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Highly efficient base editing in human
tripronuclear zygotes

Dear Editor,

There are hundreds of disease-causing single-gene muta-
tions, mainly caused by single-nucleotide substitutions or
point mutations rather than small insertions/deletions (in-
dels), and often there are no cures for these diseases. By
introducing the CRISPR/Cas9 system into mouse zygotes,
disease-causing mutations could be corrected, leading to the
production of healthy adult animals (Long et al., 2014; Wang
et al., 2013; Wu et al., 2013; Yang et al., 2013). Several
studies have demonstrated that CRISPR/Cas9-mediated
gene editing could also introduce precise genetic modifica-
tions in early human embryos (Kang et al., 2016; Liang et al.,
2015; Tang et al., 2017). However, indels rather than single-
nucleotide substitutions are obtained frequently, because
most DNA double-strand breaks (DSBs) produced by pro-
grammable nucleases are repaired by error-prone non-ho-
mologous end-joining (NHEJ) rather than homologous
recombination (HR) using a template donor DNA. Recently,
base editors, composed of cytidine deaminase, Cas9 nick-
ase (nCas9), and uracil DNA glycosylase inhibitor (UGI),
have recently been developed to substitute a C at a target
site with T without generating DSBs in plant, yeast, mouse
zygotes, and human cells, and shown to be >100-fold more
efficient than HR at generating point mutations (Kim et al.,
2017a; Komor et al., 2016; Liang et al., 2017; Ma et al., 2016;
Nishida et al., 2016; Zong et al., 2017). Moreover, the gen-
ome-targeting scope has been increased by using staphy-
lococcus aureus CRISPR/Cas9 (SaCas9) with modified
protospacer adjacent motif (PAM) recognition (Kim et al.,
2017b). Yet, the efficiency and specificity of base editors has
not been demonstrated in human embryos. Here, we report
that both base editor 3 (BE3) using nCas9 and SaKKH-BE3
using SaKKH-nCas9 can introduce single-nucleotide sub-
stitutions efficiently in human tripronuclear (3PN) zygotes.

We first used BE3 (rAPOBEC1-nCas9-UGI) to induce
point mutations in human β-globin (HBB), which associated
with human diseases β-thalassemia (Fig. 1A and 1B). We
expected to introduce a premature stop codon in HBB by
G-to-A conversions at the target site. We carried out base
editing in human 3PN zygotes by microinjection of BE3
mRNA and sgRNAs. The injected 3PN zygotes were cul-
tured into 4 to 8-cell embryos and used for targeted-deep-

sequencing analysis. Targeted point mutations were
observed in 8 out of 19 (42%) embryos at the target site in
the HBB gene, with mutation frequencies that ranged from
6% to 52% (Figs. 1C, 1D, 1K, and S1A). Targeted deep
sequencing showed that 7 out of 8 embryos for HBB base
editing contained a nonsense mutation at the target site,
generated by a single G-to-A conversion (Figs. 1D and S1A).

To broaden the genome-targeting scope of base editors,
we used the recently reported SaKKH-BE3 that relaxes the
variant’s PAM requirement to NNNRRT (Fig. 1A). Targeted
deep sequencing on the injected embryos revealed that 17
out of 17 (100%) or 6 out of 9 (67%) embryos carried tar-
geted point mutations at the target site in the FANCF or
DNMT3B gene, respectively (Fig. 1E–K). Note that we
observed very low percentage (<5%) of wild-type (Wt) allele
in 5 FANCF mutant embryos (FANCF-E2, E7, E9, E11, and
E17) and no Wt allele in 3 FANCF mutant embryos (FANCF-
E13, E14, and E15), indicating high base-editing efficiencies
in human 3PN embryos using SaKKH-BE3 (Figs. 1G, S1B,
and S1C). Targeted deep sequencing showed that a C-to-T
conversion was the major mutagenic pattern at all three
target sites, with frequencies range from 78.8% to 98.5%
(Fig. S2). C-to-A or C-to-G conversions were also observed
in 1 HBB (11%), 7 FANCF (70%), and 3 DNMT3B (50%)
mutant embryos (Figs. 1 and S1). We also found C–T con-
version on the upstream or downstream of the sgRNA target
site in 0 HBB (0%), 10 FANCF (59%), and 3 DNMT3B (50%)
mutant embryos (Fig. S2), consistent with previous studies
(Kim et al., 2017a; Kim et al., 2017b; Komor et al., 2016).
Using engineered base editors containing mutated cytidine
deaminase domains, such as YE1-BE3, may narrow the
width of the editing window (Kim et al., 2017b).

To avoid the PCR bias, we further examined 4- to 8-cell
embryos with FANCF or DNMT3B base editing at the single-
cell level. Single blastomeres of 4- to 8-cell embryos were
isolated and picked up under the microscope for PCR
amplification and Sanger sequencing. We found that 10 out
of 10 (100%) or 9 out of 9 (100%) embryos carried targeted
point mutations at the target site in the FANCF or DNMT3B
gene, respectively (Figs. 1K, S3, and S4). Based on single-
cell sequencing reads, 79% or 83% alleles carried targeted
point mutations in the FANCF or DNMT3B (Fig. S5). Among
these mutant embryos, two FANCF base-editing embryos
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(FANCF-E20, E24) and two DNMT3B base-editing embryos
(DNMT3B-E11, E14) contained only targeted point mutations
(Figs. S3 and S4). C-to-T conversion was the major muta-
genic pattern, and C-to-A or C-to-G conversions were also
observed in FANCF and DNMT3B mutant embryos (Fig. S5).
Furthermore, compared with CRISPR/Cas9-mediated gene
editing (Kang et al., 2016), although 7 out of 10 FANCF
mutant embryos contained indels alleles (Fig. S3), the per-
centage of total DNA alleles with indels was very low (13%

for FANCF and 0% for DNMT3B) (Fig. S5D). Further opti-
mizing base editors with inactive Cas9 mutant or Cpf1
mutant may reduce the indels to a lower level.

Finally, to assess base editors off-target effects, we per-
formed whole genome sequencing (WGS) to identify
SaKKH-BE3 off-target mutations in the three FANCF mutant
embryos (FANCF-E28, E29, and E30) (Fig. S6). Of 1,187
possible off-target sites that differ from the on-target site by
up to 5 mismatches, we observed just 1 potential off-target
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site in 1 out of 3 FANCF mutant embryos (Fig. S6). Taken
together, these results indicate that BE3 did not induce sig-
nificant off-target alterations in gene-edited human embryos.

In summary, our results show that microinjection of BE3
or SaKKH-BE3 mRNA resulted in efficient and precise base
editing in human 3PN zygotes. These results demonstrate
that base editors can be used for correcting genetic defects
in human embryos in the future.
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