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Abstract

Objectives To carry out mass propagation of supe-

rior plants to improve agricultural and silvicultural

production though advancements in plant cell totipo-

tency, or the ability of differentiated somatic plant

cells to regenerate an entire plant.

Results The first demonstration of a titratable control

over somatic embryo formation in a commercially

relevant plant, Theobroma cacao (Chocolate tree),

was achieved using a dexamethasone activat-

able chimeric transcription factor. This four-fold

enhancement in embryo production rate utilized a

glucocorticoid receptor fused to an embryogenic

transcription factor LEAFY COTYLEDON 2. Where

previous T. cacao somatic embryogenesis has been

restricted to dissected flower parts, this construct

confers an unprecedented embryogenic potential to

leaves.

Conclusions Activatable chimeric transcription fac-

tors provide a means for elucidating the regulatory

cascade associated with plant somatic embryogenesis

towards improving its use for somatic regeneration of

transgenics and plant propagation.

Keywords Chimeric transcription factor �
Chocolate � Glucocorticoid receptor � LEAFY
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embryogenesis � Theobroma cacao

Introduction

Asexual propagation (cloning) is a commercial prac-

tice used for a variety of reasons including superior

plant clone performance, disease control, and neces-

sity [for sterile plants such as banana and ornamental

floral mutants; (Kumar and Reddy 2011; Tripathi et al.

2012)]. Asexual propagation ranges from proliferation

of meristems, to highly differentiated somatic

embryos (SE), which are anatomically similar to

embryos found in seeds (Kamle et al. 2011). Since

cloning is inherently more costly than seed production,

its commercial potential depends on the individual

plant value, propagation amplification ratio, and plant

maturation rate. Orchids represent high individual

plant value associated with clonal aesthetics; in 2005,

18 million orchids were sold in the US alone (Chugh

et al. 2009). Progress towards synthetic seed genera-

tion using conifer somatic embryos by Weyerhaeuser

(Gupta and Durzan 1987; Gupta and Hartle 2015)
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illustrates a combination of high clonal proliferation

rates and superior plant performance, where individual

plant value is relative low—and managing clonal

diversity for long-term productivity is very important.

Nestle has developed a scaled capacity of 3 million

coffee somatic embryos per year (Ducos et al.

2007, 2010), that can provide plants at almost no cost

to growers as a means of protection of this high-value

plant product supply chain.

Theobroma cacao (Chocolate tree) was chosen for

study of somatic embryogenesis because it generates

high value products, relatively slow maturation

(years), significant disease problems, genetic tools

(genome, transformation) and has an established

though low-efficiency SE process. In 2010, the

chocolate industry was worth over 83 billion dollars

(Report: MarketsandMarkets.com 2011). The major-

ity of the world’s chocolate comes from cacao beans

harvested in Latin America, Central Africa and

Oceania, which experience at least 20% losses each

year due to disease. The impact of production loss is

particularly devastating to the predominant small,

family-owned farms where disease can result in

complete loss of income. We recently reported on

the ability to utilize transient expression of the

transcription factor BABY BOOM in tissues of

Theobroma cacao to enhance the formation of somatic

embryos (Florez et al. 2015b). This work complements

our ongoing efforts to develop bioreactor propagation

technology to allow for improved plant development

by manipulating the physical environment (Florez

et al. 2015a). In parallel with this previously reported

transient gene expression method, which achieves

transcription factor expression from Agrobacterium

T-DNA that is not chromosomally integrated, we also

sought to develop a highly-controlled inducible sys-

tem based on stable transformation to avoid the

complexity of Agrobacterium presence during TF

expression. To decouple the expression of embryo-

genic transcription factor from its functional role of

gene expression modulation, we adopted the DEX-

activatable human glucocorticoid receptor fusion

technology (Schena et al. 1991).

Induction of GR-fusion is controlled by the syn-

thetic glucocorticoid dexamethasone (DEX). Due to

its mammalian origin, DEX will bind to the mam-

malian GR with high specificity, thereby limiting off-

target effects. This chimeric transcription factor

system previously allowed for dose-dependent DEX

activation of LEC2 (Stone et al. 2008), based on

constitutively expressing the GR fused to an Ara-

bidopsis LEC2 transcription factor. In the absence of

the DEX inducer, the native plant heat shock protein

(HSP90) binds to the GR-fusion to prevent its

transport into the nucleus (Fig. 1). Upon addition of

DEX (D), HSP90 is quantitatively displaced from the

complex to allow transport into the nucleus where its

fused LEC2 transcription factor domain can then

mediate its associated regulatory function of inducing

SE (Lutz et al. 2015). Stable transformation in T.

cacao is an extremely rare event, requiring thousands

of explants per transformant (Florez 2015). To over-

come this limitation, visual screening using enhanced
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Fig. 1 A schematic of the DEX glucocorticoid steroid activated

transport of the transcription factor-glucocorticoid receptor

fusion (i.e. LEC2-GR) to achieve an inducible and titrat-

able means of manipulating somatic embryogenesis. The DEX

(D) displaces the heat shock protein (HSP90) so that the

transcription factor fusion can enter nucleus to activate its native

gene targets. Agrobacterium genetic transformation introduces

the constitutive 35s::LEC2(TF)-GR construct into the T. cacao

genome
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GFP (eGFP) was included to microscopically identify

successful transformations. A constitutive promoter

driving eGFP was included towards the left border of

the T-DNA, where integration typically starts at the

right border (Gelvin 2003), thereby increasing the

chances of full T-DNA insertion and inclusion of the

35S:TcLEC2-GR element.

Initial performance of a single transformant based

on the T. cacao TcLEC2 transcription factor are

presented here. Experimentation on the transformed

tissue demonstrates a titratable DEX dose-dependent

enhancement in the quantity of somatic embryo

formation. In addition, it was observed that somatic

embryos could now be formed from explants of leaves

of a regenerated 35S::LEC2-GR transgenic plant. The

use of genetic transformation as a means to facilitate

improved SE adds an interesting point of discussion

for the role of genetically modified organisms (GMO)

in the context of a high value commodity with a

tremendous socioeconomic disparity among its

stakeholders.

Materials and methods

Cacao/Agrobacterium–mediated transformations:

The procedure for transforming T. cacao var. Scav-

ina-6 (SCA6) cacao somatic embryo cotyledons is

detailed elsewhere (Florez et al. 2015b; Maximova

et al. 2003), with specific conditions noted here. A.

tumefaciens strain AGL1 harboring the desired plas-

mid was grown to an OD600 of 1 with activation using

100 lM acetosyringone. The co-cultivation time with

A. tumefaciens on the filter paper was 4 days. Iden-

tification of the transgenic was accomplished by

screening the developing genticin resistant (50 mg/l)

somatic embryos for 15 weeks with visual checks for

eGFP expression under a dissecting microscope to

assess stable integration of the T-DNA region (after

loss of the initial burst of ectopic transient eGFP

expression). The T. cacao LEC2 ortholog has been

characterized by the Guiltinan laboratory (Zhang et al.

2014), and the BABY BOOM transcription factor

(TcBBM) was cloned and characterized in Curtis

laboratory (Florez et al. 2015b). These genes were

fused to the glucocorticoid receptor domain (Stone

et al. 2008), cloned into the SpeI andHpaIII sites of the

pG00126 binary vector (Maximova et al. 2003), and

transformed into the Agrobacterium strain AGL1

using standard molecular biology procedures.

qPCR for Embryogenic Transcription Factors:

Fifty tissue explants were cut from the cotyledons of

LEC2-GR embryos and then placed on solid EDmedia

plates [Supplementary Table 4, (Guiltinan and Max-

imova 2010)]. Each cotyledon was cut into two tissue

explants. One explant from each cotyledon was placed

on solid ED media with a 50 lM DEX treatment and

the other explant was placed on the negative ‘No

DEX’ solid EDmedia control. Samples were collected

48-h after DEX treatment, snap frozen in liquid

nitrogen and then stored in -80 �C. mRNA was

extracted in triplicate biological replicates after

grinding with liquid nitrogen using the Plant RNA

reagent from Life Technologies per the manufac-

turer’s protocol. Total cacao RNA (1 lg) was treated
with RNase-free DNaseI (NEB) to remove potential

genomic DNA contamination, then reverse tran-

scribed by ProtoScript II Reverse Transcriptase

(NEB) with OligoDt(16mer) primers.

qRT-PCR: qRT-PCR was performed on diluted

cDNA using SYBR Green Premix Ex Taq (Clonetech)

scaled to10 ll using the Biosystem StepOne Plus

Realtime PCR system under the following program:

15 min at 94 �C, 40 cycle of 15 s at 94 �C, 20 s at

60 �C, and 40 s at 72 �C. Primers (Supplementary

Table 1) were designed to detect TcLEC2, TcAGL15,

TcBBM, TcLEC1, and TcFUS3 genes based on the

coding sequence (Argout et al. 2011). A primer was

also designed for the LEC2-GR mRNA that did not

include the native LEC2 mRNA noting that the native

LEC2 mRNA was expected to be in very low

abundance relative to the constitutively expressed

35S::LEC2-GR fusion. The specificity of each primer

pair was examined by PCR visualized on a 2% agarose

gel and dissociation curve. The Acyl Carrier Protein

(TcACP1), and a Tubulin gene in cacao (TcTUB1)

were used as the reference genes. Statistical assess-

ment for the effect of DEX addition was assessed

using Student T test assuming equal variances.

DEX dose response: Cotyledons from secondary

LEC2-GR embryos were cut and randomly distributed

onto (10) plates of solid ED media with (10) embryos

each. DEX (using 2 plates each) was investigated from

0 to 50 lM.After two weeks, all tissues were switched

to solid ED media with no added plant hormones.

Embryo formation on each DEX-containing media
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were counted and placed on fresh media every two

weeks.

Generating embryos from LEC2 DEX leaf: A

mature LEC2-GR embryo was converted to a green-

house plant as described previously (Li et al. 1998).

Briefly, mature embryos with developed cotyledon

and axis were transferred to PEC media (Supplemen-

tary Table 5) (16/8 h photoperiod, 26–28 �C) and

transferred to fresh media every four weeks. Once two

true leaves were observed, the embryos were trans-

ferred to RD medium (Supplementary Table 6)

refreshed monthly in a vented GA7 vessel. When

primary and secondary roots were produced, the plant

was then transferred to a D40 Deepot (Hummert) in

commercial grade sand and placed on a misting bench

(10 s mist/10 min) at light level of *100 lE/m2s and

fertilized with 1/10 Hoagland’s solution. Newly

emerged leaves were cut from the greenhouse grown

LEC2-GR transformed and non-transformed trees.

The leaves were sterilized with 10% (v/v) bleach for

2 min followed by five 2-min washes in sterile water.

Leaves were cut into *2 mm square pieces (grouped

top, middle and bottom), and successively placed for

2 weeks on solid PCG (Supplementary Table 2) and

E5B media (Supplementary Table 3). Leaf explants

were then transferred and maintained on solid ED

media containing 10 lM DEX refreshed biweekly to

observe embryo formation.

Results

Cotyledon tissues of SCA6 were exposed to Agrobac-

terium containing binary vectors harboring the gluco-

corticoid fusions with BABY BOOM (TcBBM-GR)

and LEAFY COTYLEDON 2 (TcLEC2-GR), on the

T-DNA in tandem with eGFP followed by curing of

Agrobacterium using 500 mg moxalactam/l plates as

confirmed by lack of bacterial growth on R2A media

(van der Linde 1999). Explants were then screened and

monitored for eGFP fluorescence over a period of

about 6 months. Consistent with strong recalcitrance

to transformation, no fluorescing transformants of

eGFP were observed for the TcBBM-GR transforma-

tion attempts on*100 explants and 500 ? secondary

embryos; a single fluorescent, genticin-resistant trans-

formed embryo was recovered from the comparable

transformation with the LEC2-GR construct. The

primary LEC2-GR transformant was readily

proliferated by dissecting the cotyledons to produce

large numbers of clonal transformed somatic embryos.

Fluorescence of eGFP was uniform throughout these

secondary embryos and constitutively expressed in

DEX-treated or untreated cultures (Fig. 2). Exposure

to DEX resulted in a notably enhanced proliferation of

more numerous, though smaller, somatic embryos.

This suggests the presence of a functional system

where the introduction of DEX facilitates transport of

the LEC2-GR fusion into the nucleus, thus implying

the successful transformation of the cacao tissue.

Molecular confirmation of LEC2-GR activation

and functionality was tested by examining potential

downstream targets of the LEC2 transcription factor.

Due to the nature of this activatable GR system,

constitutive expression of the LEC2-GR fusion pre-

cludes utilizing mRNA/qPCR of LEC2 as an indicator

of functionality. Noting that Ct values are simply a

kinetic assessment of the rate of PCR amplification of

template, Ct values that are lower are indicative of

more mRNA. qPCR quantification of mRNA isolated

from tissue 48 h after exposure to DEX is shown in

Fig. 3. As anticipated, the levels of expression of

LEC2-GR were higher as a result of constitutive

expression from the enhanced 35 s-CaMV promoter.

Consistent with this observation, the LEC2-GR-

specific qPCR primers were highly expressed but not

substantially different from the expression levels

determined with a general LEC2 qPCR primers,

indicating that the transgenic LEC2-GR mRNA dom-

inates the native transcription factor expression

Fig. 2 Expression of enhanced GFP in transgenic Lec2-GR T.

cacao somatic embryos. Exposure to DEX resulted in enhanced

SE proliferation
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(Fig. 3). BABY BOOM (TcBBM, p = 0.069) and

AGAMOUS-LIKE (TcAGL15, p = 0.087) displayed

substantial induction in the presence of DEX, from

essentially zero background mRNA levels in non-

activated tissues. This indicates that when DEX is

added, it enters the cell and competes with the binding

of HSP90 to allow for transport of the LEC2-GR

construct to the nucleus and activates the downstream

gene targets associated with the somatic embryogenic

cascade. The additional transcription factors LEC1

and FUS3 did not display enhanced expression with

the addition of DEX (p[ 0.2). This adds to the recent

effective demonstrations of the utility of the DEX/GR-

fusion technology which, in addition to BABYBOOM

study in Arabidopsis (Passarinho et al. 2008), was

recently used to study transcription factor regulatory

cascade for floral development in rice (Khanday et al.

2016).

Upon confirming functionality of the LEC2-GR

system at the molecular level, a simple test was

undertaken to observe SE in the presence of DEX.

Tissue of LEC2-GR secondary embryos was placed on

hormone free-ED media supplemented with and

without 10 lM DEX. After only 6 days, somatic

embryos were observed in one of the DEX-treated

explants (Fig. 4), while there was no embryo forma-

tion observed in the ‘no DEX’ control. This simple test

motivated more extensive assessments of DEX-

activated enhanced somatic embryo formation. In

these small studies using dozens of embryos, there was

consistent formation of multiple embryos on 10 lM
DEX-treated LEC2-GR. Additionally, there were

occasional observations of embryo formation from

LEC2-GR cotyledon tissue on EDmedia without DEX

treatment, suggesting there might also be some

‘leakiness’ of activation via transport occurring as

well.

To provide a more definitive assessment of the

functionality of the DEX/LEC2-GR system for

enhancing somatic embryogenesis, a comprehensive

dose response experiment was undertaken that
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involved 100 explants over five levels of DEX

treatment observed over four months for accumulated

SE production (Fig. 5). This experiment involved the

production of 1077 LEC2-GR somatic embryos (403

at 50 lM) and provides a clear dose-dependent

response for somatic embryo formation. The number

of SE produced per explant for the highest DEX

treatment (50 lM) was four-times higher than the

untreated control. The 10 lM treatment was compa-

rable to the 1 lM treatment; however, the 10 lM
treatment included a plate of material that did not look

as healthy as other tissue, emphasizing the need to

work with relatively large numbers of tissue explants

to overcome inherent variability that is common in

plant tissue culture experimentation. A saturation of

the dose response was not observed; therefore, it is not

unlikely that even greater enhancements are possible.

During the execution of these experiments, a single

mature somatic embryo was converted to a transgenic

plant that was observed to develop normally (Supple-

mentary Fig. 1). This regenerated transgenic plant was

the first to develop primary leaves from less than a

dozen of the most mature initial secondary somatic

embryos, and was not part of a systematic study of

conversion. From these young leaves, *2700 mm2,

tissue tested provided *30 primary embryos over

seven months with the first embryos appearing after

three months. As a test of the more general ability of

the DEX/LEC2-GR system to re-program plant

development, a preliminary study was undertaken to

examine if young leaves of this plant could provide a

starting point for the production of primary somatic

embryos. Like many plant species, T. cacao requires

the use of specialized tissues to initiate somatic

embryos; the standard procedure is to start with

excised flower petals or stamens (Li et al. 1998). This

‘loss of juvenility’ is particularly pronounced for non-

herbaceous plants, and is quite limiting in terms of

sourcing plant tissue that can be used for studies of SE

as well as genetic transformation. Surprisingly, we

observed prolific somatic embryo formation on young

LEC2-GR leaves that were surface sterilized and

exposed to 10 lMDEX (Fig. 6) that did not take place

for non-transgenic leaf controls. As young cacao

seedlings only produce a flush of 2–4 leaves every few

months, only two young leaves were sacrifices for this

test.

As we move towards regeneration of secondary

transgenics from the leaf-derived secondary embryos,

there is a noticeable difference in the size of embryos.

Leaf-derived LEC2-GR embryos are noticeably smal-

ler than their progenitor secondary embryos (Supple-

mentary Fig. 2). Nonetheless, these embryos are still

quite large compared to the size of many other

effective embryogenic systems we have worked with

including carrot, Douglas fir, loblolly pine, and even

red oak. Ongoing studies are examining methods for

downstream conversion of these leaf-derived embryos

in temporary immersion bioreactors.

Discussion

Where many studies focus on rapid molecular regu-

latory events and fall short of executing longer term

SE demonstrations, we have demonstrated that both

Agrobacterium-based transient expression, and DEX-

Fig. 6 Induction of somatic embryos directly from the leaves of

the TcLEC2-GR transgenic plant by surface sterilization and

placement on DEX-containing ED media
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activated GR-fusion of embryogenic transcription

factors have each provided enhanced production of

cacao somatic embryos. Each approach has advan-

tages and disadvantages for experimental and com-

mercial implementation. The DEX/GR-TF approach

is designed to avoid off-target effects (using a rat

receptor component) and to avoid the stress and

nuisance of Agrobacterium contamination. The need

to create an initial transgenic plant can be very

limiting, as demonstrated by our inability to obtain a

GR-BABY BOOM transcription factor fusion despite

considerable effort. The rate of transformation

observed in this work was consistent with our prior

selection of a 35S::BBM transformation that resulted

in only one transformant from about 2000 screened

explants (Florez et al. 2015b). We also contrast our

prior conclusion that transient Agrobacterium expres-

sion of transcription factors with a constitutive

promoter helps to prevent accidental generation of

transformants because the constitutive expression of

the TcBBM transcription factor resulted in aberrant

proliferation and prevented regeneration.

These contrasting SE approaches provide an inter-

esting context for the debate over GMO plants. The

DEX/GR-TF approach to SE enhancement inherently

requires the generation of a GMO, while the transient

expression approach does not result in the integration

of foreign DNA into the plant—though relies on

similar DNA manipulations to create the transient

vectors. Although SE ‘‘cloning’’ (i.e. clonal propaga-

tion) does not inherently generate a GMO, one can

quickly see the potential for confusion based on the

word association with molecular biology. Importantly,

although non-GMO may be preferred by customers, it

is questionable to impose the luxury of consumer

preference onto either subsistence farmers, who could

avoid catastrophic crop failure, or entire developing

countries that require sufficient production for eco-

nomic security. In the meantime, these tools show

great promise for improving our understanding of SE

while simultaneously advancing our capabilities for

creating better crops (both GMO and non-GMO).

Although clonal propagation is not inherently a

GMO technology, the need to regenerate plants from

single-cell genetic transformation events (both for

commercial varieties and scientific study) has been an

important motivator towards technical advances in SE.

Where rare events for SE are useful for plant genetic

transformation, high efficiency SE is needed for

commercial plant propagation. A single plant leaf

contains millions of somatic cells; however, the

process of SE relies on proliferating embryogenic

plant tissues that are often derived from a specialized

starting material such as immature embryos, gameto-

phytic tissue, flower parts, or excised meristematic

tissues (Elhiti et al. 2013; Fehér 2015). While

hundreds of plant species have demonstrated this

potential, it is often severely limited by species and

even cultivar. The characterization of transcription

factor cascades which lead to somatic embryo differ-

entiation is rapidly being elucidated using advanced

bioinformatic and molecular methods (Passarinho

et al. 2008; Gliwicka et al. 2013). The utility of these

early genetic markers must be confirmed with explicit

demonstrations in improvements in SE. Therefore,

improving our understanding of SE has the potential

for greatly increasing plant propagation rates to

expedite the introduction of higher productivity crop

varieties—which is of increasing importance with

rising world population.

In this work, we demonstrate not only that the

heterologous GR fusion can function in T. cacao to

facilitate dose-dependent activation of transcription

factors, but also that it confers embryogenic potential

to (young) leaf tissue. This improved embryogenicity

is associated with the induced activation of a cascade

of transcription factors associated with SE. The ability

to expand the source tissue for SE is particularly

notable for our propagation studies of T. cacao, where

scaled-up bioreactor work is severely limited by the

extensive tissue that is required for such experiments.

The ability to rapidly generate tissue for bioreactor

studies will permit a greater focus on elements of

bioreactor design to see if our observations of oxygen-

enhanced heterotrophic growth (Asplund and Curtis

2001), or CO2-mediated reduction in plant stress and

enhanced growth in sugar-free media (Florez et al.

2015a) can be applied to economically-relevant

species such as T. cacao. We are currently transition-

ing our efforts from this ‘luxury crop’ to food staples.

Specially, we are working to develop propagation

systems for African root crops such as yam, cassava

and banana. The generality of transcription factors

across the plant kingdom provides an opportunity to

translate our findings from cacao to these and other

plant species. The ability of the DEX-GR fusion

approach to facilitate delivery of transcription factors

to the nucleus also provides an elegant experimental
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system to elucidate the complexities of plant signaling

in association with somatic embryo development.
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