drugs, a significant proportion of the changes were 

influenced by available pharmacogenomic information (Table 2, far-right column). Nearly 

half of all changes in omeprazole and atorvastatin—two frequently prescribed drugs in our 

cohort—were influenced by pharmacogenomic results. Simvastatin (69%) and rabeprazole 

(50%), though not among the most frequently changed drugs in our study, had the highest 

overall percentages of changes influenced by pharmacogenomic CDS.

To contextualize the above findings, we assessed for contributions of specific patient and 

physician factors on associations with medication changes. In contrast to pharmacogenomic 

information, almost none of these factors showed a reliable association with whether a 

patient was likely to have a medication change occur (Figure 1). The only exception was that 

patients on the fewest number of medications (1–3) were less likely than other patients to 

have their provider make a prescription change. This latter finding likely logically reflects 

the fact that patients on fewer medications simply had less opportunities for their physicians 

to change one of those medications compared to patients taking a larger number of 

prescriptions.

Pharmacogenomic Information Appropriately Impacts Major Prescription Decisions

To further explore the extent to which pharmacogenomic results were driving medication 

change behaviors, we analyzed specific drug changes and their corresponding influence 

(‘attribution’) scores at all visits where GPS was accessed. Drug discontinuations were 

informative as a first category. As shown in Figure 2A, when pharmacogenomic information 

was available, a large majority of provider decisions to stop drugs were influenced by 

pharmacogenomic recommendations (61%). All of the pharmacogenomically-impacted drug 

discontinuations occurred for drugs with red and yellow risk alerts. Providers frequently (at 

least 8 unique times) discontinued statins in patients with increased genetic myopathy 

risk(27) (SLCO1B1 rs4149056 C-allele carriers, yellow light in GPS) and in patients with 

drug-specific genomically-predicted suboptimal lipid lowering(28, 29), in exchange for 

alternative statins. For proton pump inhibitors (PPIs), a very commonly observed maneuver 

(at least 15 different occurrences) was for providers to discontinue first-generation PPIs in 

CYP2C19 ultrarapid metabolizers (red lights) in favor of newer-generation PPIs, which have 

less susceptibility to genomic variability at the CYP2C19 locus(30, 31). For hypertension 

treatment, physicians frequently (at least 12 different times) noted difficulty achieving blood 

pressure optimization with one or more antihypertensive agents, and would use 

pharmacogenomic information to discontinue one antihypertensive in favor of a genomically 

favorable alternative. To do so, clinicians used a disease-based search function(32)—

receiving all pharmacogenomic information about antihypertensives for a given patient—or 

the “pharmacogenomic alternatives” CDS information to choose a genomically favorable 

replacement. The latter behavior—selection of a genetically favorable pharmacogenomic 

alternative medication to replace an existing higher risk drug—in many instances was 
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facilitated by the provision of a list of all pharmacogenomically annotated (red/yellow/

green) medications in the tool, provided on the same screen alongside the ‘current 

medications’ list (see Supplementary Figure 1). This feature, enabling this observed 

behavior among providers, illustrated an important advantage of preemptive genotyping in 

our implementation model. The use of such comparative information also importantly 

illuminated the observation that study providers found pharmacogenomic information to be 

of high utility in situations where there was apparent clinical indifference among several 

therapy choices that could be prevailed upon by genomic information.

New prescriptions also revealed important findings. Figure 2B shows that for new 

prescriptions with pharmacogenomic information (n=96), the decision to prescribe the 

chosen drug was affirmatively influenced by pharmacogenomic information in 50% of cases. 

The vast majority of newly-prescribed drugs with pharmacogenomic information were 

genetically compatible green lights. Most importantly, not one pharmacogenomically high-

risk (red alert) medication was prescribed during the entire study when physicians consulted 

the CDS tool. Even when yellow light drugs were chosen during GPS-utilized visits, those 

new medications often represented suitable choices when considering clinical context (e.g., 

yellow light drugs started as replacements for red lights, or started at modified initial doses 

in accordance with CDS recommendations).

Dose-adjustment to mitigate risk represented a final category of observed prescribing 

behavior in response to pharmacogenomic information (Figure 2C). Altogether, these 

composite results show that the ultimate prescribing decision for a considerable proportion 

of drug changes at visits where pharmacogenomic CDS was utilized were influenced by 

pharmacogenomics.

Missed Opportunities

Some implementation/adoption aspects tempered more universal impact (Supplementary 

Figure 2). First, because we chose a passive resulting approach, providers did not always see 

potentially important alerts (Supplementary Figure 2-legend). Secondly, when new 

medications were initiated, only 16% were actively searched in GPS prior to being 

prescribed. Pharmacogenomic information would have been available for 27% of these 

unsearched instances. Both delivery-model limitations of our implementation and physician 

behavior inconsistencies represented opportunities for ongoing iteration of our model and 

potential behavioral intervention to increase adoption.

DISCUSSION

To our knowledge, this is the first comprehensive prospective examination of physician 

prescribing behaviors in the context of available, broad preemptive pharmacogenomic CDS. 

We found that physician desire for genomic-based prescribing was robust, and that 

pharmacogenomic information impacted prescribing in a pattern consistent with greatest 

reduction of pharmacogenomic risk for patients. Our findings represent a key milestone for 

encouraging broader integrations of genomic medicine into clinical practice.
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The successful clinical translation of genomic information requires not only technological 

adaptations but also, importantly, behavioral adoption into the clinical decision calculus. Our 

findings demonstrated that both practical barriers (point-of-care availability, physician time 

constraints) as well as enactment barriers (inertia of previous practice, lack of familiarity)

(24) can be surmounted. In particular, we identified (through physician electronic medical 

record [EMR] documentation during this study) a consistent theme that outcome expectancy

—the expectation that a given behavior will lead to a particular consequence—was the 

strongest driver of prescribing behavior change among our early adopters. In other words, if 

utilizing genomic information meant increasing the likelihood that adverse events could be 

avoided or drug responses could be augmented, then physicians were highly likely to adopt 

such information during prescribing. The stronger the cause-effect relationship for a 

pharmacogenomic variant, the greater the likelihood of adoption. Indeed, we found that red 

(highest risk) alerts were much more likely to alter behavior change than yellow (moderate) 

alerts, indicating that the stakes associated with non-consideration of genomic information 

mattered greatly to our early adopters. This implies that implementation models focused 

around the pharmacogenomic variants with the greatest potential for risk-avoidance might be 

the most initially successful. Two recent prior studies(33, 34) focused solely on clopidogrel

—an ideal high-risk pharmacogenomic example—support this idea. Our findings also 

suggest that as physicians have increasing opportunities to consider and utilize genomic 

information—gaining thereby experience in actual practice about whether prescribing 

precision is improved because of the information—then this will serve to have a large effect 

on whether adoption will take hold and expand, or not. In this sense, one could strongly 

argue that future examinations of pharmacogenomic implementation—including perhaps 

pragmatic clinical trials—might not only need to measure patient outcome benefits for 

individual drug-gene pairs, but also should consider physician utilization as a potential 

indicatory benchmark of utility. The role of the patient in potentially influencing physician 

prescribing behavior must also be considered(35).

This study illuminated potentially important findings about pharmacogenomic CDS software 

as it pertains to adoption. Rogers(36) previously posited that five primary aspects affect the 

diffusion and uptake of an innovation—relative advantage, compatibility, complexity, 

trialability, and observability(37). The nature of a CDS at the point-of-care has the potential 

to directly affect at least three of these aspects. First, we used a passive resulting approach 

because it allowed us to directly study questions of compatibility (the degree to which an 

innovation fits with the needs of potential adopters(37)) and alert thresholds. We found a 

high GPS accession rate, which was enhanced when physicians made medication changes, 

indicating that physicians are perhaps used to utilizing ancillary electronic sources to receive 

medical information(38) and will in fact seek such information if the information is 

perceived as useful. In fact, our accession rate was higher than anticipated (we had 

hypothesized an overall login rate of 50%) and this was despite the fact that GPS was not 

integrated within the EMR during the study. (We have since integrated GPS into our 

institutional EMR—a move likely critical for sustaining and expanding adoption and almost 

certainly necessary for implementation success in larger, real-world contexts). Secondly, we 

designed our pharmacogenomic CDS to minimize complexity, enabling providers to 

understand implications for prescribing without necessarily understanding genomics. The 
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traffic light alerts did this with a recognizable iconography, but additionally, none of the 

more detailed CDS contained more than 30 seconds of readable text. Finally, our 

implementation emphasized trialability, allowing users to decide on relevance on a case-by-

case basis in a way that system-wide interruptive alerts do not. Other studies have suggested 

that infrequent alerts containing embedded clinical recommendations prove more useful and 

are less likely to be ignored(39). This also diminishes the problems of alert fatigue(40). We 

do not, however, propose that an entirely passive pharmacogenomic CDS approach is 

optimal, and in fact, we are currently studying ways to re-engineer our system to combine 

passive and active(41) alerts to maximize adoption. These concepts deserve close attention 

as institutions develop pathways and procedures for the delivery of genomic results in 

increasingly crowded EMRs(42–44).

Our study had limitations. The number of physicians analyzed for prescribing behavior was 

relatively small. However, the participating physicians represented a diverse group drawn 

from multiple various medicine disciplines and specialties, and their baseline attitudes and 

perceptions and minimal to no prior experience with pharmacogenomics suggested that they 

may not be dissimilar from most contemporary U.S. physicians who share similar general 

enthusiasm for, but remarkable inexperience with, pharmacogenomics(7). It is nevertheless 

acknowledged that this study’s providers likely had a bias towards pharmacogenomics 

because of their willingness to participate, and additionally all were formally included as 

study co-investigators as well as study subjects with full knowledge at enrollment that their 

behaviors would be examined, meaning results were subject to the Hawthorne effect. We 

attempted to minimize the magnitude of this effect by monitoring physician use of 

pharmacogenomic information over a three-year period—and across >2200 clinic visits—a 

fact which in our view speaks to the consistency of the behavioral changes and points 

favorably for next-wave implementations among other provider groups. Indeed, early 

adopters like the physicians represented in this study are exactly the types who will lead 

future precision medicine adoption curves. Therefore, studying behavior change in this 

group was an important step to inform wider dissemination and implementation efforts. The 

number of red alerts in this study was relatively low, reflecting the rarer incidence of these 

genomic signals in the human population but also likely reflecting some pre-study trial and 

error that led to avoidance of these drugs in some patients. Moreover, the total number of 

drug changes in response to potentially actionable alerts was relatively modest (60 

prescription changes out of 405 potentially actionable red and yellow alerts over the entire 

study), suggesting that there is still considerable room to improve on the adoption curve for 

pharmacogenomic implementation. Nevertheless, these factors did not limit our statistical 

power to observe important differences in physician behavior in response to risk alerts. 

Finally, our study was not powered to detect changes in the rates of specific adverse drug 

reactions. Clinical outcomes will be important to quantify in future disseminations.

Pharmacogenomic CDS repeatedly and favorably influenced prescribing decisions in a 

manner that reduced patient risk, with near universal avoidance of genomically-identified 

high-risk prescriptions when pharmacogenomic information was considered. These findings 

represent crucial landmarks for the wider implementation of genomic medicine interventions 

as essential components of the advancement of precision medicine.
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METHODS

Participants

Physicians were individually approached for enrollment through a process of direct 

stakeholder engagement and informed consent. Invited providers from two physically 

separate outpatient sites were chosen because of busy clinical practices, and to achieve 

representation across different medicine subspecialties. Providers gave permission for their 

medication decisions to be analyzed. Physicians were not mandated to view or utilize 

pharmacogenomic results, nor required to make any pre-specified prescribing choices. 

Physicians could leave the study at any time. Prior to having access to pharmacogenomic 

results, enrolled physicians participated in a semi-structured interview about 

pharmacogenomics with the study principal investigator (P.H.O.), completed a baseline 

questionnaire, and received a ~15-minute training session on use of the CDS tool, the GPS.

Adult patients receiving care from an enrolled physician were correspondingly approached 

for participation by their physician or by study personnel using informed consent. Eligibility 

criteria were previously described(26). The study was approved by the Institutional Review 

Board of the University of Chicago, and was registered at clinicaltrials.gov 

(#NCT01280825).

Genotyping

Enrolled patients were genotyped across a broad custom pharmacogenomic panel comprised 

of variants selected for their pharmacogenomic importance. Sequenom custom 

MassARRAYs (Agena Bioscience, San Diego, CA) were used prior to May 5, 2015, while 

custom OpenArrays from Life Technologies (ThermoFisher, Waltham, MA) were used 

thereafter. All patients were additionally genotyped across a custom CYP2D6 panel 

developed in conjunction with Hologic(45) with supplemental CYP2D6 Taqman copy 

number assessment. All genotyping was conducted in Clinical Laboratory Improvement 

Amendments (CLIA)-certified and College of American Pathologists (CAP)-accredited 

laboratories.

Pharmacogenomic Results Delivery

GPS(25, 26, 32) is a web-accessible, password-protected portal delivering preemptive 

pharmacogenomic results utilizing green/yellow/red “traffic light” alerts(25, 46) to inform 

physicians of pharmacogenomic drug safety or efficacy (Supplementary Figure 1 shows 

representative screen shots). Alerts are based on published pharmacogenomic information, 

including, when available, meta-analyses, clinical guidelines, and FDA label information(25, 

47). The list of drugs for which the GPS provided CDS during the study period is shown in 

Supplementary Table 2. Green lights indicate genetic compatibility for a drug, while yellow 

and red denote increased risk of adverse reactions or non-response. Detailed clinical 

information about each pharmacogenomic result is included within result-translation 

synopses that comprise each drug-based CDS. These CDS include assessment(32, 47) of the 

quantity and strength of the composite published evidence. New drug/variant-specific CDS 

were indeed pushed into GPS during the course of the study if published literature became 

available to support a given genetic variant being migrated to clinically actionable (‘CDS 
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deliverable’) status. Similarly, if new published data changed the clinical recommendation or 

level of evidence rating for an existing CDS, then that CDS was modified/updated in real-

time during the study (this happened with warfarin, for example).

On any given clinic day, a provider would see a number of patients, only some of whom 

were participating in the study and had GPS information available. In order to remind 

providers of which patients were study participants with results available in the GPS, study 

staff emailed providers the day before study patients’ clinic visits. Additionally, reminder 

stickers were placed next to study patients’ names on providers’ daily paper schedules in 

clinic workrooms, denoting which patients had pharmacogenomic results available. During 

the early phases of the project, members of the clinical research team were embedded in 

study providers’ clinics to provide assistance with GPS. The presence of these staff 

potentially also served as a reminder to providers to login to the GPS.

GPS was not integrated into the EMR during the period of this study. When providers 

logged into GPS, each patient’s home screen displayed all current medications for that 

patient with any associated pharmacogenomic traffic lights. Patients’ current medication lists 

were manually updated in the GPS by clinical research staff at least 24 hours before each 

clinic visit to match the current medications listed in the EMR. Drugs without 

pharmacogenomic information were denoted “no information” (colorless traffic light 

symbol). A physician’s action of “clicking” on an alert or searching for a drug by name or 

disease(32) yielded the relevant pharmacogenomic result and CDS.

Evaluating Utilization of Pharmacogenomic CDS

The study was conducted between October 1, 2012–September 11, 2015 (data cut-off). 

Evaluable clinic visits during this period included all visits at which a preemptively 

genotyped patient was seeing an enrolled provider, meaning their pharmacogenomic results 

were available for consideration through GPS. Click log (“use”) data detailing physician 

navigations into and within GPS were recorded. Data captured included login date/time, 

names and alert colors of prescribed drugs at each visit, and whether individual alerts were 

clicked to view more detailed CDS synopses. Logins within (+/−)72 business hours of a 

clinic visit were considered “associated” with that visit. To correlate GPS use behaviors to 

prescribing actions, we aligned GPS data by date and provider-patient pair with EMR 

clinical documentation including pre-visit/post-visit medication lists. All prescription drug 

changes (new prescriptions/discontinuations/dose changes) made during each evaluable visit 

were recorded. Medication changes involving topicals/ear or eye drops/vitamins/stool 

softeners/probiotics and over-the-counter medications were excluded, as were changes 

involving short-term prescription drugs (defined as use for ≤14 days; e.g., short antibiotic 

courses) given that the focus of the study was longitudinal long-term prescribing 

management.

Role of Pharmacogenomic Results in Informing Medication Changes

To rigorously assess the degree, if any, to which the available pharmacogenomic information 

influenced medication changes, we employed a modified version of the widely used scale 

developed by the National Cancer Institute’s Cancer Therapy Evaluation Program for 
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attribution of drug toxicity(48) (http://ctep.cancer.gov/protocolDevelopment/

electronic_applications/docs/newadverse_2006.pdf). The formal scoring algorithm which 

was first pretested and then implemented is shown in Supplementary Figure 3. In this 

scoring system, 1=a medication change “unrelated” to the availability of pharmacogenomic 

results, 2=“unlikely related”, 3=“possibly related”, 4=“likely related”, and 5=“definitely 

related”. EMR documentation, GPS click logs, post-visit physician surveys, and post-visit 

patient surveys were used to assign attributions. An initial subset of attribution scores 

underwent comparative analysis by at least two independent raters (P.H.O./N.W./B.A.B./

J.P.H./C.K./S.H.) until consensus on the algorithm was reached. At least 20% of all final 

scores were also rated by at least two independent raters to ensure agreement (κ ≥ 0.95), and 

any disagreeing scores were reviewed by a third reviewer until consensus. We categorized 

medication changes with scores ≥4 as “influenced by pharmacogenomic information” for the 

subsequent analyses—a conservative cutoff that was even more stringent than that used in 

clinical trials for ascribing adverse drug events(49).

Statistical Analyses

For the primary analysis, the influence of available pharmacogenomic information on 

composite physician prescribing behaviors was assessed by modeling the delivery of a 

pharmacogenomic alert and a physician’s behavior of enacting (or not) a medication change. 

Generalized linear mixed-effects models based on the binomial distribution were used 

including two random effects, one for repeated viewing of alerts for the same patient and the 

other for patients nested within providers. We included all medications on each patient’s 

‘current medications’ list anytime during the study. ORs and 95% confidence intervals for 

each pharmacogenomic result (red/yellow/green respectively) were estimated referenced to 

the (comparator) group of all other medications for which no pharmacogenomic information 

existed.

We also evaluated patient factors (age/gender/education/race/number of comorbidities/

number of medications) and provider factors (number of years in practice, number of 

patients seen that day in clinic) as potential mediators and moderators of medication change 

behaviors. For these analyses, ORs were calculated in univariate fashion employing a mixed-

effects model, using all other possible categories within a given factor as the comparator 

group (for example, patients taking “1–3 medications” were compared against all other 

patients taking 4+ medications). Statistical analyses were performed using Stata, version 

13.0. P values <0.05 were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STUDY HIGHLIGHTS

What is the current knowledge on the topic?

Many groups have worked to address barriers to genomic implementation. As with any 

clinical innovation, the true utility of an intervention is measured by adoption and user 

response. Understanding clinician prescribing behaviors in response to genomic 

information is an essential step.

What question did this study address?

We hypothesized that preemptively-obtained pharmacogenomic results delivered to 

physicians via a point-of-care clinical decision support (CDS) tool would significantly 

improve prescribing.

What this study adds to our knowledge

Pharmacogenomic information impacted physicians to change prescribing in patterns 

aimed at reducing patient risk. Medication changes occurred among drugs with known 

pharmacogenomic risk significantly more often than for drugs with no pharmacogenomic 

information. When genomic information was available and viewed, the majority of 

decisions around medication discontinuations and new prescriptions were influenced by 

pharmacogenomic results.

How this might change clinical pharmacology or translational science

This is the first comprehensive prospective examination of physician prescribing 

behaviors in the context of available, broad preemptive pharmacogenomic CDS. The 

findings represent key milestones for encouraging broader integrations of genomic 

medicine into clinical practice.
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Figure 1. Analysis of Patient, Physician Practice, and Pharmacogenomic Factors on Likelihood 
of a Medication Change
Odds ratios (OR) and 95% confidence intervals are displayed for each patient, physician 

practice, and pharmacogenomic risk variable analyzed. In contrast to the large impact of 

pharmacogenomic information, almost none of the other analyzed clinical factors showed a 

reliable association with medication changes occurring at visits. The only exception was that 

patients on the fewest number of total medications (1–3 medications) were less likely than 

other patients to have a prescription change. Note: it is noted that single sub-group variables 

(like “patients aged 61–70 years”, or “college graduates”) within some of the broader 

evaluated clinical categories had individual, statistically significant findings, but we did not 

consider these as significant results at the level of the overall clinical variable because the 

relationship was not retained across the entire category (e.g., age was not associated with 

medication change likelihood across the full range of analyzed age-decade sub-groups; and 

educational level as a variable was not associated with medication change likelihood overall, 

in fact, those with advanced degrees beyond college trended in the opposite direction as 

college graduates). PGx=pharmacogenomic; HS=high school.
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Figure 2. Available Pharmacogenomic Information Impacts Major Prescription Decisions
Medication changes at all study visits where providers accessed pharmacogenomic results 

via GPS are depicted. In the center of each diagram, the total number of medication changes 

of each type are shown (2A=visits with drug discontinuations; 2B=visits with new 
medications prescribed; 2C=visits with dose adjustments). The first concentric circle 

then divides the total number of medication changes into categories based on whether 

pharmacogenomic information was available within the GPS (beige represents drugs without 

pharmacogenomic information; green/yellow/red represent drugs with each of these 

respective pharmacogenomic alert types). The outermost concentric layer (orange) indicates 

the proportion of those medication changes, stratified by green/yellow/red alert level, that 

were attributed through a formal evaluation process as being influenced by the 

pharmacogenomic information. 2A - Drug Discontinuations. There were 161 drug 

cessations during the study period at visits where providers accessed the GPS. While about 

half (n=89, 55%) of these discontinued medications did not have pharmacogenomic 
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information, when pharmacogenomic signals were available (9 + 42 + 21=72), a large 

majority (44/72=61%) of provider decisions to stop drugs were influenced by the provided 

pharmacogenomic recommendations. 2B – New Medications Prescribed. There were 286 

new drugs prescribed during study visits where providers accessed the GPS. While the 

majority of these new prescriptions did not have pharmacogenomic information (n=190), for 

those that did (24+72=96), physicians reported that the decision to prescribe the ultimately 

chosen drug was affirmatively influenced by pharmacogenomic information in 50% (48/96) 

of cases. 2C - Dose Adjustments. There were 136 dose changes at visits when providers 

accessed the GPS during the study period. The majority of dose-adjustments that occurred in 

drugs with pharmacogenomic information were for green light drugs (n=31), although 

yellow (n=11) and red light medication (n=2) dose-adjustments were observed. Altogether, 

23% (10/44) provider decisions to make dose changes in drugs with viewed 

pharmacogenomic information were influenced by GPS recommendations. GPS=Genomic 

Prescribing System.
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Table 1

Patient and Provider Demographics

Patient Baseline Demographics

Characteristic Number of Patients (n=547) (%)

Age in years, mean 60 (range 19–95)

Female/male 290/257 (53.0/47.0)

Racea

 White 324 (59.0)

 Black or African American 164 (30.0)

 Asian 25 (4.5)

 Unknown 25 (4.5)

 More than one race/ other 13 (2.3)

 American Indian/ Alaskan Native/ Native Hawaiian 3 (0.005)

Ethnicitya

 Not Hispanic or Latino 319 (58.0)

 Hispanic or Latino 20 (3.6)

 Not Answered/ Unknown 201 (36.7)

Most Prevalent Diseases

 Hypertension 277 (50.6)

 Hyperlipidemia 275 (50.0)

 Mechanical Joint Disorders 111 (20.0)

 GERD 105 (19.0)

 Obesity 105 (19.0)

 Coronary Artery Disorder (Arteriosclerosis) 87 (15.9)

 Diabetes Mellitus 69 (12.6)

 Hypothyroidism 67 (12.2)

 Sleep Apnea 65 (11.8)

Most Prevalent Medications (at Study Enrollment)

 Aspirin 237 (43.3)

 Atorvastatin 134 (24.5)

 Hydrochlorothiazide 104 (19.0)

 Lisinopril 89 (16.3)

 Amlodipine 86 (15.7)

 Levothyroxine 78 (14.3)

 Metoprolol 68 (12.4)

 Fluticasone Propionate 59 (10.8)

 Acetaminophen 55 (10.3)

Visits by Specialty (number of providers) Number Clinic Visits Number Patients Seen

 Primary Care (7) 1359 267

 Cardiology (2) 449 138

 Oncology (3) 208 60

 Gastroenterology (1) 107 53
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Patient Baseline Demographics

Characteristic Number of Patients (n=547) (%)

 Executive Health (1) 49 24

 Nephrology (1) 52 20

 Hepatology (1) 25 22

 Pulmonology (1) 30 10

 Total (17) 2279 594b

Provider Baseline Demographics

Characteristic Number of Providers (n=17) (%)

Female/male 7/10 (41.2/58.8)

Years in practice, mean 21.4 (range 3–46)

Patients seen per clinic, mean 9.1 (range 6–16)

Ordered a PGx test in the preceding six monthsc 5 (29.4)

PGx impacted prescribing in the preceding six monthsc

 Never 11 (64.7)

 Almost never 2 (11.8)

 Sometimes 3 (17.6)

 Frequently 1 (5.9)

 Almost always 0 (0.0)

“How informed do you feel about PGx?”d

 Very well informed 2 (11.8)

 Somewhat informed 8 (47.0)

 Somewhat under-informed 5 (29.4)

 Very under-informed 2 (11.8)

“I believe there is insufficient PGx information for most drugs”d

 Agree strongly 6 (35.3)

 Agree somewhat 7 (41.2)

 Not sure 1 (5.9)

 Disagree somewhat 3 (17.6)

 Disagree strongly 0 (0.0)

“PGx evidence is relevant to prescribing decisions for most of my patients”d

 Agree strongly 2 (11.8)

 Agree somewhat 4 (23.5)

 Not sure 6 (35.3)

 Disagree somewhat 3 (17.6)

 Disagree strongly 2 (11.8)

a
Race and ethnicity were self-reported by patients.

b
The total number of patients seen across the various specialties includes 47 patients with visits to multiple providers. For example, a patient with a 

visit to a primary care physician as well as a cardiologist was counted separately in each specialty.

c
Prior to participating in this study.

d
Opinions of pharmacogenomics from each provider were assessed before joining the study.

Clin Pharmacol Ther. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Donnell et al. Page 21

PGx = pharmacogenomics
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Table 2

Applicability of Pharmacogenomics to Most Frequently Changed Medications

Medication Prescriptions, n (at baseline) Medication Changes,a n (%)b Influencedc by PGx, n (%)

Atorvastatin 301 35 (4.3) 14 (40.0)

Lisinoprild 240 35 (4.3) n/ad

Amlodipine 232 34 (4.2) 10 (29.4)

Hydrochlorothiazide 258 34 (4.2) 9 (26.5)

Omeprazole 144 26 (3.2) 12 (46.2)

Chlorthalidoned 42 23 (2.8) n/ad

Aspirin 524 22 (2.7) 4 (18.2)

Esomeprazole 73 22 (2.7) 9 (40.9)

Fluticasone Propionate 136 20 (2.5) 2 (10.0)

Metoprolol 196 20 (2.5) 6 (30.0)

a
includes new medications, dose changes, and discontinuations;

b
reflects each drug’s changes as a percentage of all total medication changes in the study;

c
see Methods for determination of prescriptions influenced by PGx;

d
no clinically actionable pharmacogenomic information existed for this drug, so attribution of influence of pharmacogenomics for this drug was not 

applicable (n/a);

PGx = pharmacogenomics
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