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ABSTRACT Lactobacillus plantarum Oregon-R-modENCODE strain BDGP2 was isolated
from the gut of Drosophila melanogaster for functional host microbial interaction studies.
The complete genome comprised a single circular genome of 3,407,160 bp, with a G�C
content of 44%, and four plasmids.

Lactobacillus plantarum increases amino acid metabolism and promotes larval
growth in Drosophila melanogaster under nutrient-scarce conditions (1). Previously

published L. plantarum strains include one derived from a laboratory fly strain (KP) and
one from wild-caught flies (DF) (2). Here, we report the genome sequence of a strain of
L. plantarum, Oregon-R-modENCODE strain BDGP2 associated with a sequenced D.
melanogaster host, to facilitate mechanistic studies of host-microbiome interactions.

L. plantarum Oregon-R-modENCODE strain BDGP2 was isolated from a fecal swab.
Bacteria were streaked onto Difco de Man, Rogosa, and Sharpe (MRS) agar (3) agar (BD
catalog number 288210) plates, single colonies were amplified, and an aliquot was used
for 16S V1 and V4 PCR (4) and sequence identification (5). DNA was isolated (6), and
whole-genome sequencing was performed by the National Center for Genome Re-
sources (NCGR), Santa Fe, New Mexico, USA, using Pacific Biosciences (PacBio, Menlo
Park, CA, USA) long-read sequencing on the RS II instrument (7). A single-molecule
real-time (SMRT) cell library was constructed with 5 to 10 �g of DNA using the PacBio
20-kb protocol and sequenced on one SMRT cell using P6 polymerase and C4 chemistry
with 6-h movie times. Sequencing yielded 82,902 reads with a filtered mean read length
of 11,874 bp, totaling 984,453,362 bp (�200-fold coverage of the chromosome and
plasmids). The files generated by the PacBio instrument were used for a de novo
assembly constructed using the HGAP2 protocol from SMRT Analysis version 2.0 (8, 9).
The final contigs were manually trimmed and reviewed to produce a single circular
chromosome and four plasmids. Annotations of protein-coding open reading frames
and noncoding RNAs were predicted using the Rapid Annotation of microbial genomes
using Subsystems Technology tool (10) and the GenBank annotation pipeline (11).

The chromosomal genome annotation predicts 3,148 protein-coding genes, 131
pseudogenes, 5 rRNA operons, a single 5S rRNA, and 85 tRNAs (78 with canonical
anticodon triplets that base pair with codons for amino acids, 1 suppressor tRNA
[tRNA-Sup-TTA], 1 selenocysteine-specific tRNA [tRNA-SeC-TCA], 1 undetermined tRNA
[tRNA-OTHER], and 4 pseudo-tRNA genes). Of the 3,148 protein-coding genes, 328 are
contained within candidate prophages. Like other L. plantarum strains, ours contains
integrated likely prophages (Phage_Finder; Omic Tools). There are seven copies, six
ranging in size from 36,225 to 46,235 bp and in sequence similarity from 45 to 70% and
a partial copy of only 13,544 kb. Together they constitute 7.5% of the genome. Two
cornerstone proteins highly conserved in prophages are the large terminase subunit
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and the portal protein (12). These candidate prophages, including the partial copy,
encode a large terminase subunit protein, and all but one of our candidate prophages
encode a portal protein. In addition, the genome contains four plasmids, pLtBDGP2A
(61,448 bp), pLtBDGP2B (58,689 bp), pLtBDGP2C (41,234 bp), and pLtBDGP2D
(13,055 bp). Plasmids pLtBDGP2B and pLtBDGP2C contain candidate genes for
the plasmid replication initiation proteins RepE and RepA, respectively. Plasmids
pLtBDGP2A and pLtBDGP2D show sequence similarity to L. plantarum strain DF plasmid
unnamed1 (GenBank accession number CP013754) and L. plantarum strain TMW 1.277
(palm wine isolate) plasmid pL1277-4 (accession number CP017367), respectively.

Accession number(s). The complete genome sequences of the chromosome and

four plasmids of L. plantarum Oregon-R-modENCODE strain BDGP2 have been depos-
ited in GenBank under the accession numbers CP023174 (chromosome) and CP023175
(pLtBDGP2A), CP023176 (pLtBDGP2B), CP023177 (pLtBDGP2C), and CP023178
(pLtBDGP2D) (plasmids).
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