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In Parkinson’s disease, intracellular a-synuclein inclusions form in neurons. We suggest that prion-like behavior of -synuclein is a key
component in Parkinson’s disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease
process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region
to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that
support the idea that a-synuclein can act as a prion. We consider potential triggers of the a-synuclein misfolding and why the aggregates
escape cellular degradation under disease conditions. We also discuss whether different strains of a-synuclein fibrils can underlie
differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that a-synuclein probably
acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson’s disease can facilitate the

development of disease-modifying therapies in the future.
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Introduction

In this brief commentary, we argue the case that prion-like be-
havior of a-synuclein (a-SYN) plays an important role in the
pathogenesis of Parkinson’s disease (PD). While we are certain
that prion-like mechanisms are crucial, we are also convinced
that multiple molecular events play important roles in the patho-
genesis of PD and related a-synucleinopathies. Thus, we do not
believe that PD pathogenesis is a question of “one mechanism or
another.” Instead, we propose that a network of complex and
interdependent molecular events play roles in the pathobiology
of PD. We also think that the apparent significant heterogeneity
between patients regarding clinical features and rate of progres-
sion of PD is reflected in individual differences in underlying
disease triggers and pathogenetic mechanisms. The identification
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of causative mutant genes that cause rare, inherited forms of PD
(5%—-10% of all cases) has led to important insights into diverse
molecular pathways that underpin the inherited disease forms. In
addition, the facts that increasing age is the greatest single risk
factor for sporadic PD, and that certain epidemiological and life-
style factors modify disease risk, have provided clues to potential
triggers and pathogenetic mechanisms underlying idiopathic PD.
Together, based on lessons from genetic and sporadic PD, the
emerging picture of PD pathogenesis includes protein misfold-
ing, disrupted protein handling, mitochondrial dysfunction, ox-
idative stress, impaired calcium handling, and inflammation. In
this commentary, we will not provide details regarding the con-
tribution of each of these important mechanisms to PD, as they
have been reviewed extensively previously (Dias et al., 2013;
Rcom-H’cheo-Gauthier et al., 2014; Allen Reish and Standaert,
2015; Bose and Beal, 2016; Ransohoff, 2016; Surmeier et al.,
2017b; Wong and Kraing, 2017). Instead, we describe recent ad-
vances supporting the idea that a prion-like mechanism operates
in PD. Specifically, we propose that propagation of a-SYN pa-
thology from one neuron to another plays an important role in
the progressive worsening of symptoms and the gradual involve-
ment of additional brain and autonomic functions as the disease
advances. We also suggest that diversity in the molecular struc-
ture of a-SYN aggregates, and consequently their capacity to
interact with different ensembles of partner proteins and to prop-
agate between different brain regions and in different patients
might explain why all PD patients do not follow the same disease
course, and could also explain why other synucleinopathies (e.g.,
Dementia with Lewy bodies [DLB] and multiple system atrophy
[MSA]) take a different course to PD. In this commentary, we
present evidence to support these views.
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What is the prion-like model for PD?

Why did it take so long to embrace the idea that the propagation
of protein aggregates is important in PD pathogenesis? Text-
books still classify PD as a movement disorder, and the most
conspicuous signs and symptoms of PD involve akinesia, rigidity,
and tremor. Most of these motor symptoms are due to reduced
striatal dopamine, as a consequence of progressive degeneration
of substantia nigra dopaminergic neurons, and dopaminergic
drug therapies are initially effective at alleviating these symptoms.
Because of the central role of the dopamine deficit in the most
conspicuous PD symptoms, most research into underlying
pathogenic mechanisms over the past 50 years has focused on the
dopamine neurons and their putative selective vulnerability.
However, patients also experience a wide range of troublesome
nonmotor symptoms (e.g., depression, sleep disorder, hyposmia,
constipation, fatigue, cognitive decline), and many of these are
not linked to the reduction in striatal dopamine and therefore do
not respond well to dopaminergic drug therapies (Chaudhuri
and Odin, 2010).

Over one hundred years ago, Fritz Heinrich Lewy described
intraneuronal hyaline inclusions in cell bodies and neurites in
PD, and he mentioned that they could be found in numerous
brain regions (Goedert et al., 2013). This revelation, however, did
not distract the attention from nigrostriatal degeneration for the
80 years that followed. The seminal discovery in 1997 that the
main protein constituent of Lewy pathology (LP) is misfolded
a-SYN started a paradigm shift in our thinking about pathogenic
mechanisms in PD and other a-synucleinopathies (Spillantini et
al., 1997). Using the new tool of a-SYN immunohistochemistry,
Braak et al. (2003) described that «-SYN aggregates were not just
present in widespread brain areas, but also in peripheral nerves
of the autonomic nervous system. They eventually classified six
neuropathological stages of PD, with increasing numbers of brain
regions exhibiting a-SYN pathology. Taking into consideration
that the brain regions that successively exhibited a-SYN aggre-
gates were connected by neural pathways, they proposed that a
model where a “causative agent” (e.g., a neurotropic virus) ini-
tially affected the olfactory bulb and autonomic nerves innervat-
ing the gut, and then progressively involved additional brain
regions leading to the gradual spread of a-SYN pathology
(Hawkes et al., 2007). It was unclear, and still remains elusive,
what the reason is for the disease process possibly being triggered
in the olfactory bulb and gut. While this so-called Braak neuro-
pathological staging system for PD is not fully embraced by
everyone, and has been suggested to apply to only a subset of
patients (Beach et al., 2009), it still had a major impact on PD
research. The serendipitous findings in 2008 of LP in fetal neu-
rons grafted to 3 PD patients 11-16 years before their death also
significantly influenced the field and dramatically pivoted the
research into a new direction (Kordower et al., 2008; Li et al.,
2008). Thus, a provocative interpretation of these findings was
that a-SYN aggregates had moved from affected cells in the host
brain to the grafted neurons and seeded aggregation of endoge-
nous protein in these otherwise healthy and young neurons
(Brundin et al., 2008, 2010). What has followed in the wake of the
findings in the transplanted patients and the development of the
Braak neuropathological staging is an avalanche of studies in
experimental models, which we briefly describe in the following
sections. Specifically, we briefly review experiments conducted in
cell cultures and animal models and describe how they support
the idea that a prion-like mechanism is active. We further debate
whether there exist different “strains” of a-SYN aggregates that
might explain differences between synucleinopathies that occur

J. Neurosci., October 11,2017 - 37(41):9808 —9818 « 9809

in humans. We also highlight that the anatomical site (e.g., olfac-
tory system or gut) of the first «-SYN misfolding event can differ
between patients, and that the initial triggering event (e.g.,
genetic predisposition combined with aging, externally in-
duced inflammation, or environmental toxin) is not identical
in all patients.

Evidence for cell-to-cell transfer of a-SYN obtained in
cell culture
A key premise for the hypothesis that a-SYN acts as a prion-like
protein in PD is that «-SYN assemblies, which can act as seeds for
further aggregation, can be taken up by neurons, then undergo
transport along axons, and finally transfer to another neuron
(e.g., by being released into the extracellular space). Numerous
cell culture studies have addressed different aspects of this com-
plex series of events (Lee et al., 2008a; Danzer et al., 2009; Desplats
etal., 2009; Luk et al., 2009; Hansen et al., 2011; Volpicelli-Daley
et al., 2011; Freundt et al., 2012; Bousset et al., 2013; Auli¢ et al.,
2014; Reyes et al., 2015). For example, it has been demonstrated
repeatedly that the key a-SYN assemblies can bind to the surfaces
of a variety of cultured cells, ranging from cell lines to primary
neurons. The binding of assemblies to the cell surface, which can
occur both if they are free in solution or associated within extra-
cellular vesicles, is a key step for subsequent events. Heparan
sulfate proteoglycans are reported to bind «-SYN assemblies and
facilitate uptake via endocytosis (Holmes et al., 2013). Naked
a-SYN assemblies also interact with membranous proteins.
Some of these were recently identified (Shrivastava et al., 2015;
Mao etal., 2016) and, in some cases, are reported to promote the
uptake of @-SYN from the extracellular space (Mao et al., 2016).
After binding to membranes (e.g., via the specific membrane
proteins), naked a-SYN assemblies are taken up by neurons and
are directed, at least in part, to the lysosomal compartment (Lee
etal., 2008a). They can also undergo anterograde and retrograde
transport, which has been monitored in primary neurons grown
in microfluidic devices (Freundt et al., 2012; Tran et al., 2014;
Brahic et al., 2016), and some of the movement of «-SYN assem-
blies occurs at a velocity consistent with fast axonal transport. As
a crucial step for the prion hypothesis for PD, intraneuronal
a-SYN assemblies can be exported into the extracellular space
and then be taken up by neighboring neurons (Hansen et al.,
2011; Freundt et al., 2012; Tran et al., 2014; Reyes et al., 2015),
microglia (Lee et al., 2008b), or astrocytes (Lee et al., 2010). If the
lysosomal or proteosomal systems are inhibited, the excretion of
a-SYN increases (Lee et al., 2005, 2013; Alvarez-Erviti et al., 2011;
Fernandes et al., 2016), and some of the exported a-SYN is asso-
ciated with microvesicles that can display markers found on exo-
somes (Emmanouilidou et al., 2010; Danzer et al., 2012). When
a-SYN assemblies are encapsulated within extracellular vesicles,
export is dependent on the cell packaging machinery and uptake
is certainly the consequence of membrane fusion events (Martens
and McMahon, 2008; Traub, 2009). Cell contacts are not re-
quired for the passage of a-SYN aggregates from cell to cell (Bra-
hic et al., 2016). Nonetheless, recent evidence suggests that
tunneling nanotubes can act as conduits for a-SYN assemblies
that transfer from one cell to another (Abounit et al., 2016).
Once inside the naive cell, a-SYN assemblies derived from the
extracellular space can reach the cytosol of neurons where they
amplify by triggering the aggregation of endogenous cytosolic
a-SYN, through a yet unknown process. It is discussed how
a-SYN that is enclosed inside an endosome can gain access to the
cytosol. Although this debate is not resolved, one suggestion is
that @-SYN might penetrate and lyse the lysosomal membrane in
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afashion akin to that used by viral proteins (Freeman et al., 2013).
The accumulation of endogenous a-SYN following exposure of
cells to exogenous fibrils, as has been demonstrated by many
independent groups, is unlikely to be simply due to perturbed
cellular proteostasis. Indeed, not only do exogenous fluorescently
labeled a-SYN fibrils colocalize with newly aggregated endoge-
nous a-SYN, but structurally distinct a-SYN assemblies imprint
their intrinsic structural characteristics on the endogenous a-SYN
(Danzer et al., 2009; Desplats et al., 2009; Hansen et al., 2011;
Volpicelli-Daley et al., 2011; Bousset et al., 2013). This strongly
suggests that endogenous a-SYN aggregates through a seeded
process where the imported a-SYN acts as a template. The a-SYN
molecules in one given conformation within the a-SYN fibrils
that are derived from the extracellular space recruit monomers of
a-SYN that are produced endogenously by the cell (Bousset et al.,
2013). The intrinsic structure of the seeds is preserved by struc-
turally well-defined and specific longitudinal and lateral interac-
tions between newly recruited a-SYN monomers and the ends of
the seeds (Fig. 1). Together, we think the evidence is overwhelm-
ing that a-SYN can be taken up from the extracellular space by
neurons and seed aggregation, as well as undergo long-distance
axonal transport. Further, we think it has been clearly demon-
strated that neurons can excrete misfolded a-SYN, allowing the
vicious cycle to be repeated in a new set of neurons. Therefore,
some of the fundamental processes required for the prion hy-
pothesis are evident in the culture dish of a laboratory. The next
question is: can we demonstrate in laboratory animals that
a-SYN can spread from one neuron to another, trigger misfold-
ing, and start a cascade of spreading neuropathology in brain
regions that are distant from each other? This is the topic of the
next section.

Animal models of a-SYN pathology propagation

Experiments in several types of animal models have also demon-
strated that a-SYN can transfer between neurons, and also from
neurons to glial cells, in the adult brain (Rey et al., 2016a). The
animal models used first were based on experimental cell trans-
plantation paradigms that mimicked the clinical transplants,
which originally had triggered interest in the prion hypothesis for
PD (Desplats et al., 2009; Hansen et al., 2011; Kordower et al.,
2011; Angot et al., 2012). While these experiments were an im-
portant proof of principle, they did not allow for a demonstration
of long-distance propagation of pathology between distant brain
regions, which is a key element of the prion hypothesis for PD.
Instead, this was shown in subsequent experiments in rodents
and nonhuman primates using intracerebral injections of one of
three sources of misfolded a-SYN. These injections contained the
following: (1) brain homogenates from patients with PD or other
synucleinopathies, (2) brain tissue from transgenic animal mod-
els that had developed a-SYN pathology, or (3) preparations of
fibrils generated from recombinant a-SYN (Luk et al., 2012a, b;
Mougenot et al., 2012; Rey et al., 2013, 2016b; Sacino et al., 2013,
2014; Recasens et al., 2014; Peelaerts et al., 2015; Shimozawa et al.,
2017). For example, injections of preformed a-SYN fibrils into
the striatum lead to the generation of a-SYN aggregates, and
subsequent death of dopamine neurons akin to what is seen in
PD, in the substantia nigra that directly innervates the striatum.
Notably, in the initial reports, a-SYN pathology was not observed
when injections are made into a-SYN-null mutant mice, suggest-
ing that endogenous a-SYN is required for the amplification and
gradual propagation of pathology. Even injections of a-SYN fi-
brils into muscle or bloodstream can lead to a-SYN aggregates in
the brain (Sacino et al., 2014; Peelaerts et al., 2015). Importantly,
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injections of a-SYN fibrils into either the gut wall, which is in-
nervated by the vagal nerve, or the olfactory bulb leads to pathol-
ogy in interconnected regions of the nervous system (Rey et al.,
2013, 2016a; Holmqvist et al., 2014). This is particularly impor-
tant in light of the fact that the Braak model posits that the enteric
nervous system and the olfactory bulb might be the two sites
where a-SYN pathology appears first in PD (Hawkes et al., 2007).
When a-SYN is, instead, overexpressed in the medulla oblongata
following injection of a viral vector into the vagal nerve leading to
retrograde transport of the virus in the nerve, the a-SYN pathol-
ogy propagates rostrally from the brainstem (Ulusoy et al., 2013).
If the integrity of the neuronal circuitry is destroyed by neurode-
generation, the propagation of pathology is interrupted (Helwig
et al., 2016). In the model involving injections into the mouse
olfactory bulb, a-SYN aggregates slowly spread throughout
interconnected brain regions during the year that follows the
injection, and the aggregates express multiple markers that are
characteristic of Lewy bodies and neurites (Rey et al., 2016b).
They gradually involve additional brain regions that are located
one or more synapses away from the injection site, and olfactory
deficits develop in the mice in parallel (Rey et al., 2016b). Even-
tually, aggregated a-SYN appears in brainstem nuclei, including
the substantia nigra. These observations are thought-provoking
because they mimic some of the a-SYN pathology that has been
suggested to underlie “prodromal” PD (Rey et al., 2016¢). This
condition is suggested to last 5-10 years and involves, for exam-
ple, hyposmia long before the first signs of motor deficits develop
(Mahlknecht et al., 2015). Together, the evidence is compelling
that exogenously delivered a-SYN (either via injection of fibrils
or via overexpression using a viral vector) can trigger aggregation
of endogenous a-SYN. The propagation is relatively slow (several
months in rodents, which equates to decades in humans), re-
quires the presence of the endogenous a-SYN protein, and ap-
pears to follow known anatomical pathways that must remain
intact for the process to continue effectively.

Together, we consider that the bulk of evidence from animal
studies supports the idea that a-SYN aggregates are transported
from one brain region to another along defined neural pathways,
and that they then can be propagated to neighboring neurons
through trans-synaptic transmission. Additional support for this
model is described in the next section, namely, that different
specific “strains” of a-SYN fibrils exist and that each type of strain
seeds aggregates with defined and shared properties.

Evidence for different strains of a-SYN aggregates

Monomeric a-SYN is considered natively unfolded as it popu-
lates a very large ensemble of conformational states that are
affected by physical-chemical conditions (pH, viscosity, ionic
strength, and nature of ions, etc.) (Uversky, 2003). Each assembly-
competent conformational state of a-SYN monomers exposes spe-
cific amino acid stretches that determine its ability to establish
defined sets of intermolecular interactions. These interactions lead
to assemblies that exhibit different intrinsic structures and have
distinct amino acid stretches exposed at their surfaces. The inter-
molecular interactions, lateral and longitudinal, that maintain
a-SYN molecules within the assemblies govern the ability of a
given a-SYN assembly to grow by incorporating additional mo-
nomeric a-SYN molecules in well-defined conformations and in
a thermodynamically stable manner. Importantly, the exposed
amino acid stretches influence with which partner proteins, re-
ceptors, and lipids a given a-SYN assembly will interact. Thus, it
is evident that this can result in highly specific (patho)biological
properties of a given a-SYN assembly. In essence, the exposed
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Figure 1. Mechanism of pathologic protein assembly and the notion of strains. Natively unfolded monomeric a-SYN multicolor molecule (top) populates different folding intermediates that
expose specificamino acid stretches that determine their ability to establish defined sets of intermolecular interactions. This is schematized by the different shapes (folding intermediates) and colors
(exposed amino acid stretches) of the folding intermediates (second row). The molecule in the conformation in yellow is capable of establishing longitudinal and lateral interactions with molecules
in the same conformation. As long as only longitudinal or lateral interactions are established, the assemblies are transient. This is illustrated schematically by arrows, of the same size, in two
directions. When both longitudinal and lateral interactions are established, a thermodynamically stable assembly is generated. This assembly can grow indefinitely by incorporation of molecules in
the same conformation. This is illustrated schematically by a solid arrow pointing toward growth. Molecules constituting such an assembly can dissociate only from its ends; this is represented by
a dashed arrow pointing toward disassembly. The molecule in the green conformation behaves in a similar manner, yielding fibrils made of green diamonds. The other conformers (red, blue, and
purple) cannot establish thermodynamically stable intermolecular interactions. They do not yield assemblies. These folds can be considered as dead-end conformations. The intermolecular
interactions the conformation in green is capable of establishing upon docking to an assembly made of yellow conformers (bottom), and vice versa, are unstable as they do not outweigh the entropic
cost of binding. Thus, no mixed assemblies made of yellow and green conformers can form. The yellow and green assemblies expose distinct amino acid stretches that define among other things their
interactomes, resistance to cellular clearance, tropism for different cell types in the nervous system, and the pathology they cause. The intermolecular interactions within the yellow and green
assemblies and their surfaces that define their interactomes are at the origin of the notion of strains.
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lesions, and proteolytic cleavage patterns (Poggiolini etal., 2013).
Key questions for the prion hypothesis for PD are whether differ-
ent strains of a-SYN aggregates exist (Melki, 2015) and whether
they, at least in part, explain why different synucleinopathies ex-
hibit a-SYN aggregates with dissimilar cellular and anatomical
predilections (Halliday et al., 2011; McCann et al., 2014). Indeed,
recent important findings show that intracerebral or systemic
injections into experimental animals of fractionated brain ho-
mogenates from clinical cases with MSA or PD induce distinct
neuropathologies (Watts et al., 2013; Prusiner et al., 2015). The
resulting pathologies each share some characteristics with the
synucleinopathy (MSA vs PD) from which the injected brain
homogenate was derived. These findings suggest that specific
a-SYN strains with different pathogenic effects exist. The under-
lying mechanisms can now be addressed by systematic experi-
ments using well-defined a-SYN assemblies. Thus, by varying the
experimental conditions, it is possible to generate different types
of a-SYN fibrillar assemblies, which exhibit differential toxicity
in cell cultures (Bousset et al., 2013) and give rise to distinct forms
of neuropathology with features that resemble PD or MSA (Pee-
laerts et al., 2015). If cell-autonomous factors (oxidative stress,
failing protein clearance, energy failure) were the primary rea-
sons that a-SYN aggregates develop in different parts of the brain
of an experimental animal or patient, one would not expect that
all cells and brain regions would have a-SYN aggregates with the
same characteristics. Thus, the findings of “strain-specific” neu-
ropathologies in experimental models add further support to the
idea that @-SYN fibrils propagate in a prion-like manner.

Critics of the prion hypothesis argue that neural connections
are not the key paths of pathology spread

It has been argued that neural connections are unlikely to be the
preferred routes by which pathogenic a-SYN assemblies spread.
Critics who instead consider that “cell-autonomous” mecha-
nisms govern which cells develop a-SYN aggregates have pointed
out that in postmortem brain examinations the proposed pro-
gressive increase in a-SYN pathology in PD does not seem to have
followed neural connections (Burke et al., 2008; Surmeier et al.,
2017a). Thus, even in advanced PD, there is no pathology in some
“nearest neighbors” to nuclei in the brainstem and diencephalon,
which do exhibit LP (Surmeier et al., 2017a). While we still argue
that neural pathways are major highways for the spreading of
aggregation-prone a-SYN assemblies between different brain ar-
eas, we acknowledge that several additional factors can be in play.
For example, it is possible that certain neuronal connections are
more likely to display release of pathogenic a-SYN assemblies
depending on their rates of synaptic activity. Neuron-to-neuron
spread of tau aggregates has been shown to depend upon neuro-
nal activity; therefore, the propagation of pathology is not neces-
sarily equal between all interconnected brain regions (Wu et al.,
2016). Interestingly, postmortem studies show that a-SYN aggre-
gates do not accumulate and form extracellular plaques upon
neuronal death. Therefore, upon release from a dying cell into the
extracellular space, aggregated a-SYN might be degraded or
cleared by one or more of several mechanisms. For example,
extracellular metalloproteases can efficiently degrade -SYN as-
semblies (E. M. Kim and Hwang, 2011; Pampalakis et al., 2017).
Alternatively, extracellular a-SYN might be removed via glym-
phatics (i.e., a perivascular clearance pathway, which transports,
e.g., soluble amyloid- B from brain interstitium) (Iliffetal., 2012).
Recent work has shown that a-SYN assemblies exist in CSF of PD
patients, opening up for the possibility that aggregation-prone
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a-SYN spreads between brain regions via the CSF circulation
(Shahnawaz et al., 2017). Cerebral vasculature could potentially
be an additional path for removal of a-SYN assemblies from the
extracellular space and a route for long-distance spread of pathol-
ogy between brain regions. Animal experiments have shown that
injections of a-SYN assemblies into peripheral blood vessels seed
a-SYN aggregation in the brain (Peelaerts et al., 2015). Finally,
glial cells, which can take up a-SYN from the extracellular space
(Lee et al., 2008b, 2010), could constitute another vector for dis-
semination of a-SYN aggregates. Astroglia and microglia express
little or no endogenous a-SYN but might migrate to nearby brain
regions, release some of the aggregated protein, which then is
taken up by neurons and seeds further aggregation. For tauopa-
thies, it has been proposed that microglia harbor pathological
tau, migrate to neighboring brain regions, and release it via exo-
somes (Asai et al., 2015), but this has not yet been demonstrated
for a-SYN. A spreading neuroinflammatory process has also
been considered to contribute to the propagation of a-SYN ag-
gregates. Intracerebral injections of an inflammagen can cause
post-translational modifications of a-SYN and promote aggrega-
tion locally (Gao et al., 2008). However, there is no experimental
evidence that spreading neuroinflammation actually can pro-
mote progressive dissemination of a-SYN aggregates in the brain.
As an alternate explanation for why the progression of neuropa-
thology is similar between patients with the same disease, re-
gional differences in brain levels of proteins that either promote
or counteract the accumulation of aggregation-prone proteins
have been proposed to explain differential susceptibility of brain
regions in Alzheimer’s disease (Freer et al., 2016). This concept of
“region-autonomous” mechanisms (Surmeier et al., 2017a) is
not supported, however, by animal experiments that instead in-
dicate that the pattern of slowly spreading of a-SYN pathology is
directly related to the site of a-SYN fibril inoculation and follows
a temporal course consistent with propagation along neural
tracts, involving trans-synaptic transmission.

What are the initial triggers of a-SYN aggregation and where
does it start?

Assuming that cell-to-cell transfer of a-SYN assemblies plays an
important role in PD pathogenesis, two important follow-up
questions are how and why does this process start? In this section,
we discuss these questions.

One can view misfolding and aggregation of a-SYN as a sto-
chastic event that occurs throughout life. Under some cell stress
conditions (e.g., toxic insults, local inflammation, oxidative
stress), which we discuss further below, a-SYN misfolding is
promoted. Normally, neurons clear this “garbage” (i.e., the mis-
folded a-SYN species), but we suggest that on rare occasions the
proteostasis mechanisms fail and then the pathogenic process
starts (Xilouri et al., 2013).

How can a-SYN misfold and aggregate under normal condi-
tions? Even if we assume that each of the 140 amino acid residues
within the natively unfolded a-SYN can adopt a limited number
of conformations, the number of possible conformations a-SYN
could adopt would still be immense. For example, if we assume,
as a Gedankenexperiment, that the number of conformations for
each amino acid is 3 (1 trans and 2 gauche) with 2 torsions each,
the number of possible conformations for the 140 amino acids be
3189 % 2, although in equilibrium, the concentration and lifes-
pan of each conformation will be specific to each conformer
and dependent on its interaction with the solvent, ions, and
partner molecules (e.g., lipids and proteins). Thus, at any
time, there is a significant probability that a newly synthesized
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a-SYN molecule can populate conformers that are capable of
establishing well-defined intermolecular interactions with
molecules that are in a compatible conformation. As a conse-
quence of this simplified view, a-SYN aggregates form at a
relatively low rate in a stochastic manner throughout life (Jar-
rett and Lansbury, 1993).

As stated above, the thermodynamic stability of such intermo-
lecular interactions depends on the concentration of the assem-
bly competent conformers (Oosawa and Asakura, 1975). Point
mutations within the a-SYN encoding gene, SNCA, increase or
decrease the number of possible conformations a-SYN adopts,
and affect the lifespan and cellular concentration of these confor-
mations. Duplication and triplication of SNCA also affect the
lifespan and concentration of assembly competent conformers.
This is why certain point mutations and gene duplication/tripli-
cation are associated with increased aggregation propensity and
early onset of PD-like conditions (Devine et al., 2011). Further-
more, single nucleotide polymorphisms in a distal SNCA en-
hancer are associated with altered PD risk (Nalls et al., 2014 ), and
experiments in neurons differentiated from induced pluripotent
stem cells suggest that very modest changes in a-SYN expression
significantly impact life-time PD (i.e., a-SYN aggregation) (Sold-
ner et al., 2016).

Several exogenous factors and genes beyond SNCA can also
increase the risk for a-SYN aggregation. For example, certain
viral infections have been reported to upregulate a-SYN levels in
the brain and could therefore elevate the risk of aggregate forma-
tion (Massey and Beckham, 2016). Exposure to Escherichia coli,
which generate the extracellular amyloid protein curli, has been
suggested to trigger a-SYN accumulation in the gut and brain
(Chen et al., 2016). Certain forms of cell stress (e.g., those asso-
ciated with exposure to pesticides and environmental toxins) also
increase a-SYN levels (Manning-Bog et al., 2002; Cicchetti et al.,
2009; Kumar et al., 2016). Reduced calcium buffering capacity
and raised free calcium have been associated with an induction of
a-SYN assemblies (Rcom-H’cheo-Gauthier et al., 2014). Oxida-
tive stress, and other stimuli, can trigger post-translational mod-
ifications in a-SYN that affect the propensity for aggregation
(Duda et al., 2000; Giasson et al., 2000; Paxinou et al., 2001;
Nonaka et al., 2005; Levin et al., 2011; Barrett and Timothy
Greenamyre, 2015; Oueslati, 2016). Several studies, including
seminal work by Surmeier et al. (2017b), have implicated calcium
dyshomeostasis, mitochondrial failure, and oxidative stress in
PD, and these observations tie in well with the idea that a-SYN
aggregation in a few ailing neurons can trigger a widespread sy-
nucleinopathy (Guzman et al., 2010; Goldberg et al., 2012; Sur-
meier et al., 2017b). Mitochondrial failure and oxidative stress
can also be results of rare PD mutations (e.g., parkin, PINK1,
DJ-1) that are increasingly linked to mitochondrial function and
quality control (Guzman et al., 2010; Truban et al., 2017). Inflam-
mation in the nervous system is considered a potential cause of
increased levels of a-SYN and inflammatory mediators also pro-
mote undesirable post-translational modifications of «a-SYN,
both of which are changes that could trigger a cascade of a-SYN
pathology propagation (Gao et al., 2008; Hirsch and Hunot,
2009; Lema Tomé et al., 2013; Lim et al., 2016; Ransohoff, 2016).
Together, the observations described above are consistent with
longstanding ideas from a large body of epidemiological and ex-
perimental research literature that has implicated environmental
toxins, mitochondrial failure, oxidative stress, and neuroinflam-
mation in the etiology and pathogenesis of PD.
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When do pathogenic a-SYN assemblies escape cellular
clearance mechanisms?

In the previous section, we discussed conditions that promote the
accumulation pathogenic a-SYN assemblies. In most situations,
these assemblies will be cleared from the cells through normal
proteostatic mechanisms (Chen et al., 2011; Y. E. Kim et al,,
2013). Under certain conditions, however, the cellular clearance
mechanisms fail and are simply not able to keep up with a high
production of pathogenic assemblies (Ciechanover and Kwon,
2015). The roles of molecular chaperones and the Ubiquitin Pro-
teasome System in sensing and maintaining normal cellular pro-
teostasis are widely acknowledged (Gidalevitz et al., 2011;
Morimoto, 2011; Brehme et al., 2014). The efficacy of these qual-
ity control cellular machineries decreases with increasing age
(Kaushik and Cuervo, 2015); thus, aggregates that could have
been efficiently dismantled or degraded actually end up escaping
in aged cells (Auluck et al., 2002). They further imbalance pro-
teostasis and their clearance. Misfolded a-SYN is largely cleared
via the lysosomal autophagy pathway, and with increasing age the
efficacy of this clearance system also gradually declines (Gan-Or
etal., 2015; D. K. Kim et al., 2016), potentially in part driven by
age-induced changes in epigenetic control of lysosomal enzymes
(Jin et al., 2016). This is a particularly important observation
considering that increasing age is the greatest risk factor for idio-
pathic PD. Heterozygous mutations in the lysosomal enzyme glu-
cocerebrosidase, encoded by GBA, are associated with a marked
increase in PD risk (Sidransky et al., 2009), and single nucleotide
polymorphisms near the GBA locus affect PD risk (Nalls et al.,
2014; Gan-Or et al., 2015). Collectively, all these findings lend
further support for the idea that lysosomes play a pivotal role as
protectors against synucleinopathy. A reduction in function of
the lysosomal autophagy system could specifically drive the prion
behavior of misfolded a-SYN (Chu et al., 2009; D. K. Kim et al.,
2016), both by extending the time that the aberrant a-SYN as-
sembly can act as a permissive template in the cytoplasm and by
increasing the rate of a-SYN excretion into the extracellular space
making it accessible to neighboring neurons. Indeed, experimen-
tal inhibition of lysosomes in cultured cells leads to increased
excretion of a-SYN to the extracellular medium (Alvarez-Erviti
et al., 2011), providing support to the idea that poor lysosomal
function promotes cell-to-cell transfer of a-SYN assemblies.
Loss-of-function mutations in the membrane protein ATP13A2
are associated with a neurological syndrome that includes juve-
nile-onset parkinsonism and a-SYN accumulation. Experimen-
tal studies suggest that ATP13A2 levels influence the excretion of
a-SYN in exosomes (Kong et al., 2014; Tsunemi et al., 2014),
which, in turn, could change the dynamics of cell-to-cell transfer
of a-SYN assemblies.

The bottom line is that genetic factors and aging can both
favor the prion behavior of a-SYN by impairing the clearance of
misfolded assemblies and increasing excretion of the protein. It is
reasonable to suggest that multiple factors (even within the dif-
ferent domains of, e.g., lysosomal dysfunction, calcium handling,
oxidative stress, inflammation) have additive or synergistic ef-
fects on the risk for a-SYN aggregation.

The seminal postmortem studies by Braak and colleagues sug-
gest that, in PD, a-SYN aggregates appear in circumscript parts of
the nervous system and then gradually spread along neural tracts
to other areas as the disease progresses (Braak et al., 2003). Al-
though some PD patients do not appear to follow precisely the six
Braak stages of neuropathology (Jellinger, 2009), his work is a
cornerstone of the prion hypothesis for PD. Notably, Braak and
his team, and other investigators who have followed up his pio-
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Figure 2.

Schematic diagram depicting a possible central cascade leading to cell-to-cell transfer of c-SYN. The central process is likely affected by several other disease mechanisms

that have already been implicated in PD (shown inside the circle) and that form an interdependent network of molecular events, which in combination or each on their own can promote
the central cascade. Weak genetic risk factors and aging are depicted as potential triggers or promoters of cell-to-cell transfer of c-SYN (for details of the different mechanisms, see text).

neering work, suggests that two potential starting points for the
a-SYN pathology are the enteric nerves innervating the gut and
the olfactory bulb (Hawkes et al., 2007; Angot et al., 2010). These
two systems exhibit abundant LP in PD, and this pathology is
potentially also present in “prodromal” PD. Notably, both the
gut and the olfactory bulb are particularly exposed to the exoge-
nous insults (e.g., viruses, bacteria, fungi, pollutants, toxins) be-
cause they are exposed to the surrounding environment by virtue
of anatomy (Rey et al., 2016¢; Sampson et al., 2016). Together, a
model where the a-SYN aggregation is triggered in enteric nerves
and/or olfactory bulb in predisposed individuals (as discussed
above), and then spreads in a prion-like fashion, is attractive.
Naturally, cross-sectional neuropathology studies on postmor-
tem brain tissue have shortcomings in that they do not provide
insight into the precise temporal development of a-SYN pa-
thology. Therefore, it is imperative that imaging ligands spe-
cific to pathogenic a-SYN assemblies are developed, which
will allow us to define in detail how LP progresses in a given
individual.

Why do not all synucleinopathies look and behave the same?

The aggregation of nonmutant a-SYN can cause distinct synucle-
inopathies in humans. The fact that a-SYN can form fibrillar
assemblies with distinct structural characteristics, as discussed
above, has led to the hypothesis that «-SYN strains may account
for the different clinicopathological traits that characterize DLB,
MSA, and PD. Indeed, a-SYN molecules adopt different confor-
mations leading to distinct molecular stacking within distinct

fibrillar assemblies and surfaces dissimilarities. As explained
above, in addition to having different biophysical properties that
reflect into different seeding, persistence, and macroscopic ap-
pearance, those assemblies have surface characteristics that likely
account for distinct interactomes. Thus, by interacting with dif-
ferent partners, including membranous surface proteins, diverse
a-SYN strains perturb cellular proteostasis in different ways lead-
ing to strain-specific clinicopathophysiological traits. This is a
potential explanation for why a-SYN aggregates mostly appear in
oligodendrocytes in MSA and in neurons in PD/DLB. Patients
with DLB, PD, and PD with dementia also exhibit different initial
clinical symptoms and diverse rates of progression. While this
potentially is also influenced by the predominant strain of
a-SYN, another explanation might be that the primary initial
trigger site of LP is different (e.g., gut vs olfactory system).

A unifying hypothesis

Prion propagation of a-SYN is an important molecular mecha-
nism that contributes significantly to disease progression. There
exist several potential triggers for cellular a-SYN misfolding that
have either genetic or environmental backgrounds (Fig. 2).
Whether the initial misfolding actually leads to a cascade of LP
spreading depends on several factors, including the age and ge-
netic background of the individual. Thus, we recognize that mi-
tochondrial dysfunction, oxidative stress, failure of the lysosomal
autophagy and ubiquitin proteasome systems, and neuroin-
flammation all probably play crucial roles in enabling the initial
misfolding of a-SYN or in facilitating the cell-to-cell transfer of
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pathogenic a-SYN assemblies. Future research should invest in
improving our understanding of how these mechanisms interact
with each other. Furthermore, we need better insight into how
different a-SYN fibril strains and anatomical trigger sites influ-
ence the type of synucleinopathy that develops. Ultimately, new
insights into these mechanisms can aid the development of novel
therapies that slow disease progression by interfering with fun-
damental steps in the pathogenesis and progressive worsening of
synucleinopathies.

4 )

Response from Dual Perspectives Companion
Authors-D. James Surmeier, José A. Obeso,
and Glenda M. Halliday

The manuscript by Brundin and Melki does an excellent job
of summarizing the evidence in favor of the hypothesis that
prion-like spreading of a-synuclein (o-SYN) fibrils con-
tributes to pathogenesis in Parkinson’s disease (PD). There
are only two points that merit clarification and reiteration.

First, the distinctive pattern of Lewy pathology (LP) in PD
remains a challenge to the prion hypothesis. Brundin and
Melki open a number of doors in an attempt to meet this
challenge. As nicely summarized in their figure, several fac-
tors can promote the formation of a-SYN fibrils or seeds.
Many of these appear to be found in neurons that are at risk
in PD, suggesting that seeding may happen in the brain,
rather than only in the olfactory bulb or gut, as originally
proposed by Braak and colleagues. If seeding is a stochastic
event in brain regions with neurons that have a set of pre-
disposing traits (e.g., elevated o-SYN expression, oxidant
stress, high intracellular Ca*"), it would explain much of
what we know about the distribution of LP. Pathology could
spread from these seeding sites. This is not in dispute. What
we do dispute is whether spreading is indiscriminate, as
implied by a prion-like mechanism. If spreading occurs in
PD, it must follow rules. Those rules remain largely unde-
fined. Synaptic connectivity may be necessary, but it cer-
tainly is not sufficient. Moreover, as Brundin and Melki
point out, spreading probably only occurs at a tipping point
when the a-SYN fibril load overwhelms local degradative
machinery. The relationship between a-SYN dose (and
strain), brain region inoculated, and spread has not been
systematically characterized; but where it has been ex-
plored, the results have not been consistent with a simple
prion model (Prusiner etal., 2015; Helwigetal., 2016). In the
end, longitudinal imaging studies in humans may provide
the only definitive answer to the spreading question.

Second, the uncertain relationship between LP, neuronal
loss, and the manifestations of PD poses another major
challenge to the hypothesis. The defining motor features of
clinical PD are unambiguously tied to the loss of dopamine
neurons in the substantia nigra pars compacta, and this is
the only consistent pathology in PD brains (Calne and
Mizuno, 2004). As we point out, the loss of these neurons
and those in other regions of the brain is not correlated with
the appearance of LP (Milber et al., 2012). In some genetic
forms of clinical PD, patients frequently have no discernible
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LP atall (Doherty et al., 2013; Kalia et al., 2015). Moreover,
in regions where there is LP, decades may pass without
any discernible cell loss or defined pathophysiology. The
failure to convincingly link either motor or nonmotor
symptoms in PD patients to the specific neural distribu-
tion and severity of LP is difficult to explain within the
framework of a simple prion model.

Asis often the case, it is likely that the truth lies somewhere
in the middle of this debate. Finding out where that point
lies should accelerate the development of an effective
disease-modifying therapy for PD, something we desper-
ately need.
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