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Abstract Strong epidemiological and experimental
evidence indicates that hypertension has detrimental ef-
fects on the cerebral microcirculation and thereby pro-
motes accelerated brain aging. Hypertension is an inde-
pendent risk factor for both vascular cognitive impairment
(VCI) and Alzheimer’s disease (AD). However, the path-
ophysiological link between hypertension-induced
cerebromicrovascular injury (e.g., blood–brain barrier

disruption, increased microvascular oxidative stress, and
inflammation) and cognitive decline remains elusive. The
present study was designed to characterize neuronal func-
tional and morphological alterations induced by chronic
hypertension and compare them to those induced by ag-
ing. To achieve that goal, we induced hypertension in
young C57BL/6 mice by chronic (4 weeks) infusion of
angiotensin II.We found that long-term potentiation (LTP)
of performant path synapses following high-frequency
stimulation of afferent fibers was decreased in hippocam-
pal slices obtained from hypertensive mice, mimicking the
aging phenotype. Hypertension and advanced age were
associated with comparable decline in synaptic density in
the stratum radiatum of the mouse hippocampus. Hyper-
tension, similar to aging, was associated with changes in
mRNA expression of several genes involved in regulation
of neuronal function, including down-regulation of Bdnf,
Homer1, and Dlg4, which may have a role in impaired
synaptic plasticity. Collectively, hypertension impairs syn-
aptic plasticity, reduces synaptic density, and promotes
dysregulation of genes involved in synaptic function in
the mouse hippocampus mimicking the aging phenotype.
These hypertension-induced neuronal alterations may im-
pair establishment of memories in the hippocampus and
contribute to the pathogenesis and clinical manifestation of
both vascular cognitive impairment (VCI) and
Alzheimer’s disease (AD).
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Introduction

There is abundant evidence that hypertension has
detrimental effects on the cerebral circulation and
thereby causes accelerated brain aging (Girouard
et al. 2006; Gorelick et al. 2011; Iadecola et al.
2009; Kazama et al. 2004; Toth et al. 2013a,
2015a). Epidemiological studies demonstrate that,
in addition to increasing the incidence of ischemic
and hemorrhagic stroke, hypertension-induced mi-
crovascular injury promotes premature cognitive de-
cline (Gelber et al. 2012; Gottesman et al. 2014;
Kohler et al. 2014). Importantly, hypertension is an
independent risk factor for both vascular cognitive
impairment (VCI) and Alzheimer’s disease (AD)
(Iadecola et al. 2009; Iadecola 2014; Toth et al.
2017). Prospective studies demonstrate that patients
on antihypertensive treatment have lower risk of
developing cognitive impairment (Gorelick et al.
2011). Experimental studies strengthen the conclu-
sions of the clinical studies. Accordingly, experi-
mentally induced hypertension was shown to exert
negative effects on hippocampally encoded func-
tions of learning and in mice, mimicking the aging
phenotype (Toth et al. 2013a; Csiszar et al. 2013;
Toth et al. 2014a). Similar conclusions have been
reached by other studies in laboratory rats and non-
human primates as well (Hennigan et al. 2009;
Kemper et al. 2001; Moss and Jonak 2007; Moore
et al. 2002; Togashi et al. 1996). The aforemen-
tioned findings provide evidence that the presence
of hypertension in laboratory animals triggers sig-
nificant impairment of hippocampal function, mim-
icking important aspects of age-related mild cogni-
tive impairment.

The mechanisms by which hypertension promotes
cognitive decline are likely multifaceted and include
both dysregulation of cerebral blood flow (Kazama
et al. 2004; Girouard and Iadecola 2006) and neuronal
dysfunction induced by altered local microenviron-
ment in the cerebral tissue (Iadecola et al. 2009;
Iadecola 2014). In recent years, significant progress
has been made clarifying the pathophysiology of
cerebromicrovascular impairment associated with hy-
pertension. There is strong evidence that hypertension
promotes microvascular rarefaction (Toth et al. 2013a),
endothelial dysfunction (Girouard et al. 2007), and
neurovascular uncoupling (Kazama et al. 2004), which
likely lead to impaired delivery of oxygen and glucose

to the activated brain regions and inadequate wash-out
of by-products. Hypertension also promotes disruption
of the blood–brain barrier, microglia activation, and
neuroinflammation in the hippocampus (Toth et al.
2013b). Although the aforementioned microvascular
alterations are likely to have secondary adverse effects
on neuronal function, the effects of hypertension on
the function and phenotype of hippocampal neurons
are not well understood.

Long-term potentiation (LTP), defined as a long-
lasting increase in synaptic efficacy following high-
frequency stimulation of afferent fibers, is presumed
to play an important role in the establishment and
storage of stable long-term memories in the hippo-
campus (Lynch 2004). The findings that in animal
models of aging cognitive decline is associated with
impaired LTP support the concept that decreased
synaptic efficacy contributes to defective memory
storage (Auffret et al. 2009; Cowley et al. 2012;
Griffin et al. 2006; Diogenes et al. 2011; Robillard
et al. 2011; Ryan et al. 2015; Shi et al. 2015; Yang
et al. 2010). Despite recent advances in our under-
standing of the deleterious cerebrovascular effects of
high blood pressure (Girouard et al. 2006; Kazama
et al. 2004; Capone et al. 2012), the effects of
hypertension on hippocampal LTP remain still
elusive.

A number of recent studies in laboratory rodents and
primates have demonstrated that aging is not associated
with loss of principal hippocampal neurons. In contrast,
hippocampal synapse number seems to be decreased in
the aged brain, which seems to correlate with cognitive
performance (Morrison and Baxter 2012). It is less
understood whether hypertension can exert aging-like
effects on synaptic density in the hippocampus.

The present study was designed to test the hy-
pothesis that hypertension promotes the acquisition
of an accelerated and premature aging phenotype in
the mouse hippocampus, impairing synaptic plastic-
ity, reducing synaptic density, and/or altering hippo-
campal gene expression profile. To achieve that
goal, we induced hypertension in young C57BL/6
mice by chronic infusion of angiotensin II followed
by measurement of LTP in acute hippocampal slices,
assessment of changes in synaptic densities, and
measurement of changes in hippocampal expression
of genes involved in regulation of synaptic function.
Hypertension-induced and age-related changes in
relevant endpoints were compared.
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Methods

Animals

Young (3–6 month, n = 40) and aged (24 month, n = 20)
male C57/BL6 mice were purchased from the National
Institute on Aging and were housed 3–5/cage in the
rodent barrier facility at the University of Oklahoma
Health Sciences Center. All mice were maintained under
specific pathogen-free barrier conditions on a 12-h light/
12-h dark cycle, with access to standard rodent chow
(Purina Mills, Richmond, IN) and water ad libitum as
reported (Ungvari et al. 2017a). All procedures were
approved by the Institutional Animal Use and Care
Committee of the University of Oklahoma Health Sci-
ences Center.

Induction of hypertension in mice

To induce hypertension, Alzet mini-osmotic pumps
(Model 2006, 0.15 μl/h, 42 days; Durect Co, Cuper-
tino, CA) were implanted into young mice. Pumps
were filled either with saline vehicle or solutions of
Ang II (Sigma Chemical Co., St. Louis, MO, USA)
that delivered (subcutaneously) 1 μg/min/kg of Ang
II for 28 days (Wakisaka et al. 2010). Pumps were
placed into the subcutaneous space of ketamine/
xylazine anesthetized mice through a small incision
in the back of the neck that was closed with surgical
sutures. All incision sites healed rapidly without the
need for any medication.

Systolic blood pressure of mice in each experimental
group was measured by the tail cuff method (CODA
Non-Invasive Blood Pressure System, Kent Scientific
Co., Torrington, CT) before and 4 weeks after the
minipump implantation. At the end of the experimental
period, mice were decapitated, the brains were removed,
and the hippocampi were isolated.

Electrophysiological studies for synaptic function
and LTP

To compare how hypertension and aging affect synap-
tic function, extracellular recordings were performed
from acute hippocampal slices with an adopted proto-
col as originally described (Oka et al. 1999; Liu et al.
2014; Tarantini et al. 2015). Briefly, horizontal hippo-
campal slices of 325 μm thickness from mice in each
cohort were prepared in ice-cold solution containing

(in mmol/L) sucrose 110, NaCl 60, KCl 3, NaH2PO4

1.25, NaHCO3 28, sodium ascorbate acid 0.6, glucose
5, MgCl2 7, and CaCl2 0.5 using a HM650V vibrating
microtome (Thermo Scientific). Slices were then trans-
ferred to a holding chamber (Scientific Designs, Inc.)
which contained oxygenated artificial cerebrospinal
fluid (aCSF) of the following composition (in
mmol/L): NaCl 126, KCl 2.5, NaH2PO4 1.25, MgCl2
2, CaCl2 2, NaHCO3 26, glucose 10, pyruvic acid 2,
and ascorbic acid 0.4. Slices were left to recover for at
least 60 min at room temperature prior to recording in
a brain slice chamber (Automate Scientific Inc., CA).
Slices from the treatment and control groups were
positioned on P5002A multi-electrode arrays (Alpha
MED Scientific Inc., Japan) and perfused with aCSF at
a rate of 2 ml/min, equilibrated with 95% O2 and 5%
CO2 at 32 °C. Field excitatory postsynaptic potentials
(fEPSPs) were invoked through stimulation of the
performant path collaterals (0.2 msec biphasic pulse)
and obtained from the dentate gyrus area. Threshold
for evoking fEPSPs was determined, and the stimulus
was increased incrementally (5–100 μA) until the
maximum amplitude of the fEPSP was reached. All
other stimulation paradigms were induced at the same
half-maximal stimulus strength, defined as 50% of the
stimulus used to produce the maximum fEPSP ampli-
tude, as determined for each individual slice. After a
stable baseline recording of 15 min was established,
LTP was induced using high-frequency stimulation
(HFS), which consisted of 100 pulses at 100 Hz ap-
plied four times with half-minute intervals. fEPSPs
were monitored every 30 s for 60 min following
HFS and were recorded with MED-64 system and
Mobius software (Alpha MED Scientific Inc). Poten-
tiation was calculated as the percent increase of the
mean fEPSP descending slope following HFS and
normalized to the mean fEPSP descending slope of
baseline recordings.

Immunofluorescent labeling, confocal microscopy,
and synaptic density quantification

To compare how hypertension and aging affect synaptic
density, a separate cohort of mice was transcardially
perfused with 1× heparin containing PBS, then the
brains were removed and hemisected. The left hemi-
spheres were fixed overnight in 4% paraformaldehyde,
then were cryoprotected in a series of graded sucrose
solutions (10, 20, and 30% overnight) and frozen in
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Cryo-Gel (ElectronMicroscopy Sciences, Hatfield, PA).
Coronal sections of 10 μm were cut through the hippo-
campus and stored at −20 °C. Selected sections were
~1.6 mm caudal to Bregma, representing the more ros-
tral hippocampus. Slides were dried at 70 °C for 30 min,
washed (5 min with 1× Tris-buffered saline [TBS] +
0.25% Triton X-100 plus 2 × 5 min with TBS), and
treated with 1% of sodium borohydride solution for
10min. After the secondwash (2 × 5minwith 1× TBS +
0.25% Triton X-100 plus 2 × 5 min with TBS), antigen
retrieval was applied with Sodium Citrate buffer pH = 6
(Sigma, W302600) at 100 °C for 20 min. After the third
wash (2 × 5 min with 1× TBS + 0.25% Triton X-100
plus 2 × 5 min with TBS) and blocking in TBS (with
0.5% Triton X-100, 0.3 M glycine, and 1% fish gelatin
for 3 h), sections were immunostained using the follow-
ing primary antibodies in 1:20 dilution for two nights at
4 °C: mouse anti-rat MAP-2 (Lifespan Biosciences, LS-
B3439; to label neuronal somata and dendrites) and
rabbit anti-human synaptophysin (Lifespan Biosci-
ences, LS-B7275; to label synaptophysin, which is an
abundant presynaptic vesicle protein). The following
secondary antibody was used in 1:500 dilution for 2 h
at room temperature: donkey anti-rabbit IgG Alexa 647
(Life Technologies, A31573) and goat anti-mouse IgG1
Alexa 488 (Life Technologies, A21121). Sections were
washed for 2 × 5 min with 1× TBS + 0.25% Triton X-
100 plus 2 × 5 min with TBS. For nuclear
counterstaining, Hoechst 33342 was used. Then, the
sections were transferred to slides and coverslipped.
Confocal images were captured using a Leica SP2 MP
confocal laser scanning microscope. Specificity of the
immunolabeling was confirmed by processing negative
control sections, excluding the primary antibody. No
immunostaining was observed in the control sections.
For synaptic density quantification in each animal, six
randomly selected fields from the stratum radiatum of
the hippocampus (which contains septal and commis-
sural fibers and Schaffer collateral fibers, which are the
projection forward from CA3 to CA1) were analyzed in
six nonadjacent sections. Six animals per group were
analyzed. The sections were imaged using a ×63 oil
objective and ×4 optical zoom, and the number of
puncta with a diameter of ~0.4 μm was counted. Quan-
t i f icat ion of the densi ty of synaptophysin-
immunoreactive puncta, corrected by the section thick-
ness, was performed using MetaMorph software (ver-
sion 7.7.9.0). All synapse counting was performed blind
to the experimental group.

Western blotting

Immunoblotting studies for the AMPA receptor subunits
GluR1 (GRIA1) and GluR2 (GRIA2) and the NMDA
receptor channel subunits NMDAR1 (GRIN1) and
NMDAR2A (GRIN2A) in hippocampal homogenates
were performed. In brief, hippocampal samples (n = 4
per experimental group) were homogenized in ice-cold
RIPA buffer (Thermo Scientific, 89901) with Protease
and Phosphatase Inhibitor Cocktails (1:100, Sigma-Al-
drich). BCA assay was performed (Thermo Scientific,
23227) to determine protein concentration, then 2×
Laemmli buffer was added (4% SDS, 20% glycerol,
0.02% bromphenol blue, 0.12 M Tris HCl, 6 M urea)
to denature the proteins. Samples were then subjected to
SDS-PAGE gel electrophoresis and transferred to a
PVDF membrane. Proteins were visualized with
Ponceau Red staining (Fisher Bioreagents, BP103).
Membranes were blocked with 5% BSA (in 0.1%
Tween in TBS, for 90 min, at room temperature) and
overnight incubatedwith the following primary antibod-
ies: rabbit anti-glutamate receptor 1 1:1000 (Abcam,
ab31232), rabbit anti-glutamate receptor 2 1:1000
(Abcam, ab20673), rabbit anti-NMDAR1 1:1000
(Abcam, ab109182), and rabbit anti-NMDAR2A
1:300 (Abcam, ab169873). After incubation with the
secondary antibody for 90 min at room temperature
(donkey anti-rabbit IgG HRP, 1:2000, Abcam,
ab16284), membranes were developed using
Amersham ECL Prime Western Blotting Detection Re-
agent (GE Healthcare). The relative abundance of stud-
ied proteins was determined with densitometry and β-
actin (mouse monoclonal, 1:7500, for 1 h, for 45 min, at
room temperature, Abcam) as a loading control.

Quantitative real-time RT-PCR

To compare how hypertension and aging affect hippo-
campal gene expression, total RNA was isolated from
frozen hippocampal samples with a Mini RNA Isolation
Kit (Zymo Research, Orange, CA) and was reverse
transcribed using Superscript III RT (Invitrogen) as
described previously (Bailey-Downs et al. 2012a). A
quantitative real-time RT-PCR technique was used to
analyze hippocampal mRNA expression of 90 genes
known to be involved in regulation of synaptic function
using validated TaqMan Gene Expression Assays (Ap-
plied Biosystems) and a StrategenMX3000 platform, as
previously reported (Bailey-Downs et al. 2012a).
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Quantification was performed using theΔΔCqmethod.
The relative quantities of the reference genes Actb,
Hprt1, Ywhaz, and Gapdh were determined, and a nor-
malization factor was calculated based on the geometric
mean for internal normalization. Fidelity of the PCR
reaction was determined by melting temperature analy-
sis and visualization of the product on a 2% agarose gel.

Statistical analysis

Data are expressed as mean ± SEM and were analyzed
using a one-way ANOVA followed by Tukey’s post hoc
test, using Prism 5.0 for Windows (Graphpad Software,
La Jolla, CA). A p value less than 0.05 was considered
statistically significant (Bennis et al. 2017; Callisaya
et al. 2017; Grimmig et al. 2017; Hancock et al. 2017;
Kane et al. 2017; Kim et al. 2017; Konopka et al. 2017;
Liu et al. 2017; Meschiari et al. 2017; Perrott et al. 2017;
Sierra and Kohanski 2017; Tenk et al. 2017; Urfer et al.
2017a, b).

Results

Angiotensin II-induced hypertension impairs synaptic
function, mimicking the aging phenotype

Blood pressure was significantly increased in mice re-
ceivingAng II infusion (young: 110 ± 5mmHg, young +
Ang II: 152 ± 4 mmHg, aged: 113 ± 4 mmHg; p < 0.05
young + Ang II vs. young).

In order to characterize the effects of hypertension and
compare them to those of aging on synaptic function, we
measured field excitatory postsynaptic potential (EPSP)
in the dentate gyrus of hippocampi in response to electri-
cal stimulation of the perforant pathway (with 5 μA steps
increased up to 100 μA). Original recordings showing
field EPSPs in the dentate gyrus in response to the
stimulation of the perforant pathway in each group are
shown in Fig. 1a. We found that each group of mice
exhibited normal basal synaptic properties. In particular,
the ratio of evoked responses to the presynaptic fiber
volley was similar in normotensive and hypertensive
mice (p = 0.8), showing that hypertension does not affect
neuronal EPSP. Following a 4x100Hz tetanic stimulation,
the fEPSP slope in the dentate gyrus increased signifi-
cantly less in the hypertensive young group as compared
to the normotensive controls during the 60-min experi-
mental period (Fig. 1b). In the hippocampi of aged mice,

LTP was impaired and was indistinguishable from LTPs
obtained in hippocampi of young hypertensive mice
(Fig. 1b). Collectively, these results indicate that hyper-
tension significantly impairs synaptic plasticity in the
hippocampus, mimicking the aging phenotype.

Angiotensin II-induced hypertension is associated
with reduced synaptic density in the mouse
hippocampus, mimicking the aging phenotype

We used immunolabeling against synaptophysin, a pro-
tein localized in presynaptic vesicles, to label the density

Fig. 1 Similar effects of hypertension and advanced aging on
synaptic function in the mouse hippocampus. a Original record-
ings showing the effects of hypertension and advanced age on field
EPSP in the dentate gyrus in response to the stimulation of the
perforant pathway on hippocampal brain slices before (10 min)
and 1 h after (70 min) 4x100Hz tetanus. b Long-term potentiation
shown as change of fEPSP slope following a 4x100Hz (1 s) tetanic
stimulus in the dentate gyrus of the hippocampus. Data are nor-
malized to baseline responses and depicted as mean ± SEM
(n = 10–12; *P < 0.05 vs. young control mice. P = 0.9 aged mice
vs. young hypertensivemice during the last 5min of the recording)
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of synapses in mouse hippocampal samples. Double-
immunofluorescence labeling against MAP2 demon-
strated that synaptophysin-expressing presynaptic
puncta were concentrated in the neuropil surrounding
the MAP2-immunoreactive somata and dendrites in
each group (Fig. 2a–c). We found that synaptophysin-
immunoreactive puncta density was significantly lower
in the stratum radiatum of the hippocampi of young
hypertensive mice as compared to that in normotensive
control mice (Fig. 2). Density of synaptophysin-
expressing puncta was also decreased in the stratum
radiatum of the hippocampi of aged control mice
(Fig. 2).

Effects of hypertension and aging on the hippocampal
expression of postsynaptic neurotransmitter receptors

Decreased expression of postsynaptic neurotransmitter
receptors may contribute to altered LTP under various
pathophysiological conditions. In the present study, nei-
ther hypertension nor aging was associated with chang-
es in protein expression of GluR1, GluR2, NMDAR1,
and NMDAR2 (Fig. 3a–e). The effects of hypertension
and aging on the mRNA expression of various postsyn-
aptic neurotransmitter receptors in the mouse

hippocampus are shown in Fig. 3f. Both Grin2d and
Grik3 mRNA levels were equally reduced by hyperten-
sion and advanced age.

Effects of hypertension and aging on the hippocampal
expression of genes relevant for regulation of neuronal
function

Effects of hypertension and aging on the hippocampal
expression of genes relevant for regulation of synaptic
transmission were assessed by qPCR. As shown in
Table 1, we found that both hypertension and aging
were associated with similar changes in mRNA expres-
sion of several genes involved in regulation of neuronal

Fig. 2 Hypertension and
advanced aging are associated
with comparable decline in
synaptic density in the mouse
hippocampus. a–c Representative
confocal images of synaptophysin
immunoreactivity (purple) in
stratum radiatum of the
hippocampi of young
normotensive control mice (a),
young mice with angiotensin II-
induced hypertension (b), and
aged normotensive mice (c).
Green fluorescence: MAP2 la-
beled somata and dendrites; blue
fluorescence: nuclei. Panel c de-
picts summary data of relative
changes in the number of
synaptophysin positive presynap-
tic puncta (fold change). Data are
mean ± SEM. *P < 0.05 vs.
young normotensive controls

Fig. 3 Effects of aging and hypertension on the expression of
postsynaptic neurotransmitter receptors. a–d Original Western
blots showing expression of NMDAR1, NMDAR2, GluR1, and
GluR2 in young normotensive control mice, young mice with
angiotensin II-induced hypertension, and aged normotensivemice.
Summary data are shown in e. d qPCR data showing mRNA
expression of neurotransmitter receptors. Data are mean ± SEM
(n = 6 in each group). *P < 0.05 vs. Young; #P < 0.05 vs.
Young + AngII
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function, including down-regulation of Bdnf, Homer1,
and Dlg4, which may have a role in impaired synaptic
plasticity.

Discussion

The results of this study suggest that previously docu-
mented hypertension-induced cognitive deficits in mice
are associated with impairment of LTP in the hippocam-
pus, decreased synaptic density, and dysregulation of
expression of genes involved in regulation of neuronal
function, all of which mimic important aspects of the
aging phenotype. These findings are translationally rel-
evant, as there is strong evidence extant linking LTP in
the hippocampal formation to induction and storage of
memories (Lynch 2004; Neves et al. 2008). The avail-
able evidence suggests that hypertension-induced im-
pairment of LTP and cognitive decline does not depend
on the experimental model used. For example, geneti-
cally hypertensive strain of Wistar rat also exhibit im-
paired LTP in perforant path-granule cell synapses as-
sociated with impairments in long-term recognition
memory (Hennigan et al. 2009). It is predicted that if
similar synaptic dysfunction is also manifested in the
hippocampi of hypertensive humans, it would likely
contribute to the development of vascular cognitive
impairment.

The mechanisms by which hypertension impairs syn-
aptic plasticity and reduces the number of synapses in
the hippocampus are likely multifaceted. Hypertension
is known to promote disruption of the blood–brain
barrier, microglia activation, and neuroinflammation in
the hippocampus (Toth et al. 2013a, 2014a), which are
known to alter the local microenvironment in the hip-
pocampus and impair normal synaptic function (Di
Filippo et al. 2013; Hao et al. 2016; Kyrargyri et al.
2015; Liu et al. 2012; Min et al. 2009; Perry and
O'Connor 2010; Riazi et al. 2015). Importantly, circu-
lating angiotensin II is too large to enter the hippocam-
pus by crossing an intact blood–brain barrier in healthy
subjects. However, when hypertension disrupts the
blood–brain barrier, it provides a means by which cir-
culating angiotensin II could enter the brain parenchyma
and affect neuronal function directly. Thus, it cannot be
excluded that angiotensin II-induced activation of neu-
ronal signaling pathways, such as p38 MAP kinase-
dependent pathways (Dai et al. 2016), also contribute
to functional impairment of hippocampal neurons.

However, direct angiotensin II effects on LTP in our
experiments is rather unlikely as hippocampal slices
were incubated and perfused without angiotensin II
during the electrophysiological assays and the angioten-
sin II effect was reported to be reversible within 3 h
(Wayner et al. 1995). Hypertension-related factors (in-
cluding inflammatory mediators and other factors re-
leased by activated microglia) may alter LTP induction
by eliciting changes in intrinsic neuronal properties or
baseline synaptic transmission. There are several steps
in this postsynaptic transduction cascade that contribute
to LTP, which may be altered in hypertension. While
changes in hippocampal expression of AMPA receptors
and NMDA receptors were not evident, we have iden-
tified several factors important for neuronal health
whose expression was significantly altered by hyperten-
sion (Table 1). The findings that hypertension decreases
hippocampal expression of BDNF and IGF-1 are partic-
ularly interesting, as both growth factors exert multifac-
eted neuroprotective effects, including preservation of
normal LTP responses. There is strong evidence that
blockade of BDNF or knockdown of IGF-1 results in
impaired LTP (Montalbano et al. 2013) and/or memory
impairment (Sonntag et al. 2013). Further, both BDNF
(von Bohlen 2010) and IGF-1 (Deak and Sonntag 2012;
Poe et al. 2001; Ramsey et al. 2005; Shi et al. 2005) can
increase the number of synapses. Deficits in LTP in the
genetically hypertensive rat were also demonstrated to
associate with decreased expression of BDNF and its
receptors in the dentate gyrus (Hennigan et al. 2009).
Importantly, a decline in IGF-1 signaling is also consid-
ered as an important evolutionarily conserved mecha-
nism of brain aging (Sonntag et al. 2013; Ashpole et al.
2017). In that regard, it is interesting that treatment that
increases IGF-1 levels can improve learning and mem-
ory function both in vertebrate (Ramsey et al. 2004;
Thornton et al. 2000) and invertebrate models (Lymnaea
stagnalis) (Pirger et al. 2014) of aging. Our studies
provide additional evidence in support of the concept
that synaptic plasticity in the hippocampus and neocor-
tex significantly changes with aging (Lynch 2004;
Griffin et al. 2006; Liu et al. 2012; Deak and Sonntag
2012; Lynch 2010). It is remarkable that hypertension-
induced changes in synaptic plasticity and synaptic den-
sity in young mice were comparable to the age-
dependent changes in capacity for LTP induction in
the same mouse strain. Our present and previous studies
(Csiszar et al. 2013) also reveal complex hypertension-
induced changes in hippocampal gene expression
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profile, which mimic various aspects of the aging phe-
notype and may contribute to synaptic dysfunction.
Among them, both hypertension and aging significantly
decreased expression of synaptophysin I, an abundant
synaptic vesicle protein that accounts for 7% of the total
vesicle protein (Janz et al. 1999). Synaptophysin I inter-
acts with vesicular SNARE synaptobrevins, and its ge-
netic depletion (in the presence of concomitant decrease
in synaptogyrin I expression) results in significant syn-
aptic dysfunction (Janz et al. 1999). Additional potential
factors identified in this study that may similarly con-
tribute to both hypertension- and aging-induced synap-
tic dysfunction in mice include altered expression of
synaptic scaffold proteins like PSD-95 and Homer-1.
Further studies are evidently needed to elucidate the
functional role of these phenotypic changes.

On the basis of previous findings (Toth et al. 2013a,
2015a; Springo et al. 2015; Toth et al. 2013c)
and the present results, it seems to be likely that ad-
vanced aging and comorbid hypertension have syner-
gistic effects on hippocampal neuronal function. Addi-
tional studies are warranted to determine whether the
effects of hypertension are indeed exacerbated in aged
mice. Clinical studies suggest that hypertension-induced
cognitive decline develops gradually, leaving a time
window for therapeutic intervention for prevention
(Gottesman et al. 2014). For example, treatment of
hypertension resulted in a 19 and 50% reduction in
dementia incidence in the elderly in the PROGRESS
(PROGRESS.Collaborative.Group 2001) and Syst-Eur
(Forette et al. 1998) studies, respectively. Further pre-
clinical studies should determine whether hypertension-
induced impairment of synaptic plasticity and decline in
synapse density are also reversible with antihyperten-
sive medication. In addition to causing phenotypic and
functional alterations in hippocampal neurons, hyper-
tension also impairs their blood supply by dysregulating
cerebral blood flow (Toth et al. 2017; Faraco and
Iadecola 2013), promoting microvascular rarefaction
(Toth et al. 2013a) and microvascular injury (Toth
et a l . 2013a, 2015a) . The large pyramidal
neurons in the hippocampus have high metabolic de-
mand, which render these neurons especially sensitive
to impaired supply of oxygen and nutrients through the
hippocampal microvasculature. Thus, hypertension-
induced cognitive decline is likely a result of these
complex and interrelated microvascular factors and sec-
ondary neuronal pathologies. During the past decade, it
has been well established that high blood pressure

significantly increases oxidative stress in the brain
(Girouard et al. 2006; Kazama et al. 2004; Girouard
et al. 2007; Kazama et al. 2003; Poulet et al. 2006). It
is presumed that increased production of ROS plays an
important role disruption of the blood–brain barrier,
microvascular injury, and neurodegeneration. Further
studies are warranted to elucidate the role of increased
oxidative stress (Deepa et al. 2017) in impairments of
LTP and to assess the protective effects of antioxidant
treatments against hypertension-induced synaptic
dysfunction.

There is growing epidemiological evidence that
synaptic dysfunction contributes to the pathogenesis
of AD and that hypertension worsens the clinical
outcome of Alzheimer’s disease (Israeli-Korn et al.
2010; Guo et al. 2001). Recent studies on experimen-
tal models of Alzheimer’s disease also support the
validity of the vascular hypothesis of AD by demon-
strating that induction of hypertension in mice by
transverse aortic coarctation exacerbates cognitive im-
pairment (Carnevale and Lembo 2011; Carnevale et al.
2012a, b). Our findings combined with these
observations highlight a novel mechanism by
which hypertension may exacerbate the symptoms of
AD and provide additional support for aggressive
blood pressure management for neuroprotection in
patients at risk for AD (Trenkwalder 2006;
Khachaturian et al. 2006).

Limitations of the study

A number of important limitations of the present study
need to be considered. First, we do not have data on
protein expression of most of the investigated target
genes. Second, as many proteins involved in regulation
of synaptic transmission and LTP are known to be
modulated at the posttranslational level, further studies
are needed to investigate the effects of aging and hyper-
tension on synaptic proteins both at the translational and
at the posttranslational levels as well. Third, there is
evidence linking neuroinflammation to cognitive de-
cline in hypertension (Carnevale et al. 2012a) and strong
data suggest that aging is also associated with increased
sterile inflammation in the brain (Shobin et al. 2017),
which is exacerbated by hypertension (Toth et al.
2013a). However, the specific mechanisms by which
inflammatory mediators impair synaptic function in
aged hypertensive subjects remain elusive.
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Conclusion

In conclusion, the pathological alterations in synaptic
plasticity and the hippocampal gene expression signa-
ture observed in hypertensive mice in the present study
provides important clues for subsequent studies to elu-
cidate the mechanisms by which hypertension may con-
tribute to the pathogenesis and clinical manifestation of
VCI and AD. Further studies are evidently needed to
determine whether pharmacological treatments that con-
fer microvascular protection, anti-oxidative, and/or anti-
inflammatory effects will attenuate hypertension-
induced alterations in synaptic plasticity and neuronal
gene expression preventing/delaying cognitive decline.
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