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Abstract

The isozymes of monoamine oxidase (MAO-A and MAO-B) are important enzymes involved in 

the metabolism of numerous biogenic amines, including the neurotransmitters serotonin, 

dopamine and norepinephrine. Recently, changes in concentrations of MAO-B have been proposed 

as an in vivo marker of neuroinflammation associated with Alzheimer’s disease. Previous 

developments of in vivo radiotracers for imaging changes in MAO enzyme expression or activity 

have utilized the irreversible propargylamine-based suicide inhibitors, or high-affinity reversibly-

binding inhibitors. As an alternative approach, we have investigated 1-[11C]methyl-4-

aryloxy-1,2,3,6-tetrahydropyridines as metabolic trapping agents for the monoamine oxidases. 

MAO-mediated oxidation and spontaneous hydrolysis yields 1-[11C]methyl-2,3-dihydro-4-

pyridinone as a hydrophilic metabolite that is trapped within brain tissues. Radiotracers with 

phenyl, biphenyl and 7-coumarinyl ethers were evaluated using microPET imaging in rat and 

primate brain. No isozyme selectivity for radiotracer trapping was observed in the rat brain for any 

compound, but in the monkey brain the phenyl ether demonstrated MAO-A selectivity, and the 

coumarinyl ether showed MAO-B selectivity. These are lead compounds for further development 

of 1-[11C]methyl-4-aryloxy-1,2,3,6-tetrahydropyridines with optimized brain pharmacokinetics 

and isozyme selectivity.
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The enzymes monoamine oxidase-A (MAO-A) and –B (MAO-B) are responsible for the 

oxidation of a wide variety of amines, including the amine neurotransmitters dopamine, 
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norepinephrine, and serotonin. Inhibitors of monoamine oxidases (MAOIs) are important in 

clinical medicine: inhibition of MAO-A is utilized in the management of depression, and 

inhibition of MAO-B forms one of the therapeutic approaches to treating Parkinson’s 

disease1. More recently, the potential for using changes of MAO-B as a marker of 

astrogliosis in neurodegenerative diseases (such as Alzheimer’s disease) has become of 

interest2. The importance of the monoamine oxidases in numerous disease processes 

stimulated interest for in vivo non-invasive imaging of changes of MAO in the human brain, 

leading to the development of numerous carbon-11 and fluorine-18 labeled radiotracers 

useful for Positron Emission Tomography (PET) studies3. Prior approaches to isoform-

selective MAO radiotracer development have mostly concentrated on (a) irreversibly trapped 

suicide inhibitors (e.g., [11C]deprenyl and [11C]clorgyline) that form covalent bonds 

between the radiotracer and the flavin cofactor of the enzymes, and (b) reversibly-binding 

high-affinity inhibitors (e.g., [11C]befloxatone, [11C]harmine). Several of these have been 

successfully introduced into human PET studies, including evaluation in Alzheimer’s 

disease4, but there is continued interest in the development of new MAO radiotracers labeled 

with carbon-11 and fluorine-18 in the search for optimal in vivo radiotracers3b, 5.

An alternative approach for measuring enzymatic activity in vivo is the use of metabolic 

trapping, where the product of the catalytic activity of the enzyme is not covalently bound 

but still retained within the target tissue. This is the mechanism behind such in vivo imaging 

radiotracers as 2-[18F]fluoro-2-deoxyglucose ([18F]FDG, glucose metabolism), N-

[11C]methyl-4-piperidinyl-propionate or acetate ([11C]PMP and [11C]MP4A, 

acetylcholinesterase)6, and [18F]fluoroDOPA (dopamine synthesis) among other examples. 

The concept of non-covalent metabolic trapping has been applied to MAO but the effort has 

been severely limited. The syntheses of radiolabeled forms of N,N-

dimethylphenylethylamine were reported, initial biodistribution studies reported in rodents, 

and even a single human PET image presented7. Preliminary studies in both rat and primate 

were also done with carbon-11 labeled MPTP8 and a radioiodinated tetrahydropyridine (N-

methyl-4-(4′-hydroxy-3′-[125I]iodophenyl)-1,2,3,6-tetrahydropyridine)9, but no additional 

reports were made for use of either compound. Further development and validation 

(demonstration of isoform selectivity, pharmacokinetic analyses) of non-covalent metabolic 

trapping radiotracers for MAO have not been pursued, and there have been no applications 

of this concept to studies of MAO in human diseases.

We have investigated here the metabolic trapping of 1-methyl-4-aryloxy-1,2,3,6-

tetrahydropyridines, molecules that undergo an initial single oxidation by monoamine 

oxidases (Fig. 1), forming dihydropyridinium species that are then rapidly hydrolyzed to a 

phenol and 1-methyl-2,3-dihydro-4-pyridinone10. As that ketone is hydrophilic (cLog P = 

−0.18), labeling with a carbon-11 at the N-methyl substituent was hypothesized to provide a 

metabolite that would be trapped within brain tissues. Furthermore, as a second oxidation 

step of the dihydropyridinium intermediate never occurs, the 4-aryloxy-1,2,3,6-

tetrahydropyridines are non-toxic (in contrast to 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)). A series of 4-aryloxy substituted tetrahydropyridines were 

synthesized by Castagnoli and coworkers11 and evaluated as substrates for the monoamine 

oxidases; those studies demonstrated that a broad range of in vitro kinetic parameters (Km 

and Kcat) and MAO isoform selectivity are possible by selection of the 4-aryloxy substituent.
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RESULTS AND DISCUSSION

Chemistry

Using the prior studies of the in vitro kinetics of MAO-mediated hydrolysis as a guide, three 

target compounds were selected to test the concept of using 1-methyl-4-aryloxy-1,2,3,6-

tetrahydropyridines as isoform-selective MAO-catalyzed metabolic radiotracers (Fig. 2). The 

simplest molecule, 1-methyl-4-phenyloxy-1,2,3,6-tetrahydropyridine (PHXY, 1a), was 

reported as a mixed MAO-A/MAO-B substrate with a slight (2-fold) higher reactivity 

towards MAO-B12. The biphenyl-substituted derivative (BiPHEN, 1c) demonstrated 8-fold 

higher in vitro reactivity towards MAO-A over MAO-B (Wang and Castagnoli 1995)11a. 

Finally, the 7-coumarinyl derivative (COU, 1b) was reported by Long and coworkers13 to 

have a 22-fold selectivity for MAO-B.

The syntheses of 1-methyl-4-aryloxy-1,2,3,6-tetrahydropyridines in isotopically unmodified 

forms were done following modifications of the literature procedure11a, 13 and utilized the 

reaction of 4-chloro-1-methylpyridin-1-ium triflate with the appropriate phenols (2a–c) to 

form intermediate 1-methyl-4-aryloxypyridines (3a–c), followed by sodium borohydride 

reduction of the pyridine ring (Scheme 1). The products 1a–c were isolated in good yields 

(12–47%) using flash silica gel chromatography. The syntheses of the carbon-11 forms of 

PHXY, COU and BiPHEN were done using a one-pot procedure of N-[11C]methylation of 

the 4-aryloxypyridines 4a–c using no-carrier-added [11C]methyl triflate, followed by rapid 

(5 min) sodium borohydride reduction in ethanolic solution (Scheme 1). The required 

pyridine precursors (4a–c) were prepared by reaction of 4-chloropyridinium chloride with 

the corresponding phenols 2a–c. The radiotracers ([11C]PHXY (1a), [11C]COU (1b) and 

[11C]BiPHEN (1c)) were isolated and purified by HPLC, with overall synthesis times of 30 

min. Although isolated radiochemical yields were low (1–5%, not corrected for decay) they 

were not optimized, and specific activities averaged >55.5 TBq/mmol. Radiotracers were 

then formulated in isotonic saline for microPET imaging studies in rats and monkey.

Biology

The in vivo brain distributions of all three radiotracers were evaluated using microPET 

imaging, with the initial evaluations of pharmacokinetics and isozyme selectivity performed 

in the rat brain. However, due to the well-known potential for species differences in the 

selectivity and rates of substrate oxidations by the monoamine oxidases7a, 14, additional 

studies were performed in the rhesus monkey.

The microPET studies in rat brain demonstrated similar pharmacokinetics for [11C]PHXY 

and [11C]COU, with rapid initial uptakes peaking at 90–150 seconds and equivalent 

maximum brain concentrations (1.1 % injected dose/g for both). For both [11C]PHXY and 

[11C]COU, there followed a rapid washout of radioactivity until constant levels of trapped 

radioactivity were reached by 20–30 min, with trapping fractions (plateau/peak) of 55–60% 

for [11C]PHXY and 10–15% for [11C]COU. [11C]BiPHEN showed different 

pharmacokinetics, with a significantly lower and broader initial uptake (0.43 % injected 

dose/g) and a more gradual washout that did not quite reach a constant level by the end of 

the 60 min imaging period.
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To test for isozyme selectivity, studies of trapping efficiencies were performed after 

pretreatments with deprenyl (selective MAO-B inhibitor, 10 mg/kg i.p. 90 min prior to scan) 

or clorgyline (selective MAO-A inhibitor, 10 mg/kg i.p. 90 min prior to scan) or both 

irreversible inhibitors. The in vivo trapping of [11C]PHXY and [11C]BiPHEN were more 

sensitive to MAO-A inhibition, and [11C]COU more sensitive to MAO-B inhibition, but 

none of the three radiotracers examined here exhibited specificity for either isozyme in the 

rat brain. The pharmacological blocking studies support little non-specific binding of 

[11C]PHXY and [11C]COU, as residual trapped radioactivity levels are very low after 

enzyme inhibition. The lower brain uptake and slower kinetics of [11C]BiPHEN suggests the 

radiotracer might exhibit higher non-specific distribution, consistent with its higher 

lipophilicity.

The rat studies were encouraging and supported the hypothesis that MAO-mediated 

oxidation of 1-methyl-4-aryloxy-1,2,3,6-tetrahydropyridines could be imaged in the 

mammalian brain. Metabolite studies of rat brain extracts at 10 minutes after injection of 

[11C]PHXY confirmed the formation of a single polar radioactive metabolite, consistent 

with formation of 1-[11C]methyl-2,3-dihydro-4-pyridinone. The failure to achieve isozyme 

selectivity (or specificity) for any of the radiotracers in the rat brain was however not 

discouraging. The prior studies11a, 12 of 1-methyl-4-aryloxy-1,2,3,6-tetrahydropyridines had 

utilized MAO isolated from bovine or human tissues (or both), and numerous studies have 

demonstrated significant species variability in the behavior of both inhibitors and substrates 

towards the two isozymes of MAO7a, 14. This variability supported the notion that our new 

radiotracers needed to be evaluated in a second species.

The imaging studies in the rhesus monkey brain showed pharmacokinetics of all three 

radiotracers that were different than seen in the rat brain, with more encouraging isozyme 

selectivity for [11C]PHXY and [11C]COU. [11C]PHXY, the lowest molecular weight and 

least lipophilic compound, exhibited the highest uptake and trapping, with clear 

heterogeneity between the major regions of the brain (striatum > thalamus > cerebellum > 

cortex) (Fig. 4A). The coumarin derivative [11C]COU showed similar pharmacokinetics, 

with slightly lower trapping of radioactivity, and little or no distinction between levels in the 

striatum and thalamus (Fig 4D). Finally, the kinetics of [11C]BiPHEN were significantly 

different, with much lower brain uptake and trapping, and less heterogeneity in the regional 

brain distribution (Fig. 4G). No attempts have been made to correlate the observed regional 

radiotracer trapping concentrations with in vitro values for protein concentrations or enzyme 

activities of MAO-A or MAO-B, as there is very limited data available for rhesus monkey 

brain15. The rank order of striatum > cerebellar cortex > cortex for [11C]COU is however 

consistent with the in vitro studies of Riachi and Harik15a using either binding of 

[3H]pargyline or oxidation of substrates (MPTP, benzylamine).

Pharmacological studies for isozyme selectivity in the monkey were done using the 

reversible MAO inhibitors moclobemide (MAO-A, 1.0 mg/kg i.v.) and lazabemide (MAO-B, 

0.5 mg/kg i.v.), to avoid the long-lasting irreversible inactivation of the enzymes known to 

occur with deprenyl and clorgyline16. The doses were administered as a 10 min infusion 

prior to radiotracer injection. The doses of inhibitors were limited to amounts supported by 

prior safe administration to monkeys, based on literature reports; without independent 
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evidence that the doses were sufficient for complete inhibition of enzyme activities, or that 

the radiotracers themselves do not effectively displace these reversibly-bound inhibitors. 

These studies with moclobemide and lazabemide are considered here as pharmacological 

intervention studies but not necessarily full blocking studies (in the sense the enzymes can 

be fully and irreversibly inhibited, as was achieved with deprenyl and clogyline in the rat 

brain).

Radiotracer trapping of the simplest substrate [11C]PHXY was significantly reduced in all 

brain regions by inhibition of MAO-A by moclobemide, with data for striatum and cortex 

shown in Figs 4B–C. In contrast, administration of the MAO-B inhibitor lazabemide 

produced no change in the cortex and a small and perhaps insignificant increase in the 

striatum. These preliminary results suggest that, contrary to the in vitro assays which used a 

combination of enzymes from human (MAO-A) and bovine (MAO-B) tissue sources and 

contrary to the rat imaging studies, [11C]PHXY exhibits MAO-A selectivity in the monkey 

brain.

As was hoped based on the reported in vitro selectivity of [11C]COU, where human tissues 

provided the sources for both MAO-A and MAO-B, the in vivo blocking studies in the 

monkey brain showed a significant reduction in trapping in striatum and cortex after 

inhibition of MAO-B (Fig. 4E–F), with lesser effects effects for inhibition of MAO-A. 

Again, the monkey imaging studies are more encouraging than those of the rat where 

significant effect of both MAO-A and MAO-B inhibition were observed for [11C]COU. 

These studies emphasize the importance of species selection when evaluating MAO 

substrates or inhibitors.

Finally, the results for [11C]BiPHEN, a compound which was more selective for MAO-A in 
vitro (using human and bovine sources of MAO), were less clear. Inhibition of MAO-B had 

mixed effects on [11C]BiPHEN pharmacokinetics, and the inhibition with the MAO-A 

inhibitor moclobemide produced an unexpected increase in trapping of radioactivity in all 

brain regions (Figs. 4 H–I). One possible explanation is that moclobemide inhibition of 

peripheral MAO-A activity increased the available [11C]BiPHEN in the blood, resulting in 

increased radiotracer delivery to the brain. We had observed such changes in brain 

pharmacokinetics in previous studies of radiolabeled trapping agents for the enzyme 

acetylcholinesterase, where inhibition of blood enzymes significantly increased radiotracer 

delivery to the brain. Studies of [11C]BiPHEN employing metabolite-corrected blood input 

data would allow us to verify this hypothesis, however, the lower initial brain uptake, poor 

regional heterogeneity, mixed pharmacological selectivity and potential for significant non-

specific distribution due to its high lipophilicity (clog P = 4.72) make [11C]BiPHEN at this 

point a less interesting candidate MAO-A radiotracer than [11C]PHXY.

SUMMARY

These preliminary studies have demonstrated the feasibility of using 1-methyl-4-

aryloxy-1,2,3,6-tetrahydropyridines as substrates for in vivo PET imaging studies of the 

enzymatic activity of brain monoamine oxidases. Two of the initial radiotracers examined 

here, [11C]PHXY and [11C]COU, already show encouraging isozyme selectivity in the 
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monkey brain, and are of immediate interest for further evaluation. The general synthetic 

strategy shown in Scheme I can be used to prepare a wide variety of substituted 

tetrahydropyridines in the continued search for radiotracers having the optimal combinations 

of lipophilicity, affinity for the enzyme (Km) and rate of enzymatic hydrolysis (Kcat). 

Additional modifications of the rate of MAO-mediated oxidation of 1-methyl-4-

aryloxy-1,2,3,6-tetrahydropyridines should also be possible by selective incorporation of 

deuterium at the 6-position of the tetrahydropyridine ring, as demonstrated to be effective for 

MPTP17.

These studies also demonstrate some of the difficulties in developing new radiotracers for in 
vivo imaging studies of the monoamine oxidases. The potential for significant species 

differences is well recognized for the isozymes of MAO, and were reflected in the relatively 

little selectivity of [11C]PHXY and [11C]COU in the rat brain. A correlation of regional in 
vivo brain trapping of our new radiotracers with in vitro values for enzyme activities is 

essentially impossible given the extreme paucity of available data on the regional 

distributions of enzymatic activities in the monkey brain. Finally, pharmacological studies in 

the monkey have to be planned carefully, as the use of irreversible inhibitors (e.g., deprenyl 

and clogyline) that unequivocally block enzyme action poses a challenge given the now 

recognized long-lasting effects of such inhibitors on the concentrations of active enzyme 

molecules16.

EXPERIMENTAL SECTION

Chemistry

General Considerations—All solvents and reagents were commercially available and 

used without further purification unless otherwise stated. 7-Methylumbeliferone and 3-

phenylphenol were obtained from Sigma-Aldrich; 4-Phenoxypyridine was purchased from 

TCI America and used directly as a precursor for radiolabeling. NMR spectra were recorded 

with a Varian 400 MHz instrument at room temperature with tetramethylsilane (TMS) as an 

internal standard. Mass spectra were performed on a Micromass LCT Time-of-Flight mass 

spectrometer or an Agilent Q-TOF HPLC-MS employing the electrospray ionization (ESI) 

method. High performance liquid chromatography (HPLC) was performed using a 

Shimadzu LC-2010A HT system equipped with a Bioscan B-FC-1000 radiation detector.

General Procedure for preparation of 1-methyl-4-aryloxy-1,2,3,4-
tetrahydropyridines (1a–c)—Phenol starting material (0.72 mmol) was added to sodium 

methoxide (0.87 mmol) dissolved in DMF (3 mL) and stirred for 10 minutes. 4-Chloro-1-

methylpyridin-1-ium triflate (0.73 mmol) was added and the reaction was stirred for 18 h. 

The solvent was removed in vacuo and the resulting intermediate was suspended in 

methanol (3 mL). The reaction mixture was cooled to 0 °C in a water ice bath, and NaBH4 

(2.9 mmol) was added slowly. After 1 h the solvent was removed in vacuo. Water and ethyl 

acetate were added to the residue and the mixture was transfer to a separatory funnel. The 

product was extracted with ethyl acetate (3X), dried over sodium sulfate, filtered, and 

concentrated in vacuo. The product was purified by flash silica gel chromatography 

(dichloromethane, methanol gradient).
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1-Methyl-4-phenoxy-1,2,3,6-tetrahydropyridine (PHXY, 1a)—Starting from 4-

phenoxypyridine, the reduction step reaction yielded 0.056 g (41 % yield) of 1a as a white 

solid. 1H NMR (400 MHz; CH3OD-d4)/δ (ppm): 7.32 (2H, t, J= 7.8, 2H), 7.08 (1H, t, 

J=7.4), 7.00 (2H, d, J= 7.8), 4.77 (1H, t, J= 3.2), 2.98 (2H, d J=3.1), 2.70 (2H, t, J=5.9), 2.38 

(2H, m), 2.37 (3H, s); HRMS: calculated for [M+H]+(M = C12H15NO), 190.1226, found 

190.1230.

4-Methyl-7-((1-methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)-2H-chromen-2-one 
(COU, 1b)—Starting with 4-methylumbeliferone, the reaction sequence yielded 0.091 g 

(47 % yield) of 1b as an off-white solid. 1H NMR (400 MHz; CH3OD-d4)/δ (ppm): 7.74 

(1H, d, J=8.7), 7.06 (1H, dd, J=2.4, 8.7), 7.00(1H, d, J=2.4), 6.23(1H, d, J=1.1), 5.21 (1H, t, 

J=3.4); 3.17 (2H, d, J=3.4) 2.84 (2H, t, J=5.9), 2.48 (3H, s), 2.46 (3H, s), 2.42 (2H, m); 

HRMS: calculated for [M+H]+(M = C16H17NO3), 272.1281, found 272.184.

4-([1,1′-Biphenyl]-3-yloxy)-1-methyl-1,2,3,6-tetrahydropyridine (BiPHEN, 1c)—
Starting from 3-hydroxybiphenyl, the reaction sequence yielded 0.0743 g (39 % yield) of 1c 
as a pale yellow oil. 1H NMR (400 MHz; CH3OD-d4)/δ (ppm): 7.57 (2H, d, J=7.2), 

7.42-7.30 (5H, m), 7.27 (1H, t, J=1.9), 6.98 (1H, dq J=7.8, 1.2), 4.86 (1H, t, J=3.5), 2.96 

(2H, dd, J=5.8, 2.5), 2.67 (2H, t, J=5.9) 2.39 (2H, m), 2.34 (3H, s); HRMS: calculated for 

[M+H]+(M = C18H19NO), 266.1539, found 266.1538.

General Procedure for preparation of 4-aryloxypyridines (4b,c)—Phenol starting 

material (1.6 mmol) was added to potassium tert-butoxide (2.9 mmol) dissolved in DMF (7 

mL). The reaction mixture was heated to 140 °C, 4-chloropyridin-1-ium (1.33 mmol) was 

added, and the reaction was stirred for 18 h. The reaction was cooled to room temperature 

and quenched with aqueous saturated NH4Cl. The product was extracted with ethyl acetate 

(3X), dried over sodium sulfate, filtered, and concentrated in vacuo. The product was 

purified by flash silica gel chromatography (hexanes, ethyl acetate gradient).

4-Methyl-7-(pyridin-4-yloxy)-2H-chromen-2-one (4b)—Starting with 4-

methylumbeliferone the reaction yielded 0.040 g (12 % yield) of 4b as an off-white solid. 1H 

NMR (400 MHz; CH3OD-d4)/δ (ppm): 8.48 (2H, d, J=6.1), 7.88 (1H, d, J=9.3), 7.170-7.155 

(2H, m), 7.08 (2H, d, J=6.1), 6.33 (1H, s), 2.50 (3H, s); HRMS: calculated for [M+H]+(M = 

C15H11NO3), 254.0812, found 254.0815.

4-([1,1′-Biphenyl]-3-yloxy)pyridine (4c)—Starting with 3-hydroxybiphenyl the 

reaction yielded 0.1831 g (56 % yield) of 4c as a yellow solid. 1H NMR (400 MHz; 

CH3OD-d4)/δ (ppm): 8.41 (2H, d, J=4.9, 1.5), 7.62 (2H, d, J=7.5), 7.55 (2H, m), 7.44 (2H, t, 

J=7.5), 7.40-7.34 (2H, m), 7.13 (1H, dt, J=7.1, 2.2), 7.00 (2H, dd, J=4.9, 1.5); HRMS: 

calculated for [M+H]+(M = C17H13NO), 248.1070, found 248.1068.

Radiochemistry

General Considerations—Reagents and solvents were commercially available and used 

without further purification, unless otherwise noted: sodium chloride (0.9% USP) and sterile 

water for Injection (USP) were purchased from Hospira; Dehydrated Alcohol for Injection 

Brooks et al. Page 7

ACS Chem Neurosci. Author manuscript; available in PMC 2017 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(USP) was obtained from Akorn Inc. Shimalite-Nickle was purchased from Shimadzu; 

iodine was obtained from EMD; phosphorus pentoxide was acquired from Fluka; molecular 

sieves were purchased from Alltech; and HPLC columns were acquired from Phenomenex. 

Other synthesis components were obtained as follows: sterile filters were acquired from 

Millipore; C18-light Sep-Paks and Porapak Q were purchased from Waters Corporation; 10 

cc sterile vials were obtained from HollisterStier. Sep-Paks were flushed with 10 mL of 

ethanol followed by 10 mL of sterile water prior to use.

General Procedure for Radiochemical Syntheses—Production of carbon-11 labeled 

radiotracers was carried out using a TracerLab FXC-Pro automated radiochemistry synthesis 

module (General Electric, GE). [11C]Carbon dioxide was produced using a GE PETTrace 

cyclotron (40 μA beam for 20 min) and converted by standard procedures into carbon-11 

labeled methyl triflate ([11C]CH3OTf). The [11C]CH3OTf in helium carrier gas was bubbled 

into a vial containing a solution of precursor (1 mg) dissolved in ethanol (0.2 mL). At 

completion of transfer of radioactivity into the reaction vial, the ethanol solution was then 

transferred to a second conical vial containing sodium borohydride (2 mg) in ethanol (0.3 

mL). The resulting mixture was stirred for 5 min at room temperature and then the reaction 

was quenched by addition of HPLC buffer. The crude product was loaded onto a semi-

preparative HPLC loop. The product was purified by reverse phase chromatography 

(Prodigy ODS prep, 250 × 10 mm, 10μ, 4 mL/min), collected and diluted into H2O (40 mL) 

and reformulated using a C-18 extraction disk into a final 5 mL total volume of 10 % ethanol 

in saline. The doses produced were assessed via standard quality control techniques and 

were appropriate for rodent and non-human primate studies. Average specific activity was 

69116 GBq/mmol (range of 23236-178081 GBq/mmol). Overall synthesis times were 30 

min from end-of-bombardment.

[11C]1-Methyl-4-phenoxy-1,2,3,6-tetrahydropyridine ([11C]PHXY, [11C]1a)—In 

non-optimized yields, 270 ± 173 mBq of the phenyl ether (0.8 % yield from [11C]CH3OTf, 

not decay corrected; n=8) were collected. The product was purified by semi-preparative 

reverse phase chromatography (250 × 10, 10μ, ODS prep column eluted with 40 % CH3CN, 

60 % H2O, 10 mM NH4OAc).

[11C]4-Methyl-7-(pyridin-4-yloxy)-2H-chromen-2-one ([11C]COU, [11C]1b)—In 

non-optimized yields, 577 ± 141 MBq of the coumarin ether (1.7 % yield from 

[11C]CH3OTf, not decay corrected; n=10) were collected. The product was purified by semi-

preparative reverse phase chromatography (250 × 10, 10μ, ODS prep column eluted with 

30 % CH3CN, 70 % H2O, 10 mM NH4OAc).

[11C]4-([1,1′-Biphenyl]-3-yloxy)-1-methyl-1,2,3,6-tetrahydropyridine 
([11C]BiPHEN, [11C]1c)—In non-optimized yields, 551 ± 126 MBq of the biphenyl ether 

(1.7 % yield from [11C]CH3OTf, non-decay corrected; n=7). The product was purified by 

semi-preparative reverse phase chromatography (250 × 10, 10μ, ODS prep column eluted 

with 50 % CH3CN, 50% H2O, 10 mM NH4OAc, pH 4.5).
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Figure 1. 
Monoamine oxidase-mediated oxidation of 1-[11C]methyl-4-aryloxy-1,2,3,6-

tetrahydropyridines, followed by spontaneous hydrolysis, yields a phenol and 1-

[11C]methyl-2,3-dihydro-4-pyridinone.
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Figure 2. 
Target carbon-11 radiotracers and reported in vitro enzyme kinetics.
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Fig. 3. 
Representative curves (single scans) for in vivo trapping of [11C]PHXY (panel A), 

[11C]COU (panel B) and [11C]BiPHEN (panel C) in rat brain cerebrum. Data is expressed as 

percent injected dose per gram for rat brain cerebrum. Pharmacological interventions were 

done using pretreatment with MAO-A inhibitor (clorgyline) or MAO-B inhibitor (deprenyl) 

or both together.
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Fig. 4. 
Representative curves (single scans) for in vivo trapping of [11C]PHXY (panels A–C), 

[11C]COU (panel D–F) and [11C]BiPHEN (panels G–I) in striatum, thalamus, cerebral 

cortex and cerebellum of rhesus monkey brain. Pharmacological interventions were done 

using pretreatment with MAO-A inhibitor (moclobemide) or MAO-B inhibitor (lazabemide).
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Scheme 1. 
Syntheses of unlabeled and carbon-11 labeled tetrahydropyridine MAO substrates.a

aReagents and Conditions (i) NaOCH3, DMF, 4-chloro-1-methylpyridin-1-ium triflate; (ii) 

NaBH4, CH3OH; (iii) KOtBu, DMF, 4-chloropyridin-1-ium; (iv) [11C]CH3OTf, EtOH, 

NaBH4
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