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Stress Reduction, Bacterial Style
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ABSTRACT Bacteria have robust responses to a variety of stresses. In particular,
bacteria like Escherichia coli have multiple cell envelope stress responses, and gener- Accepted manuscript posted online 31 July
ally we evaluate what these responses are doing by the repair systems they induce. 2017
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stress are the genes that these stress systems downregulate, directly or indirectly. https//doi.org/10.1128/JB.00433-17.

This is discussed here for the Cpx and sigma E systems of E. coli. Editor Victor J. DiRita, Michigan State
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has done its job, preparing bacteria for every challenge. What we refer to as “stress For the article discussed, see https://doi.org/10
responses” are the changes in gene expression as bacteria adapt to changing or 1128/JB.00153-17.
suboptimal environments. We can most easily define these responses by the regulator The views expressed in this Commentary do not
necessarily reflect the views of the journal or

that controls the change—whether it is a specialized sigma factor, a two-component of ASM.
system, or some other transcriptional regulator. In the lab, we can induce these systems
by a variety of treatments or genetic tricks, and the combination of the inducing
condition and the changes in gene expression leads us to define a regulon as a
particular stress response—to Fe starvation (Fur regulon [1]), to DNA damage (SOS
response [reviewed in reference 2]), or in the cases discussed here, to perturbations in
establishing and maintaining the outer surface of the cell, the periplasm, and the inner
membrane (IM), monitored in part by the cell surface stress sigma factor sigma E (also
called RpoE), mediating outer membrane homeostasis, and the Cpx two-component
system, dealing with IM homeostasis (reviewed in references 3 and 4). However, what
is it that the cell is really sensing as stress? A study by T. Raivio and coworkers in this
issue (5) suggests a key role for IM protein complexes in the Cpx envelope stress
response, providing a new view of why the cell has evolved the Cpx regulon. The results
in many ways provide parallels to the sigma E envelope stress response.

To allow us to study a given stress response, we first need to have identified the key
regulator necessary for the response; usually, a mutant deficient in this will provide the
first definition of the regulon. Second, we need a way to induce the response at will.
Once those two components are available, defining the downstream output is reason-
ably straightforward. Genetic methods, in particular, transcriptional fusions, first de-
fined many stress responses (6), but now transcriptome sequencing can be used to
identify the range of transcriptional changes, both direct and indirect. This can be
refined to direct targets through approaches like chromatin immunoprecipitation.
However, it is becoming increasingly clear that this information does not always mean
we understand what the stress response is responding to and fixing. If we understand
what targets the induced enzymes might repair, that should provide some information
on what damage induces the response. However, even in a well-studied bacterium like
Escherichia coli, there will be multiple genes of unknown or poorly defined function
induced in response to a given stress, or the induced genes may represent a fairly
indirect part of the initial stress. In general, however, we assume that genes that are
induced in response to a stress are protective. What about those that are downregu-
lated when the stress response is induced? | will argue here that these genes are
frequently the key to understanding what a stress response is really about.
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Our thinking about envelope stress responses starts here with what is known about
the sigma E response (reviewed in reference 3). A significant class of outer membrane
proteins (OMPs) contain, at their C terminus, sequences that are hidden when the
proteins are properly inserted into the outer membrane; when these proteins are misfolded
or not properly trafficked to the outer membrane, these sequences are available to
interact with and activate the IM protease DegS (7). DegS then cleaves the anti-sigma
factor RseA, leading to activation of the sigma E response (8). The proteins that are
induced as part of the sigma E response include chaperones to help properly fold
OMPs, the transport machinery that places beta-barrel proteins in the membrane, and
periplasmic proteases to help rid the cell of irreversibly misfolded proteins (9). Sigma
factors, which direct RNA polymerase to promoters, do not directly carry out negative
regulation. However, there are clearly multiple genes downregulated when sigma E is
induced, including many OMPs (9). Thus, as part of the sigma E response, the synthesis
of the proteins that, when mistargeted, cause the stress in the first place is reduced.
Much, if not all, of this downregulation is via sigma E-dependent small RNAs (sRNAs)
(10, 11). These sRNAs pair with mRNAs, dependent on the RNA chaperone Hfg; pairing
leads to, in the cases discussed here, translational repression and mRNA degradation.
Absence of these and other sRNAs, or of Hfq, leads to constitutive induction of the
sigma E response (11-13), reinforcing the idea that if synthesis of OMPs is not
negatively regulated by sRNAs, the flux to the outer membrane may be too great for
cells to handle.

The work presented in this issue by Raivio and coworkers (5), combined with recent
work on the roles of the CpxQ sRNA (14, 15), suggests that for Cpx as well, downregu-
lation of the clients of the Cpx-induced proteins defines critical components that the
regulatory response protects. As with the sigma E response, the induced arm of the Cpx
response includes chaperones and protein foldases to promote correct protein folding
or to help degrade proteins that are beyond chaperone-induced repair (16).

What functions, then, are downregulated when Cpx is induced? The Raivio group
found, in earlier microarray studies, strong downregulation of two multiprotein IM
complexes, NADH dehydrogenase and cytochrome bo; (17). In contrast to sigma
factors, the CpxR response regulator can carry out direct repression, and in fact, this is
the case for the nuo operon, encoding NADH dehydrogenase, and the cyo genes,
encoding cytochrome bos. Why are they downregulated? If it is true that the targets of
downregulation are proteins that cause the stress in the first place, deletion of these
genes might relieve the stress; that is what Raivio and coworkers find. Thus, in a cpxR
mutant, when the cell cannot properly mount a Cpx response, cells are killed by
treatment with sublethal doses of the antibiotic amikacin or high pH, but deletion
of either the nuo or the cyo gene relieves this lethality (5). Strikingly, deletion of
these gene clusters also significantly lowers the induction of a Cpx reporter
normally induced as cells enter stationary phase. As with a number of other
membrane proteins, overexpression is sufficient to induce Cpx. These results all
suggest that proper folding and assembly of these IM respiratory complexes are
major targets for the Cpx response and that problems with their assembly or
function mediate, at some level, the induction of the response.

In addition to direct repression by Cpx, other genes are downregulated indirectly by
sRNAs when Cpx is induced. Most notable is CpxQ, an Hfg-binding sRNA encoded at the
3’ end of the cpxP gene, one of the most highly induced promoters of the Cpx response
(14, 15). Overexpression of CpxQ downregulated multiple mRNAs in Salmonella; the
mRNAs were enriched for those encoding proteins with IM or periplasmic localization.
This included the nhaB mRNA, encoding a sodium-proton antiporter previously shown
to be downregulated when Cpx is induced (17). Another target, Skp, is a periplasmic
chaperone suggested to be capable of mistargeting OMPs into the IM, collapsing the
proton motive force (15).

The downregulated genes identified in all of these studies are consistent with the
idea that the Cpx system'’s major function is to monitor and control something about
the status of the IM. What is actually being monitored? One possibility, as noted by
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FIG 1 Shown is a highly simplified version of two types of stress response, exemplified by the sigma E
(blue) and Cpx (red) responses to cell envelope stress. In both cases, and for many other stresses, induced
genes of the regulons encode functions involved in damage repair or avoidance, while repressed genes,
whether directly or indirectly (for instance, via sSRNAs) repressed, encode the key processes the stress

response must protect.

Guest et al. (5), is that multisubunit complexes of this sort need help assembling and
inserting, and when they do not, the Cpx system can help. For instance, while the
transcription of the enzymes of the respiratory complex is unchanged in the absence of
the Cpx two-component system, aerobic respiration is significantly decreased. Deleting the
genes that encode either of two major IM protein complexes might then suppress the need
for CpxR for resistance to high pH or to the antibiotic amikacin, as found by Guest et al., by
reducing the need to assemble one major complex. A somewhat more specific (but not
mutually exclusive) model suggests that Cpx is, in fact, a response to changes in the energy
status of the cell, reflected in somewhat decreased respiration when Cpx is activated (and
presumably downregulating the respiratory complexes encoded by the nuo and cyo
genes). This model would easily explain why deleting either of two operons in a given
pathway sometimes leads to a similar resistance to stress in cells with cpxR deleted and
would predict that deletion of genes encoding other proteins involved in respiration,
whether large complexes or not, might be similarly protective. Guest et al. argue that,

overall, this explanation is less likely.

Figure 1 outlines the general circuitry that | suggest is relevant to thinking about
most stress systems. Stress leads to induction of the regulon; regulon members will
include increased expression of the factors that repair the stress damage or avoid it,
possibly by using alternative metabolic pathways. Regulon members that are re-
pressed, however, may highlight what is the most basic source of the stress. Such
downregulation can be direct (as for Cpx repression of nuo and cyo in the work by
Guest et al.) or indirect, via intermediate regulators, in particular, sSRNAs. While the
discussion here is focused on two envelope stress systems, there is every reason to

expect the lessons learned from these to be universal.
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