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The notion that prion-like spreading of misfolded �-synuclein (�-SYN) causes Parkinson’s disease (PD) has received a great deal of
attention. Although attractive in its simplicity, the hypothesis is difficult to reconcile with postmortem analysis of human brains and
connectome-mapping studies. An alternative hypothesis is that PD pathology is governed by regional or cell-autonomous factors.
Although these factors provide an explanation for the pattern of neuronal loss in PD, they do not readily explain the apparently staged
distribution of Lewy pathology in many PD brains, the feature of the disease that initially motivated the spreading hypothesis by Braak
and colleagues. While each hypothesis alone has its shortcomings, a synthesis of the two can explain much of what we know about the
etiopathology of PD.
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Introduction
Clinical Parkinson’s disease (cPD) is the most common form of a
broad class of movement disorders called parkinsonism (Postuma et
al., 2015). The cardinal motor manifestations of cPD are attributable
to the progressive loss of dopaminergic neurons in the SNc (Horny-
kiewicz, 2002). In addition to neuronal loss, a defining feature of cPD
is the appearance of proteinaceous, �-synuclein (�-SYN) rich inclu-
sions, called Lewy pathology (LP), exclusively in neurons.

While rigorous determination of the regional loss of neurons
in postmortem tissue has been difficult, the advent of immuno-
cytochemical techniques allowing the localization of aggregated
forms of �-SYN has propelled the study of LP forward. It is always
easier to see what is gained than what is lost. Nearly two decades
ago, Braak and colleagues used these approaches to compare brains
taken from asymptomatic individuals and cPD patients at various
times after diagnosis. This exercise led them to hypothesize that LP
spreads into the brain from either the olfactory bulb or the dorsal
motor nucleus of vagus (DMV) in the caudal medulla, two brain
regions with axons extending to body surface (Kosaka et al.,

1984; Braak et al., 2003; Beach et al., 2009). It was conjectured that,
at these interfaces, LP-inducing, environmental pathogens or infec-
tious agents invaded axon terminals, were retrogradely transported,
and then trans-synaptically spread to other neurons (Hawkes et al.,
2007). With time, these LP-inducing agents were thought to slowly
propagate through the brain connectome, leading to widespread
neuronal dysfunction and death (Braak et al., 2004).

This sounds like a neuropathological tsunami, which is essen-
tially the way it is depicted in many reviews (Braak et al., 2004).
However, this is misleading. Even in late-stage cPD brains, LP has
a discrete, patch-like distribution (Beach et al., 2009; Dijkstra et
al., 2014; Surmeier et al., 2017b). Moreover, within each of the
nuclei or regions manifesting LP, its distribution is sparse and
confined to particular cell types (Braak and Del Tredici, 2009;
Dugger and Dickson, 2010). For example, within the DMV, only
cholinergic and catecholaminergic neurons ever exhibit LP, whereas
GABAergic neurons never do (Kingsbury et al., 2010). A similar
discrete distribution of LP is seen in other regions, such as the
pedunculopontine nucleus, basal forebrain, and cerebral cortex
(Wakabayashi et al., 1995; Hall et al., 2014). It is of some note that
GABAergic neurons, regardless of where they are, appear to be
resistant to LP. In all of these cases, the percentage of neurons
exhibiting LP is small (�15%) and relatively constant over the
disease course, even in the absence of neuronal loss (Greffard et
al., 2010; Parkkinen et al., 2011; Milber et al., 2012; Dijkstra et al.,
2014; Iacono et al., 2015).

The proposition that this distributed pathology evolves over
time in a predictable way that is causally related to symptoms
clearly is attractive. It was an extraordinary example of inductive
reasoning because the human data upon which the hypothesis
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was built had significant limitations. The most important of these
was that the postmortem data did not provide any “hard” longi-
tudinal information; that is, it did not show how LP pathology
within individual brains evolved as a function of time and disease
state. This relationship had to be inferred from a reasonable, but
untested, set of assumptions. As a consequence, it is not surpris-
ing that subsequent studies have found that only approximately
half of cPD patients have brains with a pattern of LP that is
consistent with the Braak staging model (Kalaitzakis et al., 2008;
Jellinger, 2009b; Halliday et al., 2012). Some cPD patients have no
discernible LP at all (Berg et al., 2014). Moreover, attempts to
correlate Braak LP staging with clinical state have been unsuc-
cessful (Jellinger, 2009b).

For the sake of argument, let us set aside those brains that do
not conform to Braak staging (we can suppose they are some
form of “atypical” cPD for the time being). Is it plausible that the
globally and regionally heterogeneous pattern of LP seen in these
brains is a consequence of retrograde, trans-synaptic spread of a
pathogen from the DMV or olfactory bulb? In principle, what
would be needed to evaluate this hypothesis is the retrograde
synaptic connectome of neurons in the nuclei from which the
pathology is thought to spread. Unfortunately, this type of informa-
tion is only now being generated in transgenic mice (not humans)
using techniques, such as monosynaptic rabies virus mapping (Wall
et al., 2010). Nevertheless, there are some data that are relevant if
it is assumed that mice and men are approximately similar in the
wiring of their brains (an assumption that is generally supported
by the experimental literature). Consider the SNc; this is clearly
an important node in the network of LP in the cPD brain. If a
pathogen is passed from SNc dopaminergic neurons to neurons
synapsing upon them, then the probability that this happens
should be directly related to the number of synapses formed by the
innervating neuron (i.e., the probability of one getting the flu is
proportional to the number of times you come into contact with
someone who has it). If this is the case, then basal ganglia nuclei
(substantia nigra pars reticulata, globus pallidus, subthalamic nu-
cleus, and striatum) should be prominent sites of late stage LP.
These nuclei robustly innervate dopaminergic neurons in the
SNc (Watabe-Uchida et al., 2012; Ogawa et al., 2014). Yet, none of
these regions has any discernible postsynaptic LP, ever. The striatal
Lewy neurites seen relatively early in the disease are undoubtedly
degenerating dopaminergic axons (Halliday et al., 2011).

Consider the locus ceruleus (LC), another prominent site of
LP for which there are connectomic data (Schwarz et al., 2015).
Again, there is no correlation between the strength of synaptic
connectivity and the probability of manifesting LP at any stage of
the disease. The most prominent synaptic inputs to the LC are
from the cerebellum and the medial reticular formation. Neither
have any significant LP in cPD patients. So, if a pathogen spreads
as hypothesized by Braak and others, its spread (or its propensity
to induce LP) must be governed by some other factor. It cannot
be governed by synaptic connectivity alone.

The other major caveat of the Braak hypothesis is that the
relationship between LP, neuronal dysfunction, and neuronal
death was, and remains, uncertain. Braak’s conjecture was that
LP was a harbinger of death and dysfunction. In contrast to LP,
there have been relatively few rigorous studies of neuronal death
in PD. This is hard to do. In brains with LP confined to the caudal
medulla, there is a significant loss of SNc DA neurons in the
ventral tier of the SNc (Milber et al., 2012; Dijkstra et al., 2014).
There is not any substantial neurodegeneration in the other re-
gions, most notably those that had LP. In the brains of recently
diagnosed cPD patients, DA neurons in the ventral tier of the SNc

are nearly gone (Halliday et al., 1996; Damier et al., 1999), and
neuronal loss is apparent in a handful of other regions. For ex-
ample, cholinergic neurons in the pedunculopontine nucleus are
lost, but not glutamatergic or GABAergic pedunculopontine nu-
cleus neurons (Halliday et al., 1990b). There also is modest loss of
glutamatergic neurons in the intralaminar nuclei of the thalamus
and the basolateral amygdala (Henderson et al., 2000; Harding et
al., 2002). Thus, in the early stages of PD, there is not a compelling
correlation between LP and neuronal loss.

With clinical progression, neuronal death is found in other
regions, particularly those with LP (Halliday et al., 1990b; Kremer
and Bots, 1993; Thannickal et al., 2007; Fronczek et al., 2008;
Jellinger, 2009a). But there are plenty of exceptions (Halliday et
al., 1990a; Ansorge et al., 1997; MacDonald and Halliday, 2002;
Pedersen et al., 2005). Thus, both early and late in the disease, the
correlation between LP and neuronal loss is poor (Fig. 1).

Braak redux
The recognition that the pathology in PD is distributed and not
restricted to the SNc by Braak and others fundamentally changed
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Figure 1. Top, The selective regions containing LP and the severity and conceptual progres-
sion based on cross-sectional postmortem data from patients at different stages of Parkinson’s
disease. Bottom, The selective regions with neuronal cell loss, and the severity and conceptual
progression based on cross-sectional postmortem data from patients at different stages of PD.
Although there is some overlap in the regions identified with LP and neuronal loss, the severity
and regions affected over the disease course indicate different progression patterns, and these
patterns are independent of the major projections of the regions affected, suggesting that prion
propagation through neuronal connections is unlikely as a simplistic mechanism. IL, Intralami-
nar thalamus; SNd, dorsal tier of the substantia nigra pars compacta; dv, dorsal motor nucleus of
the vagus nerve; iz, intermediate reticular zone.
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thinking about cPD pathogenesis. But the proposition that LP
spreads through the brain connectome from well-defined nuclei
and is solely responsible for the pathophysiology underlying cPD
symptoms was inconsistent with much of the literature, so it
languished, until recently.

Two set of observations have resurrected Braak’s conjecture.
One piece comes from histological analysis of fetal transplants
into the striatum of PD patients. Most (but not all) of these stud-
ies revealed that, after only a decade or so, a few dopaminergic
neurons exhibited proteinaceous inclusions that strongly resem-
bled LP (Kordower et al., 2008; Li et al., 2008; compare Mendez et
al., 2008). This was interpreted as spread of LP from the host to
the graft. Although there is no doubt that �-SYN can be taken up
by neurons from the extracellular space (Desplats et al., 2009;
Hansen et al., 2011), the proposition that LP per se spread from
the host to the graft was quite speculative and left several basic
questions unanswered. For example, from where in the host did
the seeding pathology spread? In late-stage PD patients, there is
not any discernible LP in the host striatum, meaning it would
have had to spread from some distant, nonsynaptically coupled
site. Another question was why the Lewy-like pathology was re-
stricted to dopaminergic neurons in the graft (compare Ahn et al.,
2012), sparing neighboring GABAergc neurons? And why does the
fraction of neurons displaying �-SYN pathology not increase with
the duration the graft is in the host (Cooper et al., 2009; Kurowska et
al., 2011; Li et al., 2016)? Could it not simply be the case that living in
a graft is stressful and that the cumulative effect of this environment
on already stressed (see below) dopaminergic neurons is proteostatic
dysfunction and �-SYN accumulation?

A more compelling argument for spreading comes from ex-
periments where �-SYN fibrils have been directly injected into
the brain of mice and monkeys. In contrast to monomeric �-SYN
(Kirik et al., 2003; Maingay et al., 2006; Ulusoy et al., 2013), synthetic,
preformed �-SYN fibrils (PFFs) injected into the mouse striatum
can propagate to synaptically connected, neighboring structures,
creating Lewy-like pathology (Luk et al., 2012; Masuda-Suzukake
et al., 2013; Peelaerts et al., 2015). In monkeys, proteins extracted
from human brains with LP (that would contain �-SYN fibrils
and other LP proteins) also can retrogradely propagate from the
striatum after injection (Recasens et al., 2014). More recent work
has shown spreading from the olfactory bulb (Rey et al., 2016).
Although there are a lot of questions about these experiments and
their interpretation (Sacino et al., 2016; Uchihara and Giasson,
2016; Walsh and Selkoe, 2016), they do demonstrate that extra-
cellular �-SYN fibrils can be taken up, retrogradely (and possibly
anterogradely) transported, and induce Lewy-like pathology
(and cell death). Moreover, because endogenous �-SYN is re-
cruited to the intracellular PFF aggregates and is necessary for the
spreading of pathology (Volpicelli-Daley et al., 2011, 2014; Luk et
al., 2012; Masuda-Suzukake et al., 2013; Peelaerts et al., 2015;
compare Helwig et al., 2016), the PFFs have been likened to pri-
ons (Olanow and Brundin, 2013; Brettschneider et al., 2015). The
hypothesis that prion-like fibrillary �-SYN drive pathogenesis
in PD is attractive in many ways, as it posits a conceptually
simple mechanism that, taken at face value, explains the evo-
lution of LP in patients and captures the essence of the original
Braak idea.

But is this what happens in PD? In principle, a prion-like
process should follow one of two rules: a nearest neighbor rule or
a synaptic connectivity rule. The nearest neighbor rule, whereby
the probability of manifesting LP is directly related to the physical
proximity to an initial seeding site, clearly is not consistent with
the pattern of LP in PD patients. LP does not simply fill up the

brain; it has a discrete distribution. Does the spread follow a
simple synaptic connectivity rule? As described above, the avail-
able data argue that it does not. Hence, if LP spreads in PD, then
there must be some other determinant of spreading in addition to
just connectivity.

Neuronal phenotype and PD pathogenesis
An alternative to the Braak hypothesis is that neuronal death and
LP are driven by cell-autonomous or regionally autonomous
mechanisms, not a propagated pathogen. One of the features of
the brain that distinguishes it from other organs is its incredible
cellular diversity. Neurons, in particular, vary enormously in
their size, shape, and function. The neurons at risk in PD may
have a phenotype that renders them particularly vulnerable to
factors known to cause the disease, age, genetic mutations, and
environmental toxins.

What do we know about the phenotype of neurons that are at
risk in PD? Almost all of the work on this topic has focused on
SNc dopaminergic neurons whose loss is responsible for the core
motor features of PD. While the SNc dopaminergic neuron may
be the “poster child” for the disease, Braak and colleagues have
shown that PD stretches well beyond them. Any general theory of
PD pathogenesis must explain this feature.

Many (if not all) of the neurons that degenerate or manifest
profound LP in PD seem to have a set of shared traits. The most
notable and best characterized of these shared traits is a long and
highly branched axon with an extraordinary number of transmit-
ter release sites. This diffuse axonal arbor helps them coordinate
the activity in large networks, such as the basal ganglia or the
spinal cord. For example, SNc DA neurons in the rodent have
axons that branch profusely in the striatum and possess as many
as 200,000 vesicular release sites (Matsuda et al., 2009). This
branching is similar in primates (Parent and Parent, 2006). Why
might a long and highly branched axon be problematic? There are
several hypotheses that have been proposed (Venda et al., 2010;
Bolam and Pissadaki, 2012; Hunn et al., 2015), but only one has
compelling experimental support at this point. This hypothesis
posits that the bioenergetic demands of sustaining electrical ex-
citability in a highly branched axon leads to mitochondrial oxi-
dant stress. Indeed, it has been shown that in vitro mitochondrial
oxidant stress is higher in SNc DA neuron axons than in the axons
of less vulnerable VTA DA neurons and that reducing the size of
the arbor (by manipulating axon guidance signals) decreases this
stress (Pacelli et al., 2015). That said, it is puzzling that neurons,
such as striatal cholinergic interneurons (Zhou et al., 2002),
which have axons that are similar in complexity to those of an
SNc dopaminergic neuron, seem to be resistant to whatever is
going on in PD.

In addition to having a long axon, many vulnerable neurons
share a set of physiological traits (Surmeier et al., 2017b). In vivo,
at-risk neurons that have been studied are tonically active (Sur-
meier et al., 2012). Typically, the action potentials of these neu-
rons are slow and broad, which maximizes Ca 2� entry and
promotes slow rhythmic activity (Bean, 2007). In that subset of
neurons studied in depth, the slow, rhythmic activity (2–10 Hz) is
autonomously generated and accompanied by slow oscillations in
intracellular Ca2� concentration that are triggered by the opening of
plasma membrane Cav1 and Cav3 Ca 2� channels and release of
Ca 2� from intracellular, ER stores (Nedergaard et al., 1993;
Wolfart and Roeper, 2002; Puopolo et al., 2007; Guzman et al.,
2010; Morikawa and Paladini, 2011; Goldberg et al., 2012;
Sanchez-Padilla et al., 2014; Matschke et al., 2015). In these cells,
the diffusion of Ca 2� in the cytosol is unimpeded by the expres-
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sion of Ca 2� buffering proteins, such as calbindin (Foehring et
al., 2009; Goldberg et al., 2012; Sanchez-Padilla et al., 2014). This
combination of features, broad spikes, pacemaking, low intrinsic
Ca 2� buffering, and cytosolic Ca 2� oscillations (not any one) is
what appears to distinguish vulnerable neurons.

The slow Ca 2� oscillations in at-risk neurons subserve two
complementary functions. First, they help maintain the slow
tonic spiking in these neurons (Nedergaard et al., 1993; Puopolo
et al., 2007; Putzier et al., 2009). Second, they promote Ca 2�

entry into mitochondria, oxidative phosphorylation (OXPHOS),
and the production of ATP (Guzman et al., 2010; Sanchez-Padilla
et al., 2014; Llorente-Folch et al., 2015). In principle, this feedfor-
ward control of OXPHOS helps to ensure that bioenergetic needs
are met (Budd and Nicholls, 1998; Balaban, 2009) and that intra-
cellular ATP levels do not fall into a range that would trigger
protective activation of K-ATP channels and cessation of ongoing
activity (Dragicevic et al., 2015). Even temporary cessation of
activity in neuronal networks necessary to mobilize sensory and
motor systems directing escape or attack behavior would lessen
the chances of survival in an unpredictable environment. As a
consequence, there should have been strong evolutionary pres-
sure to design neurons in these “too important to fail” networks
with this type of feedforward control mechanism.

There are two obvious downsides of this design. First, stimu-
lating OXPHOS in the absence of strong ATP demand increases
the production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (Votyakova and Reynolds, 2001; Guz-
man et al., 2010; Goldberg et al., 2012; Sanchez-Padilla et al.,
2014). ROS and RNS damage proteins, lipids, and DNA, partic-
ularly in mitochondria. Sustained oxidant stress could be a major
factor underlying declining mitochondrial function in at-risk
neurons with age (Reeve et al., 2014). ROS and RNS also exacer-
bate the impact of genetic mutations and environmental toxins
affecting mitochondria (Gegg and Schapira, 2016), as well as in-
crease the propensity of �-SYN to aggregate (Gupta et al., 2008).
The second downside is that it results in sustained elevations in
cytosolic Ca 2� concentration. Ca 2� promotes �-SYN aggrega-
tion both directly (Rcom-H’cheo-Gauthier et al., 2014) and in-
directly through activation of calpain and calcineurin (Dufty et
al., 2007; Caraveo et al., 2014; Diepenbroek et al., 2014). Elevated
cytosolic Ca 2� also impairs lysosomal motility and turnover of
misfolded proteins (Gómez-Sintes et al., 2016), potentially syn-
ergizing with other defects in proteasomal/autophagic function
to increase the likelihood of LP (Wong and Cuervo, 2010). Thus,
by design, these vulnerable neurons appear to reside close to
mitochondrial and degradative “tipping points.”

But do all of the neurons at risk in PD conform to this model?
It is unclear. In-depth analysis has only been performed in SNc,
LC, and DMV neurons. While much of the brainstem data are
consistent with a shared phenotype, more in-depth phenotyping
needs to be done. However, healthy, young telencephalic neurons
are not phenocopies of SNc dopaminergic neurons. That said,
many of the telencephalic regions at-risk in PD (and AD) are part
of a “default” network, which manifests high resting activity, al-
beit of synaptic origin (Andrews-Hanna et al., 2007). It is possible
that, in aged, late-stage PD patients, network dysfunction (Ham-
mond et al., 2007; Ko et al., 2013) triggers adaptations that bring
these neurons and networks phenotypically closer to other at-risk
neurons. Cav1 Ca 2� channels, which are key determinants of the
SNc phenotype, could be a major factor in this process. Sustained
Ca 2� entry through Cav1 channels in forebrain neurons has long
been associated with aging-related cognitive decline and AD (Dister-
hoft et al., 1994; Thibault et al., 2007). Moreover, in PD patients,

Cav1 Ca 2� channels are upregulated in limbic and motor cortices
(Hurley et al., 2013, 2014).

Can the phenotype of at-risk neurons account for LP staging?
The simple answer is no, at least at this point in time. From what
we currently know about cell-autonomous risk factors, LP should
appear in the SNc before it does in the DMV. Barring the emer-
gence of some other cell-autonomous factor that drives LP, the
most parsimonious explanation of the LP pattern in PD is that
there is spreading of �-SYN pathology, as posited by Braak and
colleagues and the proponents of the prion model, but that spread-
ing is limited to a subset of neurons whose phenotype renders them
susceptible to spreading, a proposition that is very consistent with
the phenotype outlined above.

What is better explained by cell-autonomous factors is the
sequence of cell death in PD (Fig. 2). The earliest known loss of
neurons in PD is the SNc. These neurons are at one extreme of the
anatomical, physiological, and molecular spectrum of vulnerable
neurons as we currently understand it (Sulzer and Surmeier,
2013; Poulin et al., 2014; Anderegg et al., 2015; Brichta et al., 2015;
Surmeier et al., 2017a), exhibiting the highest basal levels of mi-
tochondrial oxidant stress and free cytosolic Ca 2� of any cell
examined. Mitochondria and intracellular Ca 2� are linchpins of
all three major death cascades (apoptotic, autophagic, and ne-
crotic) (Nagley et al., 2010). In human SNc, there are telltale signs
of sustained mitochondrial oxidant stress with aging and PD,
such as mitochondrial DNA deletions (Bender et al., 2006, 2008).
Against this backdrop, it makes sense that genetic mutations that
compromise mitochondrial oxidant defenses, biogenesis, or quality
control cause the preferential loss of SNc dopaminergic neurons
and early onset forms of PD (Lin and Farrer, 2014; Kumaran and
Cookson, 2015; Mullin and Schapira, 2015; Beilina and Cookson,
2016). The tipping point for these neurons also could be reached
by other genetic mutations that indirectly compromise mito-
chondrial function (McCoy and Cookson, 2012; Mullin and
Schapira, 2013; Brini et al., 2014; Guardia-Laguarta et al., 2015;
Beilina and Cookson, 2016; Gegg and Schapira, 2016).

It also is important to acknowledge that other forms of �-SYN
may be more toxic than LP and contribute to pathogenesis and
cell death in PD (Ingelsson, 2016). Soluble, oligomeric forms of
�-SYN clearly can induce cell death when present in sufficient
quantities. Given that Ca 2� and ROS/RNS promote �-SYN ag-
gregation (see above), toxic oligomers, and proto-fibrils could be
more likely to form in nominally vulnerable neurons, effectively
synergizing with mitochondrial and lysosomal dysfunction to
trigger cell death (Fig. 2). New strategies for visualization of oli-
gomeric forms of �-SYN (Roberts et al., 2015) should allow this
possibility to be tested.

Another factor that has long been hypothesized to put SNc
neurons specifically at risk is DA (Sulzer, 2007; Zucca et al.,
2017). Elevated cytosolic Ca 2�, �-SYN, and DA in SNc DA neu-
rons could be a particularly toxic combination, especially in axon
terminals and dendrites (Mosharov et al., 2009; Dryanovski et al.,
2013; Caraveo et al., 2014; Brimblecombe et al., 2015). Indeed,
striatal DA axon terminals appear to be lost early in the develop-
ment of PD, preceding the loss of DA cell bodies (Kordower et al.,
2013). In this regard, the inference that levodopa therapy does
not accelerate disease progression (Fahn, 2005) might be wrong if
the primary site of DA toxicity is the axon terminal, terminals that
are largely gone by the time levodopa therapy is usually started.

If cell-autonomous factors are critical to the evolution of PD,
then “normalizing” one or more of these factors should slow
disease progression. As outlined above, Ca 2� entry through Cav1
Ca 2� channels appears to be a major driver of mitochondrial
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oxidant stress in all of the at-risk neurons examined to date.
Moreover, these channels can be targeted. Dihydropyridines are
FDA-approved, selective negative allosteric modulators of Cav1
channels that have good brain bioavailability (Striessnig et al.,
1998; Anekonda et al., 2011; Surmeier et al., 2017a). Because
dihydropyridines are voltage-dependent negative allosteric mod-
ulators that bind to and inhibit channels only when the plasma
membrane is depolarized for sustained periods of time (as in
pacemaking neurons), they should effectively blunt Ca 2� entry
only in a small subset of healthy neurons, precisely the pacemak-
ing neurons at risk in PD. Moreover, at FDA-approved doses, the
inhibition of Cav1 channels is decidedly partial (Ilijic et al., 2011).
Epidemiological studies have consistently found that the use of
dihydropyridines is associated with a decreased risk of developing
PD (Becker et al., 2008; Ritz et al., 2010; Pasternak et al., 2012; Lee
et al., 2014; Gudala et al., 2015); their use even seems to slow
progression after diagnosis (Marras et al., 2012). The combina-
tion of preclinical and clinical data implicating Cav1 channels in
PD pathogenesis motivated the National Institutes of Health to
mount a 5 year, Phase III, disease modification clinical trial in
early stage PD patients with the dihydropyridine isradipine that
will be completed in 2018.

In conclusion, the prevailing view of PD etiology is that LP
spreads in the brain through synaptically coupled networks, driv-
ing cell death, and clinical manifestations. However, the distribu-
tion of pathology in PD brains and recent connectomics are not
consistent with this simple model. Moreover, the relationship
between LP, neuronal dysfunction, and death remains uncertain.

If LP spreads trans-synaptically in PD, the processes must be gated by
cell- or region-autonomous mechanisms. Indeed, at-risk neurons
appear to share a set of traits that would not only make them more
vulnerable to �-SYN pathology, but would make them more vulner-
able to age, as well as toxins and genetic mutations associated with
the disease. Although the relative roles of neuronal design and prop-
agated pathology in the etiology of PD remain to be determined, it is
clear that both factors need to be considered.

Response by Dual Perspectives Companion
Authors–Patrik Brundin and Ronald Melki

Having read the article by Surmeier and colleagues, we con-
clude that there is more that unites than divides our views!
Indeed, we agree with the fundamental conclusion, i.e., “. . . the
most parsimonious explanation of the Lewy pathology pattern
in Parkinson’s disease is that there is spreading of �-SYN pa-
thology . . . but that spreading is limited to a subset of neurons
whose phenotype renders them susceptible to spreading . . ..”

Surmeier and colleagues highlight multiple factors that
might govern the selective susceptibility, but which is the
primary reason that some cells develop Lewy pathology
(LP) and others do not remains to be clarified. One over-
looked factor is differences in the lysosomal autophagy sys-
tem between different neuronal populations; this might
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Figure 2. Schematic summary of the factors potentially driving LP and neurodegeneration in PD. The vulnerable neuronal phenotype has a long, highly branched axon, which could lead to
elevated expression of �-SYN, as well as increase transmission sites for misfolded �-SYN. Both of these factors could promote �-SYN aggregation, oligomer formation, LP, and possibly
neurodegeneration. In parallel, pacemaking, elevated cytosolic Ca 2�, and mitochondrial oxidant stress could put vulnerable neurons at risk, both by promoting mitochondrial and lysosomal
dysfunction with aging as well as by promoting �-SYN aggregation (through elevated ROS/RNS, Ca 2�, and calpain activation, proteostatic deficits). Other potential factors, such as a reactive
neurotransmitter (e.g., dopamine), also could contribute.
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govern whether neurons effectively degrade �-synuclein
(�-SYN) or allow amplification to take place (Lopes da Fon-
seca et al., 2015). Another option is that receptors that, at
least in part, mediate uptake of aggregation-prone species
of �-SYN are differentially expressed in different neuronal
populations (Shrivastava et al., 2015; Mao et al., 2016).

We respectfully disagree with Surmeier and colleagues on a
few points. For example, we do not agree that LP in grafts in
patients with Parkinson’s disease has only been seen in do-
pamine neurons. Indeed, studies of grafts have focused on
pigmented (putative dopaminergic) neurons because the
presence of melanin indicated they were definitely graft-
derived. However, contrary to Surmeier and colleagues’
claim, Ahn et al. (2012) reported that LP was also present in
GABAergic neurons inside a patient graft. Furthermore, LP
is present inside the striatum of patients with advanced
Lewy body disease (Duda et al., 2002) (i.e., the same struc-
ture that is innervated by graft-derived axons in patients).
This supports the idea that LP inside grafted neurons is the
consequence of misfolded �-SYN being taken up by termi-
nals in the host striatum and retrogradely transported to
cell bodies inside the graft. Surmeier and colleagues also
suggested that the fraction of grafted neurons displaying
�-SYN did not increase with time after surgery. We think
the contrary has been demonstrated. Chu and Kordower
(2010) summarized that patients who died between 18
months and 4 years after surgery had no LP in their grafts,
and 1 patient who died after 14 years exhibited LP in
5%– 8% of grafted pigmented neurons. In the Swedish se-
ries of patients (operated with a different technique), the
relationship between proportion of pigmented neurons
showing LP and time since surgery was 2% at 12 years, 5%
at 16 years, and 11%–12% at 24 years (Li et al., 2008, 2010,
2016). Finally, regarding the direction of axonal transport
(the retrograde direction being emphasized by Surmeier
and colleagues) and possible need for synaptic contacts
discussed by Surmeier and colleagues, we think that experi-
ments have clearly shown that �-SYN assemblies are trans-
ported anterogradely and retrogradely with similar efficiency,
and that they can propagate after transport independently of
both synapses and cell-to-cell contacts (Freundt et al., 2012;
Brahic et al., 2016).

In conclusion, we think that the first decade of the “prion
hypothesis” for Parkinson’s disease has generated several
exciting findings and that prion-like seeding definitely has a
role in disease pathogenesis. We also believe there is much
more to explore and understand. Hopefully, the coming de-
cade will lead to a deeper understanding that can trigger the
development of new therapies.
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Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E,
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