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Human IgG2- and IgG4-expressing memory B cells
display enhanced molecular and phenotypic signs
of maturity and accumulate with age

Britt G de Jong1,2, Hanna IJspeert1, Lemelinda Marques1, Mirjam van der Burg1, Jacques JM van Dongen1,
Bruno G Loos2 and Menno C van Zelm1,3

The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class

switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated

temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes

and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied

with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary

immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was

performed on purified IgG+ memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving

more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in

children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27+

IgG+ memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation

markers than CD27− IgG+ memory B cells. We conclude that secondary immunological memory accumulates with age and these

memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These

new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum

IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.

Immunology and Cell Biology (2017) 95, 744–752; doi:10.1038/icb.2017.43

Immunoglobulin G (IgG) is the most abundant antibody class found
in blood and tissue. In humans, there are four IgG subclasses,
numbered based on their abundance in serum.1 Despite their high
percentage of amino acid sequence identity, these four subclasses differ
greatly in function, especially with regards to complement activation
and cellular Fc receptor (FcγR) binding. IgG1 and IgG3 function quite
similarly, because both bind to all six members of the three FcγR
classes: FcγRI, FcγRII and FcγRIII. Furthermore, IgG1 and IgG3 bind
to complement C1q.2 In contrast, IgG2 can only bind FcγRIIa and
FcγRIIIa with low affinity, and IgG4 binds only FcγRI quite strongly.3
Furthermore, IgG2 and IgG4 are not potent activators of
complement.4 Combined, these findings indicate that IgG1 and
IgG3 are potent immune-activating subclasses, whereas IgG2 and
IgG4 have a more regulatory function.
IgG production by B cells is only induced after these have

encountered antigen. Following their generation in bone marrow, all
naive B cells express IgM and IgD isotypes. These isotypes are replaced
by one of the IgA or IgG subclasses or IgE through genomic
recombination of the switch regions upstream of the immunoglobulin
heavy chain (IGH) constant genes. This process of IG class switch

recombination (CSR) is mediated by the enzyme activation-induced
cytidine deaminase (AICDA), which also generates somatic hypermu-
tations (SHM) in the Ig variable domains that form the basis of affinity
maturation. AICDA can mutate residues in repetitive regions (switch
regions) that are found upstream of each IGH constant gene. IG CSR
is guided by cytokine signaling that induces germline transcription
over the switch regions and thereby making this available for
mutagenesis by AICDA.5

IG CSR is irreversible, because the intervening DNA is removed
from the genome. Still, the genetic organization of the IGH constant
genes allows for secondary switching to more downstream constant
genes. Evidence for sequential in vivo IG CSR has been obtained
through sequence analysis of hybrid switch regions that contained a
fragment of another switch region, e.g., Sμ-Sγ1-Sγ2.6–9 Importantly,
the hybrid switch regions of the more downstream-located IGHG2
contained more frequently remnants of indirect class switching (24%)
than those of IGHG1 (9%).6 Furthermore, IGHG2 transcripts contain
higher levels of SHM in Ig variable domains than IGHG1 and
IGHG3.10 This can be explained by the fact that both processes are
mediated by AICDA and that prolonged exposure results in increased
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SHM and CSR.10 It remains unclear what would be the cause of longer
exposure. One explanation would be that during the course of an
immune response B cells that exit the germinal center early will carry
lower numbers of mutations, and would be mostly switched to IGHG3

and IGHG1. The cells that remain longer in the germinal center
would accumulate more mutations and undergo sequential switching,
resulting in more usage of IGHG2 and IGHG4 (Figure 1b).
In addition to this temporal model,10,11 a reentry model can be
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Figure 1 Somatic hypermutation (SHM) levels and IGHG subclass usage in adults and children. (a) Schematic representation of the human IGH constant
gene regions. (b) The temporal model of IgG class switching, where over the course of an immune response sequential switching towards
IGHG34IGHG14IGHG24IGHG4 occurs with increasing levels of SHM.10,11 (c) Model for sequential IgG switching in secondary germinal center responses,
where primary IgG memory B cells re-enter a germinal center in a secondary response, undergo additional SHMs and switch to a more downstream IgG
subclass.6,12 (d) SHM levels in IGHG transcripts determined with next generation sequencing (NGS) from nine children (aged 1–10 years) and 14 adults
(aged 20–50 years). Data are shown as median bars with interquartile ranges. Statistical analysis of SHM levels between IGHG subclasses, and between
children and adults, was done with the Kruskal–Wallis test and Dunn’s multiple comparison test: *Po0.05; **Po0.01; ***Po0.001. (e) IGHG subclass
distribution in children and adults based on transcript analysis after next generation sequencing. Statistical analysis of CSR with the χ2 test. (f) Selection for
replacement mutations in CDR regions of IGHG transcripts as calculated with the BASELINe program.32,33 P values for CDR comparisons are shown in
tabular format; *Po0.05; **Po0.01.
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envisioned where after a primary immune response, the antigen is
cleared and resting IG-switched memory B cells will circulate. These
will be activated upon secondary encounter by the same antigen and
upregulate AICDA, resulting in the accumulation of more SHM and
the possibility for sequential IG CSR (Figure 1c).12

Studies on dissecting the contribution of both processes to
sequential IGHG class switching would require a model system to
separate primary from secondary responses. Unfortunately, the mouse
IG constant gene domain differs greatly from that in humans and
SHM levels are generally low, making it difficult to study sequential
IGHG class switching in a specific-pathogen-free animal model.
Therefore, we here studied SHM levels and IGHG subclass usages in
young children as a model system enriched for primary immune
responses, and we analyzed CD27+ and CD27− memory B cells in
adults that differ in IGHG subclass usage.6 Together these studies
provide new insights into when sequential IgG class switching takes
place; does this mainly occur during the primary response, or also
after repeated exposure?

RESULTS

Molecular properties of IGHG transcripts in young children and
adults
In healthy adults, transcripts involving the IGHM-distal IGHG2 and
IGHG4 subclasses have been shown to contain more SHM than
IGHG3 and IGHG1.10,11 As adults have seen many antigens several
times, it remains unclear if this phenomenon is the result of sequential
switching during one response, or if this occurs in activated memory B
cells in the secondary responses. To dissect these two processes,
we performed 454 pyrosequencing of variable regions of IGH
transcripts from peripheral blood mononuclear cells (PBMCs) of
young children (aged 1–10 years) who will have generated fewer

memory responses and compared these to adults (20–55 years). After
filtering,13,14 we obtained 2552 unique sequences from nine children
(range per child, 65–984) and 6964 sequences from 14 adults (range
per adult; 84–1469). From each sequence, the frequency of SHM in
IGH variable genes (IGHV) was determined, and the median mutation
frequencies were analyzed per IGHG subclass.
We observed a similar increase in SHM levels according to

increasing genomic distance from IGHM; IGHG3, IGHG1, IGHG2,
IGHG4 in adults (Figures 1a and d). This pattern was less obvious for
young children (Figure 1d). Still, IGHG2 transcripts in these children
carried significantly more SHM than IGHG1. In general, IGHG
transcripts of children and adults differed in SHM frequencies in
their variable genes. This was irrespective of the IGHG subclass as
children had significantly lower SHM levels in IGHG3, IGHG1 and
IGHG2 transcripts (Figure 1d). The numbers of IGHG4 transcripts
were too low to properly assess.
All IGHG sequences were generated with a reverse primer that

recognized all four IGHG subclasses, making it possible to determine
the relative frequencies of all four subclasses in children and in adults.
In adults, IGHG2 transcripts were most frequent, followed by IGHG1,
IGHG3 and IGHG4 (Figure 1e). The frequencies of IGHG1 and
IGHG3 in children were higher than in adults, mostly to the expense
of IGHG2. This resulted in distinct patterns of subclass distribution
for children and adults, observed for all donors (Supplementary
Figure S1).
Despite differences in mutation levels and subclass distribution,

IGHG1 and IGHG2 transcripts of children did not differ significantly
with regards to selection for replacement mutations in complemen-
tarity determining regions (CDR; Figure 1f). In contrast, IGHG2
transcripts of adults did show significantly increased selection for
replacement mutations in CDR than IGHG1 transcripts.
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Figure 2 Comparison of SHM levels in IGHG transcripts obtained by Sanger (S) and next generation sequencing (NGS). (a) Results from one child (C9).
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Thus, in children who have undergone less memory responses than
adults, SHM levels are lower, and downstream IGHG genes were less
used. Accumulation of SHM in adults was associated with more usage
of downstream IGHG genes and increased selection in CDR in these
downstream IGHG subclasses.

Confirmation of SHM and CSR patterns by Sanger sequencing
Next generation sequencing techniques are very efficient in generating
large amount of data. Still, Sanger sequencing is less sensitive to
technical artefacts of the sequencing method.15 To ensure that the

observed differences in SHM levels between IGHG subclasses and
between adults and children were not affected by technical artefacts,
we generated additional data using Sanger sequencing. Mutation levels
generated with NGS and Sanger sequencing from the same individuals
revealed similar data spread and median values (Figures 2a and b).
Furthermore, in combined data sets generated by Sanger sequencing
from five children and six adults, we observed similar differences in
IGHG gene usage: IGHG3 and IGHG1 subclasses were significantly
more frequent in children than in adults (Figure 2c). Thus, in our
hands, sequence analysis of IGHG transcripts was not affected by the
nature of the sequencing procedure.

SHM and CSR in memory B-cell subsets
Since we observed that the IgG-expressing B cells in adults are more
frequently switched to a downstream IGHG subclass and carry more
SHM in their IG variable regions than children, we studied if
this difference resulted from an altered cellular composition. We
performed flowcytometric immunophenotyping of IgG+ B cells in
children and adults between 2–40 years of age. We focused on the
proportion of CD27+ B cells as these are reported to carry more SHM
and more IgG2 than CD27− memory B cells.6,16,17 Indeed, the
minority of IgG+ memory B cells in most of the children below
10 years of age were CD27+, while in most adults 80% of the IgG+

B cells were CD27+ (Figure 3a).
Further detailed IGH transcript analysis of IgG+ B cell subsets from

adults revealed more frequent IGHG2 usage and higher SHM levels in
the CD27+ than in the CD27− subset (Figures 3b and c). IGHG3
transcripts in the CD27− subset carried significantly fewer mutations
than the more downstream IGHG subclasses. Interestingly, SHM
levels in CD27+ cells were similar between IGHG3, IGHG1 and
IGHG2 (Figure 3c).
In previous studies, we have shown that both CD27− and

CD27+-expressing memory B cells show a pre-activated
immunophenotype.6,18 Detailed gene expression profiling of the
CD27+IgG+ and CD27−IgG+ subsets confirmed and extended these
observations (Supplementary Table S4). Transcripts of CD58, CD80,
CD86, CD95, and TACI were upregulated in both subsets as compared
to naive mature B cells. Furthermore, CD22 and CD72 were
downregulated. Still, in addition to CD27, CD27+IgG+ memory B
cells had significantly more transcripts of CD95 and TACI, and less of
CD72, suggestive of a more activated state than CD27−IgG+ cells.
In contrast, these CD27−IgG+ memory B cells expressed significantly
more CXCR4, CCR7 and IL4R. Together, these results show that
with age CD27+ memory B cells accumulate and that these appear to
be in a more pre-activated state and less receptive cytokines
and chemokines involved in germinal center responses than their
CD27− counterparts.

Phenotyping of IgG-subclass expressing memory B-cell subsets
The differences in gene expression profiles of the CD27+ and CD27−

subsets of IgG+ memory B cells could be related to their distinct IgG
subclass usage. To study this, we performed extensive flowcytometric
immunophenotyping using antibodies that are specific for each of the
four human IgG subclasses (Figure 4a), and analyzed these separately
within the CD27+ and CD27− memory B-cells compartments of
healthy adults (Figure 4b). In line with our molecular analysis
(Figure 3b), the IgG3 and IgG1 subclasses were more frequently used
in CD27− cells, whereas IgG2 usage was significantly higher in CD27+

memory B cells.
Subsequently, we analyzed the expression levels of activation

markers and typical chemokine and cytokine receptors on the memory

S
H

M
 in

 IG
H

V
 (%

)

0

5

10

15

*

***

IGG3
   7%IGG3

 20%

IGG2
 45%

IGG4
0.5%

IGG1
 47%

IGG2
 25%

IGG1
 55%

IGG4
  1%

187 201

IGG3 IGG1 IGG2 IGG4
(38) (102) (46) (1)

IGG3 IGG1 IGG2 IGG4
(15) (94) (90) (2)

CD27- CD27+

CD27- CD27+

p<0.0001

%
 C

D
27

+ 
w

ith
in

 Ig
G

0

20

40

60

80

100 *

***

***

***

2-4 yrs
(n=29)

5-9 yrs
(n=30)

10-17 yrs
(n=34)

18-40 yrs
(n=22)

Figure 3 SHM levels and IGHG subclass distributions in memory B cell
subsets. (a) The frequencies of IgG+ B cells that express CD27 increase with
age. (b) IGHG subclass distributions of CD27+ (eight donors) and CD27−

IgG+ memory B-cell subsets (six donors). (c) SHM frequencies in IGHV of
IGHG transcripts from memory B-cell subsets. Numbers of transcripts are
indicated in brackets. Statistical analysis of SHM was done with the
Kruskal–Wallis test and Dunn’s multiple comparison test and of CSR with
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Figure 4 Immunophenotypes of IgG subclass expressing memory B cells. (a) Gating strategy for the detection of IgG subclass expressing memory B cells.
(b) IgG subclass distribution based on phenotyping for both CD27− and CD27+ B-cell subsets. Depicted as the average of four healthy adult donors in pie
charts, or as median with interquartile range of the four healthy adult donors. (c) Expression of different markers in CD27− and CD27+ IgG-subclass
expressing B cells. (d) Heatmap based on z-scores of MFI values of four healthy adult donors. Z-scores were maximized to −2 and 2. CD27+ T cells and
naive mature B cells were used as controls.
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B cells expressing the different IgG-subclasses (Figures 4c and d).
In general, the expression levels of activation markers were higher on
CD27+ than on CD27− memory B cells (Figure 4d). For most markers,
except for CD95, this pattern was seen across the subclasses and did
not correlate with more downstream positioning in the IGH locus
(IgG2 and IgG4). Strikingly, CD180 was highly expressed on both
CD27+ and CD27− IgG1-expressing cells. The lymph node homing
receptor CCR7 and B-cell follicle homing receptor CXCR5 were
expressed on all memory B cells, with only consistently lower levels on
IgG4-expressing subsets. In contrast to the microarray data, most
CD27+ subsets had higher expression of cytokine receptors IL4 and
IL21. Only the CD27−IgG4+ subset had very high levels of both,
potentially causing the observed high levels of transcripts observed in
the unsorted subsets (Supplementary Table S4). Thus, we here
confirm previous observations that CD27+IgG+ memory B cells have
a more activated phenotype than CD27−IgG+ B cells.

DISCUSSION

We here provide experimental evidence that sequential IgG subclass
switching does not only occur over the course of a single immune
response,10,11 but that usage of Cμ-distal IGHG2 and IGHG4
subclasses with high SHM frequencies increases with age. IGHG2
and IGHG4 transcripts are predominantly present in CD27+ memory
B cells, which carry higher expression levels of activation molecules
than their CD27− counterparts. Together with our previous findings
that CD27+ memory B cells in adults have a more extensive replication
history and molecular signs of indirect IgG subclass switching to IgG2,
these new results support a model for secondary IgG subclass
switching in consecutive germinal center responses (Figure 5).
It is challenging to dissect ex vivo if sequential IGHG class switching

in humans has occurred during a primary response or from re-entry

of memory B cells into secondary responses.10–12 Therefore, we here
compared SHM levels and IGHG subclasses from young children with
adults. SHM is thought to increase with age, although this has not
been studied in early childhood in great detail.13,19,20 Indeed, SHM
levels in adults were significantly higher than in young children,
fitting with accumulation during memory responses. Importantly,
this accumulation with age was associated with more frequent
usage of IGHG2 at the expense of IGHG3 and IGHG1. Naturally,
not all memory B cells in children will be derived from primary
responses only. Repeated vaccinations and repeated exposure to
pathogens will have resulted in memory responses. However,
chance of repeated exposures will be much higher in adults, and the
resulting composition of the memory B-cell compartment
will be much more enriched for those generated from memory
responses.
We here showed that SHM is significantly higher in adults

compared to children, and that these groups also differ in their
distribution of IGHG subclasses. Recently, it was shown that SHM in
young children increases with age and stabilizes around 6 years of
age.13 With increasing age, IGHG1 usage decreased and IGHG2 usage
increased.13 In line with IJspeert et al.,13 we did not find an increase in
selection for replacement mutations with age. We here did observe
increased selection in transcripts utilizing the Cμ-distal IGHG
subclasses, in line with what was found previously.10

Based on previous studies, we hypothesized that secondary IgG
memory B cells would have a CD27+ phenotype.6,16,17 These cells are
highly mutated, have undergone more cell divisions and more
frequently utilize the IgG2 subclass than CD27− IgG+ memory B
cells.6 Indeed, with age, the frequencies of IgG+ memory B cells
expressing CD27 increased, and these contained more SHM, more
frequently utilized IgG2 and showed increased expression of activation

Sequential IgG class switching

primary
germinal center

T cell

naive
B cell

CD27- memory

IgG1
G2

G3

plasma cell

Cγ1

Sμ-γ1

V DJ

* *primary response

secondary response

naive

V D J Cμ Cδ CεΨε ΨγCγ3 Cγ1 Cγ2 Cγ4Cα1 Cα2

Sμ SεSγ3 Sγ1 Sγ2 Sγ4Sα1 Sα2

Cγ2

Sμ-γ1-γ2

V DJ

* * **

Primary and secondary germinal center responses

secondary
germinal center

T cell

naive B cell

CD27+ memory

IgG2
G1

CD27- memory

IgG1
G2

G3

plasma cell

Figure 5 Summarizing model for sequential IgG switching during consecutive germinal center responses. In a primary response, naive B cells are activated
and can undergo IgG subclass switching prior to differentiation into memory B cells. These cells are predominantly CD27− and utilize IGHG3 or IGHG3.
Upon secondary encounter, both naïve and pre-existing CD27− memory IgG1+ B cells enter the germinal center, where the latter can undergo secondary
switching resulting in the CD27+ memory B cells which are enriched in IGHG2 transcripts with high levels of SHM.

Sequential IgG class switching in human B cells
BG de Jong et al

749

Immunology and Cell Biology



markers. Importantly, the differences between the subsets did not only
result from a different composition of cells utilizing the four distinct
IgG subclasses. SHM levels in CD27+ B cells were similarly high in
IGHG3, IGHG1 and IGHG2 transcripts. Furthermore, the expression
levels of activation markers were not higher in IgG2-expressing than
IgG3- or IgG1-expressing cells. Thus, the relative abundance of IgG2 is
potentially not the main factor underlying the strength of these
memory responses. Rather, all CD27+IgG+ B cells show extensive
molecular and cellular signs of immunological memory.
The high mutation frequencies in IGHG3 and IGHG1 transcripts

from these memory responses might indicate that there is uncoupling
between SHM and sequential class switching, and not all cells
switch in consecutive responses. Alternatively, these IgG3- and
IgG1-expressing B cells are generated from IgM-expressing memory
B cells. This is the main mechanism for secondary responses in mice,
where IgM-expressing memory B cells reenter the germinal center and
give rise to higher affinity IgM+ and IgG+ memory B cells, whereas
IgG+ memory B cells predominantly differentiate directly into IgG+

plasma cells.21 In mice, this could explain or compensate lack of
sequential IgG class switching, despite the presence of four IGHG
subclasses in the IGH locus.22

Genetic remnants of secondary recombination in humans
have previously been detected in IG switch regions of IGHG1
and IGHG2.6 In addition, transcripts from clonally-related cells
utilizing distinct IGHG subclasses have been identified in large-scale
Ig repertoire studies.13,23 Interestingly, these B cells did not acquire
more SHM, which is again suggestive of uncoupling between SHM
and CSR.
SHM could be viewed as a reflection of the history of antigenic

exposure. This has been studied previously by comparing mutation
levels in people from rural Papua New Guinea and from urban
Australia,10,24 hypothesizing that endemic parasitism would lead to
higher SHM levels. Unexpectedly, lifelong exposure to parasites did
not increase the IGHG SHM level. This could be explained by the fact
that there is a contribution of naive B cells undergoing primary
responses. These would yield IgG memory B cells with lower numbers
of mutations, resulting in a similar SHM distribution as in individuals
with less exposure to endemic parasites. In contrast, chronic
inflammatory diseases, such as sarcoidosis and Crohn’s disease do
result in increased IGHG2 usage and increased SHM levels.25,26 Rather
than self-limiting immune responses, these diseases are associated
with chronic inflammation. Potentially, this prolonged pathogenic
stimulation drives SHM in memory B cells. At present, it remains
unclear if the increased usage of regulatory IgG2 and IgG4 isotypes
affects immunity. One could envisage that these isotypes regulate
immune responses to recurrent (harmless) antigens, thereby limiting
inflammation.11

In conclusion, we here confirmed and extended previous
observations that SHM levels are higher in Cμ-distal IGHG subclasses.
On top of a potential temporal contribution to secondary class
switching from the Cμ-proximal IGHG3 and IGHG1 to the Cμ-distal
IGHG2 and IGHG4, we demonstrate accumulation of IGHG2 with
age through reentry. These memory B cells generated from secondary
immune responses express CD27 and higher levels of activation
markers. These new insights contribute to our understanding of
sequential IgG class switching and show a potential relevance of using
serum IgG2 levels or numbers of IgG2-expressing B cells as markers
for efficient generation of memory responses.

METHODS

Blood samples
Blood samples were collected from healthy pediatric and adult donors after

written informed consent was obtained according to the declaration of

Helsinki. This study was approved by the Medical Ethics Committee of the

Erasmus MC.

RNA isolation and cDNA synthesis
Peripheral blood samples were obtained from healthy donors (Supplementary

Table S1). RNA from post-Ficoll mononuclear cells was isolated by using a

mammalian RNA Miniprep kit (Sigma-Aldrich, St. Louis, MO, USA) and

reverse transcribed with random hexamers.

Sanger Sequencing of IGH gene rearrangements from PBMC
Complete IGH V-D-J gene rearrangements were amplified as described before27

with L-VH forward primers28 or IGHV-FR1 forward primers29 in a one-step

PCR with a IGHG consensus reverse primer.6,18,28 PCR products were cloned

into the pGEM-T easy vector (Promega, Fitchburg, WI, USA) and single

clones were prepared for sequencing on an ABI Prism 3130XL (Applied

Biosystems, Foster City, CA, USA). Obtained sequences were analyzed using the

IMGT database (http://www.imgt.org/IMGT_vquest/vquest) to assign the

IGHV, IGHD and IGHJ genes and alleles, and to identify SHM.30,31 Of each

unique clone, the position and frequency of mutations were determined within

the IGHV gene (CDR1-FR3). SHM was determined as variations on the

best matched V-gene and represented as the percentage of mutations of the

total sequenced V-gene nucleotides. The IgG receptor subclasses were

determined using the IGH reference sequence (NG_001019). Selection for

replacement mutations in framework regions (FR) and CDR was analyzed

using Bayesian estimation of Antigen-driven SELectIoN (BASELINe; http://

selection.med.yale.edu/

baseline/).32,33

Next generation sequencing of IGH gene rearrangements from
PBMC
IGH transcripts were amplified in a multiplex PCR using six IGHV-subgroup

consensus primers in FR1,29 and a universal IgG reverse primer.28 The PCR

products were purified and sequenced using Roche 454 sequencing as

previously described.13 In short, PCR products were purified by gel extraction

(Qiagen, Valencia, CA, USA) and Agencourt AMPure XP beads (Beckman

Coulter, Fullerton, CA, USA). Subsequently, the PCR concentration was

measured using the Quant-it Picogreen dsDNA assay (Invitrogen, Carlsbad,

CA, USA). The purified PCR products were sequenced on the 454 GS junior

instrument according the manufacturer’s recommendations.
Data analysis was performed as previously described by IJspeert et al 2016.13

In short, sequences were demultiplexed based on their multiplex identifier

sequence and trimmed using the Antigen Receptor Galaxy (ARGalaxy) tool.34

Fasta files were uploaded in IMGT/High V-Quest,35 and subsequently,

the IMGT output files were analyzed in the IGGalaxy tool. To exclude

low-quality reads, we only included transcripts of which the exact

CDR1-CDR3 nucleotide sequence occurred twice or more.14 Information on

junction characteristics, CDR3 length, and composition were extracted from

the output provided by IMGT/High V quest using ARGalaxy.34 Of each

unique clone, the position and frequency of mutations were determined

within the IGHV gene (CDR1-FR3). SHM was determined as variations on the

best matched V-gene and represented as the percentage of mutations of the

total sequenced V-gene nucleotides. The IgG receptor subclasses were

determined using the IGH reference sequence (NG_001019). Selection for

replacement mutations in FR and CDR was analyzed using Bayesian estimation

of Antigen-driven SELectIoN (BASELINe; http://selection.med.yale.edu/

baseline/).32,33 The FASTQ files of the raw and filtered data are available

from the European Nucleotide Archive (project number PRJEB15348,

Supplementary Table S2).
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Isolation and IG gene transcript analysis of B-cell subsets
B cells were isolated from buffy coat post-Ficoll mononuclear cells by magnetic
separation with CD19 beads (Miltenyi Biotech, Carlsbad, Germany).
From these, two memory B-cell populations were sorted which were
defined as CD3/56/IgD negative and CD19/IgG positive, and either CD27+

or CD27−. Complete IGH gene rearrangements were amplified from cDNA of
these populations as described above using L-VH forward primers28 and an
IGHG reverse primer,18,28 cloned into the pGEMT easy vector (Promega) and
prepared for Sanger sequencing as described above.

Cell sorting and gene-expression profiling
Cell sorting and gene-expression profiling were performed on naive and
memory B-cell subsets as previously described,18,36 and all data were deposited
in the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress) under acces-
sion numbers E-MEXP-3767 and E-MTAB-3637. In short, expression profiles
of naive mature and CD27+ and CD27− IgG memory B cell subsets from three
healthy donors were compared based on the perfect-match probe-intensity
levels. RMA background removal and quantile normalization were performed,
followed by a per-probe set two-way ANOVA (with factors probe and cell
type). This resulted in average expression levels for each probe set in each cell
type, as well as P values for the significance of the difference between cell types.
The P-values were adjusted for multiple testing using Šidák stepdown
adjustment, and all differences with adjusted P-values o0.05 were considered
significant.37

Flowcytometric immunophenotyping of IgG subclass expressing
B cells
Detailed 10-color flowcytometric phenotyping was performed on blood
lymphocytes from four healthy adults. Cell surface expression levels of selected
activation and migration markers (Supplementary Table S3) were measured on
a 4-laser LSRFortessa flowcytometer (BD Biosciences, San Jose, CA) with
standardized instrument settings,38 and analyzed with FACS DIVA software
version 8 (BD Biosciences).

Statistical analyses
Statistical analyses were performed with the Mann–Whitney U test,
Kruskal–Wallis test, or χ2 test as indicated in Figure legends. P-values o0.05
were considered statistically significant.
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