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Abstract

A variable selection procedure is developed for a semi-competing risks regression model with 

three hazard functions that uses spike-and-slab priors and stochastic search variable selection 

algorithms for posterior inference. A rule is devised for choosing the threshold on the marginal 

posterior probability of variable inclusion based on the Deviance Information Criterion (DIC) that 

is examined in a simulation study. The method is applied to data from esophageal cancer patients 

from the MD Anderson Cancer Center, Houston, TX, where the most important covariates are 

selected in each of the hazards of effusion, death before effusion, and death after effusion. The 

DIC procedure that is proposed leads to similar selected models regardless of the choices of some 

of the hyperparameters. The application results show that patients with intensity-modulated 

radiation therapy have significantly reduced risks of pericardial effusion, pleural effusion, and 

death before either effusion type.
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1. Introduction

Global cancer incidence estimates from 2008 indicate that esophageal cancer is the eighth 

most common and the sixth most deadly among cancers [2]. Torrey et al. [3] estimated that 

there were 455,800 new cases and 400,200 deaths in 2012. The two most common types of 

esophageal cancer are squamous cell carcinoma and adenocarcinoma, the latter of which has 

been linked to obesity and gastrointestinal problems. Definitive concurrent 

chemoradiotherapy (CRT) is the standard treatment for esophageal cancers for patients with 
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inoperable tumors. Several different methods for delivering radiation are used, particularly 

three dimensional conformal radiation therapy (3D-CRT). All of these methods increase 

patient survival but also have several adverse effects, the most common being pleural 

effusion (PE) and pericardial effusion (PCE) [4] [5]. Pleural and pericardial effusion occur 

when excess fluid is present around the lungs and heart, respectively, and can lead to poor 

function of these organs and death. These adverse events are associated with higher doses of 

radiation to the heart and lungs [5].

Intensity-modulated radiation therapy (IMRT) has been shown to reduce the volume of a 

patient’s non-cancerous organs exposed to radiation and increase volume of radiation on 

esophageal tumors compared to 3D-CRT [6]. Chandra et al. [7] showed that IMRT reduced 

the volume of lungs that received different radiation doses compared to 3D-CRT. Due to the 

relationship between increased dosage and effusion rates, IMRT potentially could result in 

fewer incidences of pleural and pericardial effusion in esophageal cancer patients compared 

to standard 3D-CRT treatment. Assessing the impact of IMRT on time to effusion is more 

complicated than assessing the impact of IMRT on overall survival time, even when pleural 

and pericardial effusion are considered separately. When the survival time of interest is a 

non-terminal event such as effusion, death is commonly assumed to be a non-informative 

independent censoring event [8]. This assumption is invalid because both pleural and 

pericardial effusion could lead to death, which means that death may indicate that a patient 

experienced effusion, which is informative censoring. Another complication with this data 

structure is that patients can experience effusion followed by death, but not death first and 

effusion afterwards. Administrative right censoring could occur before a patient experiences 

either event type or after a patient has effusion. Due to these complications, this data 

structure must be analyzed with a semi-competing risks model. This model has different 

hazards for three events: a given non-terminal event, death before the non-terminal event and 

death after the non-terminal event.

Lee et al. [9] developed a novel Bayesian semi-parametric semi-competing risks regression 

model for a non-terminal event and death. Their motivating non-terminal event of interest 

was hospital readmission for patients diagnosed with advanced pancreatic cancer. Since 

pancreatic cancer has high mortality rates, they were concerned with end of life care and 

keeping patients comfortable at home during their final days. They considered three different 

hazard functions: the hazard of a non-terminal event, the hazard of death without a non-

terminal event, and the hazard of death after a non-terminal event. Each of these three hazard 

functions resembled a Cox-type regression including a baseline hazard function which was 

assumed to be piecewise exponential, individual patient frailty parameters, and a linear 

combination of patient covariates. They used the posterior sample of the beta coefficients in 

the three hazards for inference on what types of homecare affected the hazard that a patient 

would return to the hospital, the hazard of death before returning to the hospital, and the 

hazard of death after patients were readmitted to the hospital. They implemented their 

algorithm in the package SemiCompRisks [10].

We initially aimed at implementing the semi-competing risks model of Lee et al. [9] to 

analyze the effects of IMRT on effusion and overall survival for an observational study 

consisting of 470 patients at The University of Texas M.D. Anderson Cancer Center in 
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Houston, TX, treated between January 1998 and April 2012 [11]. However, it was unclear 

which baseline covariates should be included in the model for analyzing the IMRT effect, 

particularly because of the correlation between treatment group assignment and the baseline 

covariates, which could affect clinical conclusions. Consequently, in this paper we develop a 

variable selection procedure for the semi-competing risks model of Lee et al. that uses spike-
and-slab priors and stochastic search variable selection (SSVS) algorithms for posterior 

inference. The proposed procedure performs variable selection for each of the linear terms in 

the three hazard functions. Furthermore, we devise a protocol to choose the threshold on the 

marginal posterior probability of variable inclusion based on the Deviance Information 

Criterion (DIC). The code for the described methodology can be found in the R package 

SCRSELECT [1] In the application to the data from the esophageal cancer patients we do 

not perform variable selection on the IMRT status. To correct for some of the bias 

introduced in a nonrandomized observational study, we estimate the probability of receiving 

IMRT for each patient as a function of other covariates and include this propensity score in 

each hazard function. This allows us to compare the effects of IMRT on effusion and death 

while correcting for bias for non-randomization in every potential model. We present results 

from analyses done separately for pleural and pericardial effusion, where we show how the 

DIC procedure we propose leads to similar selected models, regardless of the choice of some 

of the hyperparameters. We find that patients with IMRT radiation have significantly 

reduced risks of pericardial effusion, pleural effusion and death before either effusion type. 

The rest of the paper is organized as follows: In section 2, we describe the Bayesian semi-

parametric semi-competing risks model, the variable selection priors and the Markov Chain 

Monte Carlo procedure for posterior inference. We also present the DIC-based procedure 

that we propose for the final covariate selection. In section 3, we perform a simulation study 

to assess our proposed DIC-based procedure. In section 4, we describe the case study data 

and discuss results and sensitivity to hyperparameter choices. Section 5 concludes the paper 

with a discussion.

2. Methods

2.1. Semi-Parametric Semi-Competing Risks Model

Let T1i denote the time to a non terminal event and T2i be the time to death for patient i. Lee 

et al. [9] model covariate effects in the three hazard functions in the following manner. They 

denote h1, the hazard of a non-terminal event, h2 the hazard of a terminal event when the 

non-terminal event has not occurred and h3, the hazard of a terminal event after the non-

terminal event has occurred. Let xi denote the vector of patient covariates and β1, β2, β3 

denote the three coefficient vectors associated with xi in hazards 1,2, and 3, respectively. 

They list the functional forms of the three hazards for the semi-markov model as

(1)

(2)
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and

(3)

γi is the frailty for patient i and h0g is the baseline hazard function for event g = 1, 2, 3. Even 

though here, we consider the same set of covariates for each of the three hazards, model 

formulation (1)–(3) can accommodate different lists of covariates for each hazard function. 

Lee et al. [9] assume that the log baseline hazard functions are piecewise exponential, that is 

λg,j = log(h0g(t)) is constant for t ∈ Ig,j = (sg,j−1, sg,j] for a partition of the time scale sg,0 = 0 

< sg,1 < sg,2 < … < sg,Jg < sg,max, where sg,max is the largest observed time for event g. The 

observed events are Y1i = min(T1i, T2i, Ci), δ1i = I[T1i ≤ min(T2i, Ci)], Y2i = min(T2i, Ci) 

and δ2i = I[T1i ≤ Ci]. These are realizations of T1i, the time to non terminal event, T2i, the 

time to death, and Ci, the independent censoring time for patient i. The likelihood for this 

parameterization of the baseline hazard functions and given hazard functions (1)–(3) is

where d1j is the number of patients who experienced a non-terminal event in the interval 

(s1,j−1, s1,j], d2k is the number of patients who experienced a terminal event but did not 

previously experience a non-terminal event in the interval (s2,k−1, s2,k], and d3l = #{i : s3,l−1 

< Y2i − Y1i ≤ s3,l, δ1i = 1, δ2i = 1} is the number of patients who have a time between 

effusion and death in interval (s3,l−1, s3,l].  for g = 1,2 

and . We denote by ℛgj the risk set ( the set of 

patients who have neither experienced event g nor been censored by time sg,j−1) for interval 

Ig,j and let gj denote the set of patients who experienced event g in this interval. We follow 

Lee et al. and assign priors for g = 1, 2, 3

This prior formulation has hyperparameters ag, bg, ψ, and ω. Here Σλg is a function of the 

current partition sg corresponding to a Multivariate Normal intrinsic conditional 

autoregression model (ICAR) as formulated by Besag and Kooperberg [12].
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Lee et al. [9] consider the number of split points Jg to be a poisson random variable with 

mean αg. They place a prior distribution on the partition sg|Jg by drawing 2Jg + 1 uniform 

random variables on [0, sg,max] and take the even indexed values as the split points. We also 

adopt this prior formulation, which limits the number of split point intervals that have no 

events.

2.2. Variable Selection Priors

Bayesian variable selection methods were introduced by George and McCulloch [13] [14] 

for normal linear models. The basic idea is to introduce a latent binary random vector η = 

(η1, …, ηp) with ηk = 0 indicating that the variable x(k) should be excluded from the model 

and ηk = 1 otherwise. Generalizing this notation to three hazard functions, we introduce 

three latent vectors ηg = (ηg,1, …, ηg,p) one for each hazard function g = 1, 2, 3, where ηg,k 

= 1 indicates that the variable x(k) is important in hazard g and ηg,k = 0 otherwise. The 

indicator ηg,k is included in the prior distribution of βg,k to define the mixture

(4)

where δ0(·) is the point mass distribution at 0. Mixture priors of type (4) are known as spike-

and-slab priors in the Bayesian variable selection literature. Here we choose  in (4) as the 

kth diagonal element of  with X(ηg) denoting a matrix of the columns of X 
corresponding to ηg = 1, obtaining a prior resembling Zelner’s g-prior [15]. This prior 

mimicks the correlation structure of the data. Denote by β(ηg) the coefficient vector 

corresponding to the entries of ηg = 1, and  the coefficient vector corresponding to the 

entries of ηg = 0. Then the prior distribution of βg|ηg can written as

(5)

and that . We assume ηg,k ~ Bernoulli(wg) for all k = 1, …, p and g = 1, 2, 3. 

Formally, the prior of ηg|wg is

where  is the number of ηg,k = 1 in hazard g. We assume a beta prior 

distribution for each of the wgs with parameters zg1 and zg2. Following Brown et al. [16], we 

integrate out wg to get the marginal prior for π(ηg) as
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where Beta(·, ·) is the beta function.

2.3. Markov Chain Monte Carlo

For posterior inference, we implement a Markov Chain Monte Carlo (MCMC) sampling 

scheme with stochastic search variable selection (SVSS) applied on the three hazard 

functions that use add, delete and swap moves. We employ some of the same sampling 

schemes of Lee et al. but use different algorithms in our sampling of sg, λg|sg, μλg, σλg and 

the sequence of the Gibbs sampler. Lee et al. [9] used a random scan Gibbs sampler where 

the probability of adding an additional split point or deleting one of the current split points 

was a function the current number of split points and hyperparameters. The remaining 

moves are the frailty sampler, the hierarchical frailty parameter, 3 baseline hazards, 3 

hierarchical baseline hazard parameters and 3 regression parameters, which are assigned 

equal probabilites from what is left after accounting for birth and death probabilities for the 

three different baseline hazard functions. Our approach differs in that we do not randomly 

select what move to perform at each iteration, and instead do all the moves for each of the 

three hazard functions consecutively. In summary, a generic iteration of the MCMC sampler 

does the following

• Update (ηg, βg) jointly via a Metropolis step. This is done through add, delete, 

and swap moves. If tg = 0, add one variable automatically and if tg = p delete one 

variable automatically. Otherwise, with probability ϕ, perform a swap move. 

With probability 1−ϕ perform a Add/Delete move and randomly select one entry 

of ηg, say ηg,k, and if ηg,k = 1, perform a delete move, otherwise perform an add 

move. The details of these three moves are described below:

1. Add If ηg,k = 0, set  and sample βg,k|βg,(−k), ηg from a normal 

distribution. Denoting , then the proposal 

distribution has mean  and a 

variance of . Denote Σk,k as 

the kth diagonal element of Σ, Σk,(−k) as the kth row without the kth 

column entry and Σ(−k),(−k) as the submatrix without row and column k 
of Σ. The proposal (ηg

*, βg
*) is accepted jointly with probability

2. Delete If ηg,k = 1, set  and . Denote 

 and variance 
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. Then the proposal ( ) is 

accepted with probability

3. Swap randomly select one ηg,k = 1 and one ηg,j = 0 and swap their 

values, setting  and . Then set  and sample 

 from a normal distribution with mean μnew and variance 

σnew. These proposed values ( ) are accepted with probability

• Update β(ηg) via a Metropolis step. β(ηg) is first updated conditionally by 

sampling β(ηg),k|ηg, β(ηg),(−k) from a N(μold, σold) for all k = 1, …, p variables 

currently in hazard g. Then β(ηg) is updated jointly by sampling a proposal 

. This provides better mixing in our Markov 

Chain by moving entries of β(ηg) further from or closer to zero which affects 

future (βg, ηg) updates.

• ε = θ−1 via a Metropolis step in the same manner listed in the supplemental 

material of Lee et al.

• Update γi for i = 1, …, n via a Gibbs step in the same manner listed in the 

supplemental material of Lee et al.

• Update μλg and  via a Gibbs step in the same manner listed in the 

supplemental material of Lee et al. for g = 1, 2, 3. The posteriors for each are 

normal and inverse-gamma distributed, respectively.

• Update λg,j|λg,(−j), sg for j = 1, …, Jg + 1 via a Metropolis step. Lee et al. use the 

first and second derivatives of π(λg|Data) in the λg|sg, μλg,  proposal 

distribution. These derivatives involve βg, which often has entries that change 

drastically in magnitude in the SVSS procedure, making the sampling scheme of 

Lee et al. extremely inefficient. Furthermore, the tuning parameter they use in the 

proposal distribution for λg must be tuned for each hazard g = 1, 2, 3 extensively 

to get good Metropolis-Hastings acceptance rates. To avoid these issues, we 

sampled  from a U (λg,k − cg, λg,k + cg) distribution where λg,k is the 

previous sampled value. This follows the approach of Haneuse et al. [17], and we 

use their default value cg = .25 for each g, which gives good acceptance rates 

within our MCMC. Since the proposal ratio is , the proposed value  is 

accepted with probability
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• Add a split point to sg and update (sg, λg) jointly via a Metropolis-Hastings-

Green step. Propose a new split point on  then the new  heights 

created by adding this split point are based on a multiplicative perturbation like 

in Green [18] and Lee et al. [9]. That is, if s* is proposed such that it is in the 

interval [sg,j−1, sg,j ] then the new  values are

Ug ~ U[0, 1] is drawn at every iteration. This is the only difference in our 

sampler from the sampler of Lee et al. for the Metropolis-Hastings-Green step, 

as they set Ug as a tuning parameter. This move is accepted with probability

• Delete a split point from sg and update (sg, λg) jointly via a Metropolis-Hastings-

Green step. We randomly select one of the current split points that are not 0 or 

sg,max with equal probability and delete it. Assume we delete split point sg,j. 

Following the methods outlined by Green [18], we have that the multiplicative 

perturbation is  and that the new height of the interval created 

by deleting a split point is a compromise of the previous two heights over this 

interval, defined as

We draw a new Ug ~ U[0, 1] as in Green [18], rather than setting it to be a 

hyperparameter as in Lee et al. Now we accept the vector (sg
*, λg

*) jointly with 

probability
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2.4. Model Determination

To determine the final model on which to draw inference on our treatment and covariate 

effects on survival, we calculated the marginal posterior probabilities of inclusion for each 

variable k = 1, …, p in hazard function g as the proportion of ηg,k = 1 in the posterior 

sample. We then selected the variables in hazard g with marginal posterior probabilities of 

inclusion (PPI) greater than τg ∈ (0, 1). Formally, variable k = 1, …, p in hazard g = 1, 2, 3 

was included in the final model if

(6)

Thus, one must specify τg for each of the three hazard functions. We decided the optimum 

 vector based on the deviance information via the DIC-τg procedure, defined 

as follows. Recall that the deviance information criterion of Spiegelhalter et al. [19] for β is

(7)

where , βb is the sampled value of β for iteration b 
and β̂ is the posterior mean of β = (β1, β2, β3). Since our likelihood contains many nuisance 

parameters (γ, Jg, sg, λg,…), Spiegelhalter et al. [19] reccommend to plug-in posterior 

means of these parameters in determining the DIC for a given β vector. We use the DIC to 

select the optimal model via the following algorithm, which we call the DIC-τg procedure.

1. Calculate the posterior mode or median of Jg for g = 1, 2, 3, depending on the 

shape of the posterior distribution. The posterior mode is calculated if the mode 

had a much greater posterior density than all other possible values for Jg while 

the posterior median of Jg is calculated if there were several values of Jg that 

occurred with about the same frequency.

2. Compute the posterior mean nuisance parameters γ = (γ1, …, γn), sg|Jg and λg|

Jg for g = 1, 2, 3.

3. Perform a three-dimensional grid search for the optimum τ = (τ1, τ2, τ3) over 

values τg = 0.05, 0.1, …, 0.9 that give different models based on the threshold 

criterion (6) for g = 1, 2, 3.

a. For a given τ = (τ1, τ2, τ3), find the  that satisfies (6).

b. Sample  10, 000 times via a Metropolis-Hastings algorithm using 

the prior distribution (5), the same c value used in the variable selection 

sampler and the posterior quantities calculated in steps 2 and 3.

c. Discard the first half of the sample and save the DIC
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4. The vector  chosen by the DIC-τg procedure is the τ* that 

produces the smallest DIC. For models with DIC values that differ by 1 or less 

from the model with the smallest DIC, the most parsimonious model was 

selected as the final model. A small decrease in DIC here indicates that including 

more variables does not increase the information criterion significantly over the 

more parsimonious model.

5. The final model includes the variables that satisfy (6) for the optimal 

After the DIC-τg procedure selects  based on , we resample 

 100, 000 times using the prior (5)  and do posterior 

inference after discarding the first 50, 000 MCMC samples. While we could compute the 

DIC for all 193 different τ vectors, small changes in τg of .05 or .10 may not add any 

additional variables to hazard g, which means that two different τg vectors could lead to the 

same ηg. This reduces the number of τg values that we need to try based on our marginal 

posterior probabilities of inclusion. On the other hand, increasing τg by .05 could add more 

than one variable to hazard g. Since our case study has 11 variables, there are at most 113 

different τ = (τ1, τ2, τ3) vectors that choose a unique subset of variables. We also did not 

consider a finer grid τg = .01, .02, … because using a spacing of .05 tends to include 

variables that occur with about the same frequency in the posterior distribution. This 

contrasts searching through the (211)3 total possible models without using the SVSS 

approach to find the lowest DIC. By performing the SVSS to obtain a posterior ordering of 

the variable importances, we compute the DIC for less than 0.0001% of the total possible 

models.

3. Simulation Study

We performed a simulation study under six different scenarios to see how well our method 

selected important variables in the posterior probabilities of inclusion, and how accurately 

the DIC-τg method selected the final model. We used the simID function from the 

SemiCompRisks package to simulate patient data under the Weibull semi-competing risks 

model, to examine how well our method performs when the baseline hazards are not truly 

piecewise exponential. For all simulation studies, we used κ1 = .05, κ2 = .01, κ3 = .01, α1 

= .8, α2 = 1.1, α3 = .9 and θ = .5 which are the values given in the example for the simID 

documentation. Additionally, we set the censoring time for patients at 2000 days. For each 

simulated data set, we used the actual patient covariate matrix from our data to mimic a 

correlated data structure, rather than generating patient covariates independently. We 

performed the simulation study as follows for each simulation:

1. Run two MCMC chains using the package SCRSELECT [1] for 100,000 

iterations with disperse starting values. One chain starts with all the variables 

included, the other starts with no variables included.

2. Discard the first 40,000 samples and combine the two chains, saving the 

marginal posterior probabilities of inclusion as well as the posterior means of 
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nuissance parameters for the baseline hazard and frailties (sg|Jg, λg|Jg, γ), as 

outlined in the DIC-τg procedure.

3. For τg = (.05, .1, …, .9) and g = 1, 2, 3 run an MCMC as described in section 2.4 

for the DIC-τg procedure using the quantities from step 2 while skipping any (τ1, 
τ2, τ3) vectors that do not change the variables included in each hazard

4. Find the combination τ1, τ2, τ3 that produces the smallest DIC. When there are 

DIC values within 1 of each other for different models, take the one with less 

variables included (higher τ values).

5. Assess the results of the simulation.

We present results averaged over 100 replicated datasets for each scenario. For each of the 

seven scenarios we kept the last two entries of the βg vectors constant and did not allow 

these to be selected from the model. These correspond to the propensity score and treatment 

effect of the XRT modality, respectively. These last two entries are set to (.15,−.15) for the 

hazard of effusion, (.3,−.2) for the hazard of death before effusion, and (.01,−.05) for the 

hazard of death after effusion. These values were selected in part to mimic the case study 

results. This allowed selection on 11 out of the 13 covariates in each hazard. Below is a 

summary of the six simulation scenarios that we considered for the DIC-τg method, where 

we only list the true coefficients of variables that were considered for variable selection.

Since gth hazard of the model includes eXtβg, entries of magnitude greater than 1 would be 

too unrealistic and easy to pick out in simulations. Instead we focused on coefficients having 

magnitudes of .3 to .9, with a few challenging coefficient values having magnitude less 

than .3. We used the same hyperparameter settings used in the application for the 

simulations for comparison. We set the variable selection hyperparameters c = 20 in (5) and 

(zg1, zg2) = (.4, 1.6) for g = 1, 2, 3. We set (ag, bg) = (ψ, ω) = (.7, .7) as a non-informitive 

prior for  and θ−1. We set αg = 3 corresponding to 3 expected split points in each 

baseline hazard, and the maximum possible number of split points to 10.

Before examining how well the DIC-τg procedure picked out the final model, we examined 

marginal posterior probability of inclusion results for the simulations in terms of included 

variables and excluded variables. In most hazards and senarios, the mean marginal 

probability of inclusion for the included variables is greater than .9. There are several 

exceptions to this that can be explained by the simulation settings. In scenario two hazard 

three, the mean marginal probability of inclusion for the two variables is .797, but the 

median is 1.00. This is due to the small true simulation value for variable 8 of .2, which is 

much harder to detect in the SVSS.

In Table 2, we display a summary of the results of the DIC-τg procedure showing the mean 

number of false positives, false negatives, and the mean probability of a correct decision. We 

denote NFP= mean number of false positives and N0 = total number of variables with true 

βg,k = 0 for all three hazards combined. Similarly, NFN= mean number of false negatives 

and N+ = total number of variables with true βg,k ≠ 0 for all three hazards combined. We 

denote PCD as the probability of a correct decision of whether or not a variable is included. 

We also computed a statistic resembling the area under the curve (AUC) where we plotted 

Chapple et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the true positive and false positive rates of all 100 simulations, connected these points in the 

same manner as the ROC curve and estimated the area under this curve. This statistic, which 

we denote AUC* operates in the same manner as the traditional AUC statistic where larger 

values indicate a better classifier and values near .5 indicate a poor classification method. 

We used this since it evaluated the DIC-τg procedure rather than just the SVSS portion like 

the traditional AUC score would. The AUC* and AUC statistics were undefined and omitted 

for scenario 7 since there were no true positives.

In all seven scenarios the DIC-τg method correctly determined variable inclusion on average 

with probability .76 to .82 and the AUC* scores for the simulations were all greater than .88, 

showing that the DIC-τg procedure performs well in determining variable inclusion. The 

DIC-τg method correctly identified the true model in at least one simulation for scenarios 

2,3 and 7. The majority of the incorrect decisions about variable inclusion were false 

positives, and false negatives did not even occur in scenarios 3 or 7 which are the sparse and 

null scenarios. Each scenario had about 6 false positives on average, with the second 

scenario having the highest mean false positive rate. The false positives are partially due to 

correlations among the covariates, and not imposing enough separation in the marginal 

posterior probabilities of inclusion, which can be mitigated through careful adjustments to 

the hyperparameter c.

4. Application

4.1. Data

This observational data set came from M.D. Anderson Cancer Center in Houston, TX. It 

consists of 470 esophageal cancer patients who had one of two XRT modalities for 

radiation: 3-Dimensional Conformal Radiation Therapy (3D-CRT) or Intensity Modulated 

Radiation Therapy (IMRT). Some patients also received induction chemotherapy. Patients 

were followed from the end of radiation therapy until death or censoring. The dates pleural 

or pericardial effusion occured were recorded during this time. The two path diagrams in 

Figure 1 describe the semi-competing risks structure and enumerate the different patient 

outcomes. In each of these paths, we display the total number of patients who experienced 

each event followed by the numbers of patients who received 3D-CRT and IMRT, 

respectively, in each transition. Pleural effusion occurs much more frequently in these 

patients than pericardial effusion. Patients who experienced either Pericardial or Pleural 

effusion died afterwards in over 75% of all cases (no censoring).

We did separate analyses for the pleural effusion and pericardial effusion path structures 

shown in Figure 1. Each patient had 20 baseline covariates, including individual 

characteristics and characteristics related to their tumor. Several patient covariates had high 

pairwise correlations or a small number of patients. Because this caused severe MCMC 

convergence problems, these variables were excluded from the analysis. The covariates 

considered were XRT modality, induction chemotherapy, age, BMI, asthma, diabetes, 

smoking status, and also binary variables for whether or not a patient had an adeno 

histology, a good KPS performence score, stage 3–4 cancer, and for tumor location 3 (lower/

distal) or tumor location 2 (middle) vs tumor location 1 (upper). Because patients did not 

have smoking status, BMI, or tumor histology information, they were removed from the 
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data, leaving 470 patients. Clinicians were primarily interested in comparing the effects of 

the two modalities on pleural effusion, pericardial effusion, and death, but it was unclear 

what covariates should be included in each hazard function. We addressed this concern 

through our variable selection method for the three hazard functions. We included IMRT 

status in each hazard to evaluate radiation therapy modality effects on each of the three 

hazard functions. Because the data were observational and not randomized, we included the 

propensity score of each patient as a covariate always in each hazard to correct for some of 

the bias introduced. The propensity score was estimated by logit−1(Pr(IMRT|X)) = .25 + .

48(Hypertension) − .20(Differentation) + .30(Adeno Histology), the fitted logistic regression 

model of these covariates on IMRT status. We did not allow the propensity score or IMRT 

status to be removed from the model. Thus, X(ηg) always contains a column with individual 

propensity scores and XRT status. Likewise, β(ηg) always contains an entry corresponding to 

the estimated coefficient for the propensity score and XRT status in each hazard function.

4.2. Hyperparameter Settings

For the hyperparameters, we set c = 20 in (5) for both case studies. We found that varying c 
greatly changed the posterior inclusion probabilities, with larger values of c forcing more 

variables out of the model and smaller values keeping more variables in the model. Smith 

and Kohn [20] reccomend a value between 10 and 100. We obtained vague priors on wg as 

in Brown et al. [16] by imposing the constraint zg1 + zg2 = 2, corresponding to a prior 

effective sample size of 2 for the beta prior of the covariate inclusion probability, with some 

desirable mean percentage of inclusion. We set (zg1, zg2) = (.4, 1.6) for g = 1, 2, 3, 

corresponding to an expectation of 2 to 3 variables being included in each hazard function. 

We set (ag, bg) = (ψ, ω) = (.7, .7) as a non-informitive prior for  and θ−1. This 

corresponds to .025 and .975 quantiles of .23 and 155.61 for  and θ. We set αg = 3 

corresponding to 3 expected split points in each baseline hazard, and the maximum possible 

number of split points to 10, which neither data set reached for any hazard. Hyperparameter 

settings for the ICAR formulation are discussed in the appendix. For both data sets, two 

chains were run with two different starting values for the three hazard βg vectors; the first 

with all ηg,k = 1 and βg,k = 1 for all k = 1, .., p and g = 1, 2, 3 the second with η1,3 = 1,η2,5 = 

1 and η3,7 = 1 (these entries were randomly chosen) and all non-zero coefficients set to βg,k 

= −1.

4.3. Case Study Results: Pleural Effusion

The two chains were run for 100, 000 iterations with the first 40, 000 discarded as burn-in. 

The scale reduction factors for the βg coefficients had estimates and upper confidence 

interval estimates below 1.01, which indicates good convergence for both chains along with 

the trace plots for each [21]. Furthermore, the posterior probabilities of inclusion for the two 

chains did not differ substantially, with the biggest difference of 4.46%. The correlation of 

the marginal posterior probabilities of inclusion for the two chains were all above .99 for all 

three hazards. The posterior samples of both chains were then combined and the resulting 

marginal posterior probabilities of inclusion can be seen graphically in Figure 2 and 

numerically in Table 5.

Chapple et al. Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The optimal model based on the DIC-τg had a DIC of 1050.845 and indicated that 

 was the appropriate vector of upper bounds to produce the 

optimum model. This model had 2, 7 and 3 variables in hazards 1, 2 and 3, respectively. 

After finding the optimal model, the Gibbs sampler was rerun using 100, 000 iterations. 

Table 3 displays the fitted optimal model with 95% posterior credible intervals for the 

hazard ratio exp[βg,k] and P = P[βg,k > 0|Data] for the kth variable included in each hazard. 

That is, P is the posterior probability that the effect of covariate k increases the hazard of 

event g, so that large values of P, above .95 or .99, correspond to a harmful effect of the 

covariate.

We see from the final model chosen by the DIC-τg procedure that patients with IMRT 

radiation had significantly reduced hazards of pleural effusion and death before pleural 

effusion compared to 3D-CRT (P < .01). Older age greatly increased the hazard of pleural 

effusion (P = .99) and patients with Stage 3–4 cancer had an increased hazard of death after 

pleural effusion (P = .99). Patients with diabetes and adeno histology had significantly 

increased hazards of death before pleural effusion (P = .99) and patients with a good KPS 

score had a significantly reduced hazard of death before pleural effusion P <.01. Stage 3–4 

cancer increased the hazard of death before pleural effusion (P = .97) but patients with stage 

3–4 cancer had a significantly increased risk of death before pericardial effusion (Table 4). 

This could be attributed to the number of patients who died without pericardial effusion (n = 

285) compared to those who died without pleural effusion (n = 197).

4.4. Case Study Results: Pericardal Effusion

The two chains were run for 100, 000 iterations with the first 40, 000 discarded as burn-in. 

The scale reduction factors for the βg coefficients had estimates and upper confidence 

interval estimates below 1.01, which indicates good convergence for both chains along with 

the trace plots for each [21]. The posterior probabilities of inclusion for the two chains did 

not differ substantially, with the biggest difference 2.80%. The correlation of the marginal 

posterior probabilities of inclusion for the two chains were .994, .995 and .972 for the three 

hazards, respectively. The posterior samples of both chains were combined and the resulting 

marginal posterior probabilities of inclusion can be seen graphically in Figure 3 and 

numerically in Table 7.

Variables above the thresholds in Figure 3 are included in the final model. The optimal 

model based on the DIC-τg procedure had a DIC of 895.37, with τ* = (.55, .65, .45). This 

model produced 7, 6, and 2 variables in hazards 1, 2, and 3, respectively. After finding the 

optimal model, the Gibbs sampler was rerun using 100, 000 iterations and the first 50, 000 

samples were discarded as burn-in. Table 4 displays the fitted optimal model with 95% 

posterior credible intervals for the hazard ratio exp[βg,k] and P = P[βg,k > 0|Data], the 

posterior probability that a larger value of a covariate is more hazardous, for the kth variable 

included in each hazard g. We used the same hyperparameter settings for this model as for 

the pleural effusion model, namely c = 20, zg1 = .4 and zg2 = 1.6.

Table 4 shows that patients with IMRT had significantly decreased hazards of pericardial 

effusion and death before pericardial effusion, compared to those who received 3D-CRT (P 
< .01 for both hazards). All other 95% credible intervals for the hazard of pericardial 

Chapple et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effusion contain 1, so even though Age and Adeno histology had coefficients that indicated 

the hazard decreased with these variables (P = .03 and .04) they only decreased the hazard of 

pericardial effusion slightly. The final model for the hazard of death before pericardial 

effusion has clearer trends, namely patients with Stage 3–4 cancer, Diabetes, or an Adeno 

Histology had significantly increased hazards of death without prior pericardial effusion (P 
> .99), evidenced by the 95 % credible intervals. IMRT was associated with a significant 

reduction in the hazard of death prior to pericardial effusion as did patients with an increased 

BMI (P < .01). No variables included in the hazard of death after pericardial effusion 

changed the hazard significantly, indicating that patient baseline covariates and radiation 

therapy have little effect on survival following pericardial effusion.

4.5. Sensitivity Analyses

We assessed how sensitive the marginal posterior probabilities of inclusion and model 

selected via the DIC-τg procedure were to the hyperparameters c, zg1 and zg2. Because we 

wanted to distinguish among variables, we did not consider c and (zg1, zg2) values that force 

all variables in or out of the model. For c, first we found a range of appropriate values for the 

data that did not include or exclude all the variables. Varying c within this range of 

appropriate values did not have a large impact on the final models. We tested sensitivity of 

our model to c by looking at c = 20 and c = 30, in conjunction with two wg hyperparameter 

combinations of (zg1, zg2) = (.4, 1.6) as in the primary analysis and (zg1, zg2) = (.1, 1.9) 

corresponding to an expectation of 1 or 2 variables included in each hazard. We found that 

our method was sensitive to the choices of c and (zg1, zg2) in shrinking the marginal 

posterior probabilities of inclusion, but that the final model chosen by the DIC−τg procedure 

did not differ much. This helps address concerns about the sensitivity of the model to final 

inferences based on treatments and covariates. For sensitivity to the survival 

hyperparameters, we refer to the supplemental material of Lee et al. [9].

To assess sensitivity to the pleural effusion case study, Table 5 shows the marginal posterior 

probability of inclusion in each hazard function for each of the four different settings of c 
and zg1. For each hazard function, increasing c had a greater shrinkage impact than 

decreasing zg1 for the pleural effusion data.

In general, the ordering of importance of the variables by marginal Posterior Probablies of 

Inclusion (PPIs) does not change much. The primary difference in ordering comes for 

variables that have lower marginal PPIs relative to the variables with the highest PPIs in each 

hazard, because these variables tend to have marginal PPIs very close to each other, which 

increases the likelihood of different orderings by chance alone. As mentioned previously, 

different values of c and zg1 induce different degrees of sparsity, so we wanted to know if 

our final model selected via the DIC-τg procedure was sensitive to c and zg1. Table 6 

displays the final models selected by the DIC-τg procedure for each of the four models 

considered. The same two variables, Age and BMI, were chosen in the final model for all 

but one hyperparameter setting. In all four settings, the hazard of pleural effusion was 

decreased significantly for patients who had IMRT radiation (P <.01) and increased for 

patients with older age (P ≥ .99). For the hazard of death before pleural effusion, the 

variables Diabetes, Stage 3-4, Location 2, Location 3, BMI, good KPS and adeno Histology 
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were included for all four hyperparameter settings. In all four settings, the hazard of death 

before pleural effusion was reduced significantly for patients with IMRT radiation (P ≤ .01). 

All four hyperparameter settings had Stage 3-4 in the final model for the hazard of death 

after pleural effusion, and in each model, having stage 3-4 cancer significantly increased a 

patient’s hazard of death after pleural effusion (P ≥ .99). In models including more than just 

Stage 3-4 cancer in h3, all other credible intervals contained 1, indicating that Stage 3-4 

cancer is the key driver for this hazard.

Next, we similarly assessed the sensitivity of the pericardial effusion data set to the variable 

selection hyperparameters. For the first two hazard functions, increasing c caused more 

shrinkage than decreasing zg1 while the third hazard function achieved more shrinkage by 

lowering zg1. The four different settings considered had good agreement for the order of 

importance based on marginal posterior probability of inclusion for the second and third 

hazard functions. Table 7 shows that Stage 3-4, good KPS and Adeno histology had the three 

highest marginal posterior probabilities of inclusion (in order) for the hazard of death before 

pericardial effusion in all four settings considered. Diabetes, Location 3 and a good KPS 

score had the highest three marginal posterior probabilities of inclusion for the hazard of 

death after pericardial effusion for all four models considered. There was, however, more 

sensitivity to c and zg1 for the hazard of pericardial effusion. While all four settings 

identified Age as the variable with highest marginal posterior probability of inclusion for 

hazard 1, three out of the four models identified Adeno Histology and Location 3 and the 

second and third most important variables based on the marginal PPI. The model that didn’t 

identify this trend, with c = 30 and (zg1, zg2) = (.4, 1.6), had four variables with marginal PPI 

values between .40 and .44, which included the variables associated with Adeno Histology 

and a good KPS score. This discrepancy in ordering could be due, in part, to these four 

marginal PPI values being close to each other. In Table 8, we see the final models selected 

by the DIC-τg procedure for each of the four models considered.

The models chosen for the pericardial effusion data do not differ much for the four c and zg1 

values considered. The hazard of pericardial effusion included Diabetes, Location 2, 

Location 3, Age, Smoking Status, BMI and Adeno histology in all four models considered. 

All four models included Diabetes, Stage 3-4, BMI, a good KPS score and Adeno Histology 

in the hazard of death before pericardial effusion. The variables selected for the hazard of 

death after pericardial effusion showed some sensitivity to c and zg1 choices, but all four 

models contained Diabetes as a covariate. Additionally, the conclusion that no covariates 

impact the hazard of death after pericardial effusion did not change for any of the four 

models.

5. Discussion

We have developed a variable selection procedure for a three-hazard model for semi-

competing risks data using spike-andslab priors and the Stochastic Variable Selection Search 

(SVSS) algorithm. We devised a criterion, DIC-τg, for choosing the threshold on the 

marginal posterior probability of variable inclusion based on the Deviance Information 

Criteria. As seen in the sensitivity analyses, the DIC-τg procedure led to similar selected 

models, regardless of the choices of the hyperparameters c, zg1 and zg2. The hazard of death 
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before effusion of either type chose the same set of variables for all hyperparameter choices 

in both data sets. The hazard of pericardial effusion had the same set of variables for all four 

settings and the remaining hazard functions had minor differences in variables chosen. 

Clearly, there is a substantial effect of c and (zg1, zg2) on decisions about variable inclusion 

in the final model when choosing an arbitrary τg. The DIC-τg procedure mitigates much of 

this sensitivity.

Our simulation study showed that the DIC-τg procedure performs well in determining which 

variables should be included in the model. This method can display a substantial 

improvement by tuning the sparsity parameter c to separate the marginal posterior 

probabilities of inclusion of the variables.

In an application to data from esophageal cancer patients, we were able to use this procedure 

to select the important covariates in each of the three hazards and use the final variables 

included to evaluate the treatment and covariate effects on the hazards of effusion, death 

before effusion, and death after effusion. In our selected models, we saw the same medical 

conclusion, there was strong evidence that patients with IMRT radiation had significantly 

reduced risks of pericardial effusion, pleural effusion, and death before either effusion type. 

Further evidence of this treatment effect was shown in the SVSS posteriors with P[β1,IMRT > 

0|Data] = .02 and P[β2,IMRT > 0|Data] = .04 for pleural effusion and P[β1,IMRT > 0|Data] < .

01 and P[β2,IMRT > 0|Data] < .01 for pericardial effusion. For the models determined by the 

SVSS algorithm, patients who received IMRT had significantly reduced risks of pericardial 

and pleural effusion as well as death before effusion type. This agrees with results from 

several previous studies which showed that IMRT increased patient survival compared to 

3D-CRT [22] [23].

The proposed method provides a flexible, practical variable selection procedure for semi-

competing risks. The SVSS algorithm for semi-competing risks is implemented in the 

package SCRSELECT [1], which is now available on CRAN. This function computes and 

saves all posterior quantities and returns the marginal posterior probabilities of inclusion for 

each hazard function. The code allows for 0, 1, .., p − 2 variables to be excluded from the 

selection procedure, while we kept two variables out of the selection procedure to evaluate 

the treatment effect in our application. This program takes between two and four hours to 

run 100,000 iterations, depending on the number of split points in each hazard during the 

MCMC. Additionally, there is a program that runs the SVSS algorithm on two disperse 

chains followed by the DIC-τg procedure which performs a grid search through all the 

possible models for given vectors of marginal posterior probabilities of inclusion. This takes 

six to twelve hours depending on the separation of the variables in terms of marginal 

posterior probabilities of inclusion and returns these posterior probabilities, the threshold of 

inclusion and the final model selected by the DIC-τg procedure.
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Appendix: MCMC algorithm details on (ηg, βg) and λg updates

We report additional details of the (ηg, βg) and λg Markov Chain Monte Carlo samplers 

here.

• Update (ηg, βg) update via a Metropolis step. With probability ϕ we randomly 

choose one entry of ηg and if it is 0, set it to 1, while if it is 1, set it to 0. With 

probability 1 − ϕ, we randomly choose one entry that is a 1 and a random entry 

that is 0 and change their values. If for some reason there are no values of 1 or 0 

in the previous iteration, we can only perform an add or delete step and randomly 

choose one entry to change. We then update βg in the following way under 3 

different scenarios. If ηg,k is “deleted”, we set βg,k = 0 and . If ηg,k 

is ”added”, we sample  from , βg,(−k) and set . Finally if ηg,k = 0 

and ηg,j = 1 are swapped then we set  and we sample 

from the distribution of , βg,(−k). The vectors  and  are jointly 

accepted over the previous values (ηg, βg) with probability 

, min(α2, 1), min(α3, 1), respectively for the three moves 

listed above.

1. Delete Move

For a delete move, the acceptance probability is

where  and 

 and .

2. Add move
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For the add step we set  and sample  corresponding to ηg,k = 

1 from  and accept  with probability 

 where

where we denote  and 

 with 

.

3. Swap Move

For the swap step, where entry j is set to 0 and k is sampled for , we 

jointly accept  with probability  where

where we denote  and 

 with 

. Likewise, we define 

 and 

 with .

After we jointly accept or reject ( ), we resample each entry of βg|
ηg conditional on the other non-zero entries and then sample βg|ηg 

jointly for better mixing of our posterior distribution.

• λg update

We used the same sampler as Lee et al [9] for all samplers except the birth and 

death of a split point in hazard g = 1, 2, 3 along with using a different proposal 

distribution for λg|sg, μλg, ,Σλg. Recall the MVN-ICAR specification of the 

prior for λg that was imployed in Lee et al which sets up two matrices based on 

distances between adjacent split points [12] [9]. Formally, define 

 and let Wg be an off diagonal matrix with entries
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here cλg ∈ [0, 1] characterizes the dependence between the heights of adjacent 

split point intervals. In our computation, we set cλg = 1 to encourage spatial 

dependency in adjacent intervals. Let Qg be a diagonal matrix with entries 

. Then we have Σλg = (I −Wg)−1Qq and the MVN-

ICAR prior is

Our sampler differs from Lee et al. [9] in that we sample our proposal  from a 

uniform distribution on [λg,k −cg, λg,k +cg] where cg is a tuning parameter for k 
= 1, ...Jg +1. We set cg = .25 as in Haneuse et al. [17]. This proposal distribution 

causes the proposal ratio to be 1 which leads to an acceptance probability of this 

move to be the minimum of 1 and
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Figure 1. 
Path diagrams for the three event types along with how many patients (Total, 3D-CRT, 

IMRT) experienced each for pleural and pericardal effusion. 212 patients received 3D-CRT 

and 258 patients recieved IMRT.
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Figure 2. 
Pleural Effusion Results: Combined Marginal Posterior Probabilities of inclusion and the 

DIG-τg cutoff threshholds 
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Figure 3. 
Pericardial Effusion Results: Combined Marginal Posterior Probabilities of inclusion and the 

DIG-τg cutoff threshholds 
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Table 1

Simulation Scenarios.

Hazard Component
Scenario #

β1
h1: Non-Terminal Event

β2
h2: Death w/o Non-Terminal Event

β3
h3: Death after Non-Terminal Event

1 (.9,0,−.7,0,0,0,0,−.6,0,0,.5) (−.5,0,0,.7,0,0,0,.7,−.7,.5,0) (.6,0,0,−.5,0,−.6,0,−.8,0,0,0)

2 (.9,0,−.7,0,0,0,0,−.6,0,0,.5) (.7,0,0,−.2,0,0,0,.3,0,−.45,0) (−.9,0,0,0,0,0,0,.2,0,0,0)

3 (0,0,0,0,.9,0,0,0,0,−.7,0) (0,0,0,0,0,0,0,0,0,0,−.6) (.6,−.7,0,0,0,0,0,0,0,0,0)

4 (0,−.7,.6,0,0,0,.3,.5,0,−.9,.4) (−.85,0,0,−.4,0,0,0,.3,0,.8,0) (−.5,0,0,0,0,0,0,.6,0,0,0)

5 (−.7,0,0,−.5,0,.9,0,0,0,0,0) (.4,0,0,−.6,0,0,0,0,−.7,0,.5) (−.3,0,0,.8,0,0,0,0,0,0,0)

6 (.8,.7,.4,−.7,−.7,−.8,0,0,0,0) (.8,−.7,.9,0,0,0,0,0,.8,−.4,−7) (.4,.8,−.7,.35,.8,−.9,.4,−.7,0,0,0)

7 (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0,0,0)
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Table 2

Simulation Study of the DIC-τg Procedure.

Scenario # NFP/N0 NFN/N+ PCD AUC*

1 5.92/20 0.48/13 0.806 0.972

2 7.29/23 0.50/10 0.764 0.957

3 5.94/28 0.00/5 0.820 1.000

4 5.75/21 0.28/12 0.817 0.935

5 6.21/24 0.45/9 0.798 0.928

6 5.66/13 1.98/20 0.769 0.881

7 5.88/33 0.00/0 0.822 ——
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Table 5

Sensitivity Analysis of prior hyperparameter effects on marginal PPI for the Pleural Effusion case study. 

Notation: c is a parameter in the prior of β(ηg), given in (5) and (zg1, zg2) are the prior hyperparameters on wg, 

the probability that ηg,k = 1, given on page 4.

Variable
(zg1, zg2) =

c = 20
(.4, 1.6)

c = 30
(.4, 1.6)

c = 20
(.1, 1.9)

c = 30
(.1, 1.9)

h1: Effusion before Death

Asthma .378 .184 .207 .080

Diabetes .373 .174 .199 .073

Stage 3–4 .352 .168 .191 .071

Location 2 .369 .174 .201 .077

Location 3 .426 .209 .227 .091

Age .759 .629 .509 .361

Smoker .373 .181 .194 .074

BMI .600 .378 .343 .165

Induction Chemo .345 .166 .191 .071

Good KPS .430 .253 .242 .111

Adeno Histology .364 .176 .197 .071

h2: Death w/o Effusion

Asthma .648 .451 .513 .291

Diabetes .889 .760 .779 .543

Stage 3–4 .833 .712 .731 .507

Location 2 .801 .631 .686 .421

Location 3 .760 .583 .638 .400

Age .643 .479 .562 .330

Smoker .599 .412 .500 .272

BMI .805 .621 .667 .400

Induction Chemo .607 .419 .497 .270

Good KPS .968 .922 .896 .713

Adeno Histology .821 .623 .717 .466

h3: Death after Effusion

Asthma .393 .273 .296 .169

Diabetes .361 .223 .251 .136

Stage 3–4 .577 .451 .443 .292

Location 2 .459 .321 .345 .195

Location 3 .476 .325 .347 .189

Age .418 .293 .317 .186

Smoker .359 .238 .261 .146

BMI .392 .254 .277 .149

Induction Chemo .357 .225 .263 .134
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Variable
(zg1, zg2) =

c = 20
(.4, 1.6)

c = 30
(.4, 1.6)

c = 20
(.1, 1.9)

c = 30
(.1, 1.9)

Good KPS .417 .283 .301 .168

Adeno Histology .405 .264 .291 .151
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Table 6

Sensitivity Analysis of prior hyperparameter effects on the model selected in the Pleural Effusion case study. 

Notation: c is a dispersion parameter in the prior of β(ηg), given in (5) and (zg1, zg2) are the beta prior 

hyperparameters on wg, the probability that ηg,k = 1 for k = 1, ..., p, given on page 4.

c (zga, zgb) Included Variables

h1: Effusion before Death

20 (.4, 1.6) Age, BMI

30 (.4, 1.6) Age, BMI

20 (.1, 1.9) Age, BMI

30 (.1, 1.9) Age

h2: Death w/o Effusion

20 (.4, 1.6) Diabetes, Stage 3-4, Location 2, Location 3, BMI, Good KPS, Adeno Histology

30 (.4, 1.6) Diabetes, Stage 3-4, Location 2, Location 3, BMI, Good KPS, Adeno Histology

20 (.1, 1.9) Diabetes, Stage 3-4, Location 2, Location 3, BMI, Good KPS, Adeno Histology

30 (.1, 1.9) Diabetes, Stage 3-4, Location 2, Location 3, BMI, Good KPS, Adeno Histology

h3: Death after Effusion

20 (.4, 1.6) Stage 3-4, Location 2, Location 3

30 (.4, 1.6) Stage 3-4, Location 2, Location 3

20 (.1, 1.9) Stage 3-4, Location 2, Location 3, Age, Good KPS

30 (.1, 1.9) Stage 3-4
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Table 7

Sensitivity Analysis of prior hyperparameter effects on marginal PPI for the Pericardial Effusion case study. 

Notation: c is a parameter in the prior of β(ηg), given in (5) and (zg1, zg2) are the prior hyperparameters on wg, 

the probability that ηg,k = 1, given on page 4.

Variable c = 20 c = 30 c = 20 c = 30

(zg1, zg2) = (.4, 1.6) (.4, 1.6) (.1, 1.9) (.1, 1.9)

h1: Effusion before Death

Asthma .556 .277 .338 .130

Diabetes .615 .399 .418 .192

Stage 3-4 .538 .305 .357 .137

Location 2 .658 .410 .439 .199

Location 3 .624 .363 .410 .167

Age .762 .551 .525 .276

Smoker .639 .394 .435 .191

BMI .631 .412 .436 .199

Induction Chemo .508 .388 .329 .126

Good KPS .521 .440 .347 .130

Adeno Histology .731 .405 .508 .257

h2: Death w/o Effusion

Asthma .622 .460 .568 .400

Diabetes .839 .745 .820 .703

Stage 3-4 .993 .993 .990 .975

Location 2 .705 .562 .688 .538

Location 3 .630 .485 .579 .425

Age .601 .462 .565 .413

Smoker .630 .479 .577 .423

BMI .847 .759 .831 .673

Induction Chemo .686 .563 .638 .490

Good KPS .946 .923 .929 .880

Adeno Histology .898 .839 .867 .789

h3: Death after Effusion

Asthma .413 .242 .222 .122

Diabetes .488 .315 .271 .172

Stage 3-4 .385 .216 .204 .110

Location 2 .422 .259 .227 .135

Location 3 .457 .282 .251 .142

Age .378 .215 .206 .109

Smoker .397 .231 .218 .116

BMI .412 .236 .218 .119

Induction Chemo .388 .225 .212 .111
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Variable c = 20 c = 30 c = 20 c = 30

(zg1, zg2) = (.4, 1.6) (.4, 1.6) (.1, 1.9) (.1, 1.9)

Good KPS .440 .270 .244 .134

Adeno Histology .405 .237 .218 .119
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Table 8

Sensitivity Analysis of prior hyperparameter effects on the model selected in the Pericardial Effusion case 

study. Notation: c is a dispersion parameter in the prior of β(ηg), given in (5) and (zg1, zg2) are the beta prior 

hyperparameters on wg, the probability that ηg,k = 1 for k = 1, ..., p, given on page 4.

c (zga, zgb) Included Variables

h1: Effusion before Death

20 (.4, 1.6) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology

30 (.4, 1.6) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology

20 (.1, 1.9) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology

30 (.1, 1.9) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology

h2: Death w/o Effusion

20 (.4, 1.6) Diabetes, Stage 3-4, BMI, Good KPS, Adeno Histology

30 (.4, 1.6) Diabetes, Stage 3-4, BMI, Good KPS, Adeno Histology

20 (.1, 1.9) Diabetes, Stage 3-4, BMI, Good KPS, Adeno Histology

30 (.1, 1.9) Diabetes, Stage 3-4, BMI, Good KPS, Adeno Histology

h3: Death after Effusion

20 (.4, 1.6) Diabetes, Location 3

30 (.4, 1.6) Diabetes

20 (.1, 1.9) Diabetes, Location 3

30 (.1, 1.9) Diabetes
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