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Abstract To adapt to the environment and survive, most

animals can control their behaviors by making decisions.

The process of decision-making and responding according

to cues in the environment is stable, sustainable, and

learnable. Understanding how behaviors are regulated by

neural circuits and the encoding and decoding mechanisms

from stimuli to responses are important goals in neuro-

science. From results observed in Drosophila experiments,

the underlying decision-making process is discussed, and a

neural circuit that implements a two-choice decision-

making model is proposed to explain and reproduce the

observations. Compared with previous two-choice decision

making models, our model uses synaptic plasticity to

explain changes in decision output given the same envi-

ronment. Moreover, biological meanings of parameters of

our decision-making model are discussed. In this paper, we

explain at the micro-level (i.e., neurons and synapses) how

observable decision-making behavior at the macro-level is

acquired and achieved.

Keywords Decision-making behavior � Drift diffusion
model � Spiking neural circuit � Synaptic plasticity �
Learning mechanism

Introduction and motivation

Animal decision-making in behavior

Most animals can accurately control their behaviors to

pursue benefits or avoid harm. For example, many insects

have the ability to navigate by sunlight, accurately main-

taining a fixed angle between flight and lighting direction.

This behavior is highly stable and sustainable and must be

regulated by an internal control system. This system,

making decisions based on sensory input to carry out

correct movements, is similar to a feedback control system

in automatic control theory. Such decision-making behav-

ior is more complex than a reflex and is usually achieved

by the nervous system.

Choice behavior of Drosophila facing visual cues has

been studied previously (Tang and Guo 2001; Zhang et al.

2007). In one experiment, flies were fixed in the center of a

flight simulator and were only able to rotate in place. Two

different color cues in the environment, green and blue,

were presented to flies, and blue cues were associated with

heat punishment. In the training session, flies were pun-

ished whenever the blue cue entered the frontal 90� sector
of their visual field. The time that the flies spent in different

flight directions was recorded. Flies showed no color

preference before the training session but exhibited a

preference for the green cues, which were not associated

with heat punishment, after the training session. This result

shows that flies can adjust flight behavior depending on

visual input stimuli, suggesting that they can make deci-

sions based on perceived color cues rather than random

reflexes. We can make a reasonable assumption that a

neural circuit for decision-making underlies this behavior

and determines the direction of rotation (clockwise or

counterclockwise) based on perceived color cues. The
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significant change in color preference before and after

training suggests that a new decision-making neural circuit

was formed. This behavioral experiment raises several

questions. First, what is the decision-making process

behind this behavior? Second, in the case of Drosophila,

what kind of neural circuit in the central complex likely

implements this decision-making process? Third, this

neural circuit changed during the training session, so how

was it corrected? Given these questions, this paper attempts

to explain the structure of the decision-making neural cir-

cuit and its learning process in Drosophila behavioral

experiments, using existing computational models of bio-

logical neurons and synaptic plasticity.

Related works in neural circuit modeling

Previous related studies on construction of neural circuits

can be divided into four categories. First, there are artificial

neural network models in engineering that focus on func-

tionality and are not consistent with anatomical and elec-

trophysiological evidence of biological nervous systems.

These do not reflect the actual workings of the nervous

system. Second, recurrent network models (Wang 2002)

explain the process of decision-making. However, changes

in decision-making or the learning process, which are

exemplified by the Drosophila experiment described above,

were not considered in these models. Third, some large-

scale neural simulations (Ananthanarayanan and Modha

2007; Izhikevich and Edelman 2008; Markram 2006;

Waldrop 2012) ‘‘seek ‘computer simulations that are very

closely linked to the detailed anatomical and physiological

structure’ of the brain, in hopes of ‘generating unantici-

pated functional insights based on emergent properties of

neuronal structure’’’ (Carandini 2012). These simulations

currently do not demonstrate connections between working

mechanisms of neural circuits and specific observable

behaviors (Eliasmith et al. 2012). Finally, some neural

circuits (Bohte et al. 2002; Eliasmith et al. 2012; Foderaro

et al. 2010; Natschläger and Ruf 1998; Zhang et al. 2013)

were built using biological neuron models to solve appli-

cation problems. However, ideas that are not biologically

plausible were introduced from artificial neural networks,

and external learning signals as indicators of errors were

artificially imposed on the learning mechanisms and not

integrated into circuits.

In the remainder of this paper, the decision-making

process behind Drosophila behavior is discussed first.

Then, the learnable neural circuit implementing the sug-

gested decision-making process, which was comprised of

different types of biological neurons, is presented. Three

experiments are presented. In the first experiment, changes

in the decision-making process resulting from punishment

signals were investigated while considering biophysical

characteristics of neurons. In the second experiment, sim-

ple circuits from the first experiment were integrated into a

larger circuit to simulate Drosophila behavior. In the third

experiment, neural mechanism underlying the behavior of

Drosophila facing conflicting visual cues was investigated.

Decision-making model

In the Drosophila experiment described above, the color

stimuli in environment were fixed, but the behavior of flies

before and after training changed, which suggests that,

after training, some elements in circuits from sensing to

decision to motor have changed, as illustrated in Fig. 1. We

suggest that these changes result in reversal of output and

occur in decision circuits.

To model complex continuous behavior of Drosophila,

the decision-making process was decomposed into multiple

simple discrete two-choice decision-making processes, as

shown in Fig. 2. Attention mechanism was considered in

the decision-making process. At each time step, the fly was

given a probability to notice a single nearby color cue.

Then, a decision (turn left or turn right) had to be made,

and the fly shifted to a new state by executing the decision.

The unbiased behavior of flies before training can be

explained by attraction to both color cues. In addition, the

biased behavior after training can be explained by attrac-

tion to a single color and repulsion from the other. Then,

the change of behavior can be thought as a result of flipping

the output of multiple two-choice decision-making

processes.

Drift diffusion model

A well-known model in two-choice decision-making is the

drift diffusion model (Ratcliff 1978). We follow the order

in Bogacz et al. (2006) to briefly introduce the drift dif-

fusion model and its variants, and then we introduce our

decision-making model as well as the relationships

between these models. The equation of the drift diffusion

model has been published previously and is shown in Eq. 1

(Bogacz et al. 2006), where A is the drift rate, c is a con-

stant, and c � dW represents the noise term. Figure 3 illus-

trates the decision process of this model. This model

assumes that evidence is accumulated for a single choice

with a noise; when the evidence reaches one decision

threshold, then a decision is made. The drift diffusion

model is simple and can explain many characteristics of

real data from response behavior experiments such as the

trade-off between response time and response accuracy

(Ratcliff and Rouder 1998). However, the biological

meaning of parameters (drift rate A, starting point, decision

bounds) in the drift diffusion model is difficult to define.
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Furthermore, the change of decision-making in a two-

choice decision process was not investigated in these

models. Thus, it cannot explain the change of behavior in

the above Drosophila experiment.

dx ¼ A � dt þ c � dW ; xð0Þ ¼ 0: ð1Þ

The Ornstein–Uhlenbeck model (Busemeyer and

Townsend 1993) added a third term (i.e., kx) that is pro-

portional to current accumulated evidence x as shown in

Eq. 2 Bogacz et al. (2006). In this model, the change of

evidence also depends on current accumulated evidence.

dx ¼ ðkxþ AÞ � dt þ c � dW ; xð0Þ ¼ 0: ð2Þ

In the race model (Vickers 1970), separate evidence

accumulators are used for two choices instead of a single

accumulator in the drift diffusion model as shown in Eq. 3

(Bogacz et al. 2006). In the mutual inhibition model (Usher

and McClelland 2001), mutual inhibition terms (i.e., �wy2
and �wy1) between the two separate accumulators were

added as shown in Eq. 4 (Bogacz et al. 2006).

dy1 ¼ I1 � dt þ c � dW1

dy2 ¼ I2 � dt þ c � dW2

�
; y1ð0Þ ¼ y2ð0Þ ¼ 0: ð3Þ

dy1 ¼ ð�k � y1 � w � y2 þ I1Þ � dt þ c � dW1

dy2 ¼ ð�k � y2 � w � y1 þ I2Þ � dt þ c � dW2

�
; y1ð0Þ ¼ y2ð0Þ ¼ 0:

ð4Þ

In the pooled inhibition model (also known as recurrent

network model; Wang 2002), mutual inhibition was

implemented by an additional inhibitory neuron pool (i.e.,

�wy3). Moreover, this model was based on simulating

pools of biological spiking neurons. This model made

progress in the connection between the phenomenon

Fig. 1 Illustration of changes in

decision-making process

Fig. 2 Decomposition of

decision making process

Fig. 3 Illustration of the diffusion model
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decision-making model and the biophysical neural circuit

model. The equation of this model can be simplified as

shown in Eq. 5 (Bogacz et al. 2006). However, as in the

other decision-making models, the pooled inhibition model

only investigated the process of decision-making when the

decision was solid. The change or flipping of decision

output in a two-choice decision-making process when input

stimulus remained constant was not investigated. This

model still cannot explain the change of behavior in the

above Drosophila experiment.

dy1 ¼ ð�k � y1 � w � y3 þ v � y1 þ I1Þ � dt þ c � dW1

dy2 ¼ ð�k � y2 � w � y3 þ v � y2 þ I2Þ � dt þ c � dW2

dy3 ¼ ð�kinh � y3 þ w0 � ðy1 þ y2ÞÞ � dt

8><
>:

ð5Þ

Decision-making model in this paper

The decision-making model in this paper is based on

simulations of biological spiking neurons and is similar to

the pooled inhibition model. In addition, the change or

flipping of decision output in a two-choice decision-mak-

ing process when input stimulus remains constant was

investigated while considering synaptic plasticity. Before

introducing the decision-making model, the model of the

spiking neuron used in this paper is introduced.

Neuron model

The spiking neuron model proposed by Izhikevich (2003)

is used in this paper, as shown in Eqs. (6, 7, 8). Izhike-

vich’s neuron model is widely used in many studies (Qu

et al. 2014; Samura et al. 2015; Li et al. 2016; Zhao et al.

2016. Three spiking patterns were used: regular spiking

(RS), chattering (CH), and low-threshold spiking (LTS), as

shown in Fig. 4. The RS and CH patterns are exhibited in

excitatory neurons, and the LTS pattern is exhibited in

inhibitory neurons. When presented with a prolonged

stimulus, RS type neurons ‘‘fire a few spikes with short

interspike period and then the period increases’’ (Izhike-

vich 2003). They were used as input neurons in this study,

receiving stimuli and converting stimuli into spike trains.

Neurons with a CH pattern ‘‘fire stereotypical bursts of

closely spaced spikes’’ (Izhikevich 2003). They were used

as control and output neurons because a burst of spikes

can provide more stimuli in a short time period. As a

result, the inhibitory neurons connected to these CH type

neurons react quickly. The LTS type neuron was similar to

the RS type and was used as interneurons (i.e., inhibitory

neurons).

v0 ¼ 0:04 � v2 þ 5 � vþ 140� uþ I ; ð6Þ

u0 ¼ a � ðb � v� uÞ ; ð7Þ

if v= 30 mV ; then
v c

u uþ d :

�
ð8Þ

Neural diffusion model

The architecture of the decision-making model in this

paper is shown in Fig. 5b. As in the pooled inhibition

model (Fig. 5a), input neuron pool is used to convert

external stimuli to spiking trains, and two excitatory neuron

pools as two separate evidence accumulators receive

stimuli from the input neuron pool and race to fire. Inhi-

bitory neuron pools are connected to excitatory neuron

pools to generate competition between these two evidence

accumulators. However, there are two major differences

between our model and the pooled inhibition model. First,

the two excitatory neuron pools share one input neuron

pool in our model. In the pooled inhibition model, the two

excitatory neuron pools use two separate input neuron

pools and the result of competition between the two evi-

dence accumulators depends on, to some degree, the rela-

tive strength of stimuli of these two separate input neuron

pools. In addition, flipping the result of competition

depends on flipping the relative strength of input stimuli. In

other words, the decision flipping phenomenon was not

explained by the pooled inhibition model itself but by

flipping the input to the pooled inhibition model. However,

in our model, the two evidence accumulators share the

same stimulus source, and the result of competition

between accumulators depends on differences in synaptic

connections from input neuron pool to different excitatory

neuron pools. As shown in Fig. 5c, there are multiple

connections with different delays and strengths from input

neuron pool to excitatory neuron pools. In addition, flip-

ping or changing the result of competition occurs because

changes in synaptic connections controlled by synaptic

plasticity. Second, in our model, two separate inhibitory

neuron pools facilitate competition between separate

accumulators and help distinguish responsibility during

punishment. The role and effect of these two separate

inhibitory neuron pools, synaptic plasticity, and punish-

ment signal are discussed in detail in the experiment

section.

The equations for our model are presented in Eqs. (9–

20). The relationship between our model and previous

decision-making models can be easily observed from these

equations. Our equations are based on Izhikevich’s equa-

tions for modeling membrane potential of biological neu-

rons. The process of accumulating membrane potential to

fire naturally corresponds to the process of accumulating

evidence in the drift diffusion model. Moreover, the

418 Cogn Neurodyn (2017) 11:415–431
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parameters in the previous models can be explained in

terms of biological meaning. The starting point in the drift

diffusion model corresponds to the parameters c in the

Izhikevich model, which ‘‘describe the after-spike reset

value of membrane potential v caused by the fast high-

threshold Kþ conductances’’ (Izhikevich 2003). The deci-

sion threshold can be explained by peak membrane

potential, and noise can be explained using local field

potentials. The drift rate corresponds to the strength of

input stimuli and synaptic connections. The term added in

Fig. 4 Three types of spiking patterns, a regular spiking, b chattering, c low-threshold spiking

Fig. 5 a Simplified architecture

of the pooled inhibition model,

b architecture of the decision

making model, c synapse

connections between a pair of

neurons in the model
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the Ornstein–Uhlenbeck model, which is proportional to

current accumulated evidence, is contained in Izhikevich’s

original equations as shown in Eq. (9), which ‘‘was

obtained by fitting the spiking initiation dynamics to a

cortical neuron’’ (Izhikevich 2003). The negative term u,

which is also related to the potential v, ‘‘represents a

membrane recovery variable which accounts for the acti-

vation of Kþ ionic currents and inactivation of Naþ ionic

currents’’ (Izhikevich 2003). The parameters a, b, d also

have an effect on accumulating evidence (or potential), but

in a more complex way. The different spiking patterns

shown in Fig. 4 are controlled by these three parameters.

The parameters a, b, c separately describe ‘‘the time scale

of the recovery variable u’’, ‘‘the sensitivity of the recovery

variable u to the subthreshold fluctuations of the membrane

potential v’’, and the ‘‘after-spike reset of the recovery

variable u caused by slow high-threshold Naþ and Kþ

conductances’’ (Izhikevich 2003). The separate evidence

accumulators in the race model and mutual inhibition term

in the mutual inhibition model are explained by the sepa-

rate excitatory and inhibitory neuron pools. In addition, the

change of the decision-making process given the same

input stimuli, which is the focus of this paper, is explained

by synaptic plasticity. Figure 6 illustrates the decision-

making process of our model in a similar way as the drift

diffusion model.

v0A ¼ 0:04 � v2A þ 5 � vA þ 140� uA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{From Izhikevich0s Model

þ IinputA
zfflffl}|fflffl{Adjusted by Synapse Plasticity

� IinhibitA
zfflfflffl}|fflfflffl{Inhibitory Term

þ k �W 0A;
ð9Þ

u0A ¼a � ðb � vA � uAÞ; ð10Þ

if vA = 30 mV ; then
vA  cA

uA  uA þ dA ;

�
ð11Þ

v0inhibitA ¼ 0:04 � v2inhibitA þ 5 � vinhibitA þ 140� uinhibitA þ IB

þ k �W 0inhibitA; ð12Þ

u0inhibitA ¼ a � ðb � vinhibitA � uinhibitAÞ; ð13Þ

if vinhibitA= 30 mV ; then
vinhibitA cinhibitA

uinhibitA uinhibitA þ dinhibitA ;

�

ð14Þ

v0B¼ 0:04 � v2Bþ5 � vBþ140�uBþ IinputB� IinhibitBþk �W 0B;
ð15Þ

u0B ¼ a � ðb � vB � uBÞ; ð16Þ

if vB = 30 mV ; then
vB  cB

uB  uB þ dB ;

�
ð17Þ

Fig. 6 Illustration of the decision making model in this paper
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v0inhibitB ¼ 0:04 � v2inhibitB þ 5 � vinhibitB þ 140� uinhibitB þ IA

þ k �W 0inhibitB;
ð18Þ

u0inhibitB ¼ a � ðb � vinhibitB � uinhibitBÞ; ð19Þ

if vinhibitB = 30 mV ; then
vinhibitB  cinhibitB

uinhibitB  uinhibitB þ dinhibitB :

�

ð20Þ

Synaptic plasticity

In our model, synaptic plasticity was considered to explain

changing or flipping of decision output given the same

input cues, as observed in the Drosophila experiment (Tang

and Guo 2001; Zhang et al. 2007). Synaptic plasticity is an

important foundation of learning and memory. The inten-

sity and timing of stimuli encoded by synaptic connections

can also affect transmission of information in a circuit. In

keeping with previous studies (Bohte et al. 2002; Nats-

chläger and Ruf 1998), multiple synaptic connections with

different time delays and connection strengths were used

between a pair of neurons, as shown in Fig. 5c. Stimuli

received by neuron j from all presynaptic neurons i at time

t are shown in Eqs. (22, 22), in which wk
ij and dkij are

strength and delay of the kth synapse from neuron i to j,

respectively, ti is the last firing time of neuron i. eðtÞ is a
mathematical model for the response of the synapse to a

pre-synaptic spike. The parameter t in eðtÞ is the time lasted

from the received spike. s is the time constant, and is set to

5.0 in our simulations.

IjðtÞ ¼
X
i

X
k

ekijðt � ti � dkijÞ : ð21Þ

ekijðtÞ ¼wk
ij �

t

s
e1�t=s : ð22Þ

Adjusting the strength of synaptic connections in this

study was based on spike timing-dependent plasticity

(STDP) (Bell et al. 1997; Bi and Poo 1998; Gerstner et al.

1996; Markram et al. 1997), which adjusts connection

strengths according to the relative timing of spikes of

presynaptic and postsynaptic neurons. We used an alter-

native curve (Bohte et al. 2002; Natschläger and Ruf

1998), as shown in Eq. 23 ( b ¼ �0:21; c ¼ �12:7; b ¼
13:61 in this paper) and Fig. 7, rather than the traditional

STDP curve (Bi and Poo 1998). If the postsynaptic neuron

fires a few milliseconds after the presynaptic neuron, the

connection between the neurons is strengthened, whereas

firing too early or late weakens the connection (Nishiyama

et al. 2000; Wittenberg and Wang 2006).

LðDtÞ ¼ ð1� bÞ � e�ðDt�cÞ
2=b2 þ b : ð23Þ

Experiments and results

Three experiments were conducted. In the first experiment,

we investigated flipping the decision output of our decision-

making model given the same input stimuli with the help of

punishment feedback and synaptic plasticity. In the second

experiment, we explored how the basic model reproduces

complex behavior observed in the Drosophila experiment

(Tang and Guo 2001; Zhang et al. 2007). In the third

experiment, the neural mechanism underlying behavior of

Drosophila facing conflicting visual cues was investigated.

Note that because we did not intend to do data fitting in

experiments, the noise term in our model was ignored, and

each neuron pool contained only one neuron to make the

dynamic process clearer. Data fitting and analysis of this

model will be studied in the near future. In this study, the

focus was on investigating the flipping of decisions and

reproducing behavior in the Drosophila experiment.

Fig. 7 The STDP curve used in

this paper, describing how the

strength of a synaptic

connection is influenced by the

firing time difference

Dt ¼ tpre � tpost, where tpre is

the firing time of the presynaptic

neuron at the synapse, tpost is the

firing time of the postsynaptic

neuron
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Experiment 1: flipping the decision

Architecture of the circuit and its learning process

The architecture of the circuit used to investigate flipping

the decision output is shown in Fig. 8, which is basically

the same as Fig. 5b but with an additional punishment

feedback component. A single input neuron converts con-

stant current stimuli to spike trains. Spike trains from the

input neuron are sent to two separate output neurons via

multiple synaptic connections with different strengths and

delays. In our experiment, there were 100 synaptic con-

nections from each input neuron to each output neuron,

with delays ranging from 1 to 100 ms and random strength.

The two output neurons received stimuli from an input

neuron and accumulated their membrane potentials at dif-

ferent rates due to differences in synaptic connections from

the input neuron. The two output neurons inhibited each

other via two separate inhibitory neurons. The final deci-

sion was made according to which output neuron won the

firing competition. Synaptic connections from each input

neuron to each output neuron were modified according to

the STDP rule. Because of property of the STDP rule and

the fact that firing of each output neuron was caused by

stimuli from an input neuron, the average strength of

synaptic connections between the winner output neurons

and input neuron were potentiated, as shown in Fig. 9a.

The potentiation of synaptic connections facilitates subse-

quent depolarization of the winner output neuron, and

makes the same decision easier the next time. There is an

additional punishment feedback neuron that helps achieve

flipping the decision output. The punishment feedback

Fig. 8 Architecture of the circuit used to simulate the process of

flipping decision output

Fig. 9 Learning mechanism of the decision making model. a Potentiation of the decision. b Depression of the decision with the help of

punishment feedback

422 Cogn Neurodyn (2017) 11:415–431
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neuron sends excitatory stimuli to both output neurons and

inhibitory stimuli to the input neuron via an inhibitory

neuron. The inhibitory effects between the two output

neurons were set to be strong and persistent enough so that

excitatory stimuli from the punishment feedback neuron

would not change the winner output neuron. The inhibitory

effect from the punishment feedback neuron on the input

neuron was strong enough to stop firing of the input

Fig. 10 Record of the input current in different stage of simulation. a Before the first punishment. b After the first punishment stage. c After the
second punishment stage

Cogn Neurodyn (2017) 11:415–431 423
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neuron. Then, the tight time correlation of firing between

input neuron and winner output neuron, which is respon-

sible to this punishment, is disrupted, and depression of

synaptic connections occurs under the STDP rule as shown

in Fig. 9b. After several rounds of punishment, the decision

output flips. The new decision is then consolidated until the

next association with punishment.

Simulation result

Synaptic plasticity changes the stimulus accumulation rate

of the two output neurons, which corresponds to drift rate

in the drift diffusion model. The input stimuli from the

input neuron to the two output neurons were recorded, as

shown in Fig. 10. We can see from Fig. 10a that neuron A

won the competition and the competition for firing was

very intense in the initial phase. That is because the

strength of synaptic connections from the input neuron to

each output neuron was randomly initialized, and the dif-

ference was small. The outcome of this competition was

mostly determined by the difference in inhibitory effect,

which can be considered a bias in decision-making. From

Fig. 10a, we can see that the inhibitory effect of neuron A

on neuron B was stronger in this simulation. Figure 10b

shows the input stimuli of two output neurons after the first

punishment stage. We can see that the previous winner

neuron A became the loser of the competition. The exci-

tatory input from the input neuron to neuron A was much

smaller than that to neuron B, mainly because of depres-

sion of synaptic connections during the punishment stage.

Then, after a second punishment phase, the winner neuron

changed again, as shown in Fig. 10c. The strengths of

synaptic connections from the input neuron to each output

neuron in different stages of simulation are shown in

Fig.11, which explains the changes in excitatory inputs

shown in Fig. 10.

Experiment 2: integration of multiple simple circuits

In this experiment, we investigated how our basic model

could be used to build a larger circuit and reproduce

behavior observed in the Drosophila experiment (Tang and

Guo 2001; Zhang et al. 2007). The simulated environment

is shown in Fig. 12c. There were two types of color cue in

the environment: green and blue bars. The fly was assumed

to be fixed in the center of the environment and could only

rotate. The red sectors shown in Fig. 12c are heat punish-

ment zones. In training sessions, the fly received punish-

ment feedback whenever it rotated into the heat

punishment zone, and feedback persisted until the fly left

the punishment zone.

Architecture of the circuit and its learning process

The architecture of the decision circuit used in this simu-

lation was constructed from four parallel two-choice

decision-making models and is shown in Fig. 12. Different

input neurons in the decision circuit were stimulated

according to the color and relative position of the perceived

cue, then entered one of the four decision-making pro-

cesses, and a decision about turning left or right was made.

Four situations were considered: blue cue on the left (BL),

green cue on the left (GL), blue cue on the right (BR), and

green cue on the right (GR). According to the current

orientation of the fly, each situation was given a probability

to occur. For example, when the orientation of the fly was

in the range of 22.5�–67.5� (see Fig. 12c), there was a 0.5

probability that the fly would perceive the green cue on the

left and a 0.5 probability that it would perceive the blue cue

on the right. After a decision was made, the simulated fly

turned left or right by a constant degree and made a new

decision based on the new perceived cue. The process of

this simulation is illustrated in Fig. 13. The learning

mechanism in this simulation was based on the STDP rule

and punishment feedback as described in experiment 1.

Simulation result

According to the results observed in Tang and Guo (2001)

and Zhang et al. (2007), the fly should have shown no color

preference before training. After training during which heat

punishment was associated with a single color cue, pref-

erence for cues without heat punishment were expected in

our simulation. Firing of neurons at different stages are

shown in Fig. 14. Initial connections in the decision-mak-

ing circuit were set so that the simulated fly tended to be

attracted to every cue currently perceived. As shown in

Fig. 14a, when the simulated fly perceived a blue cue on

the left, it decided to turn left, and if the simulated fly

perceived a blue cue on the right, it turned right. Similar

results were obtained for the green cue. The resulting flight

trajectories and histograms of time spent at each orientation

are shown in Fig. 15. During the punishment training

session, we combined heat punishment with a blue cue. As

indicated in Fig. 14b, when the simulated fly perceived a

blue cue on the right and turned right, it entered the pun-

ishment zone. Then, heat punishment was given, and the

punishment feedback neuron took control of firing for that

bFig. 11 Strength of synaptic connections between input neuron and

a neuron A, b neuron B at different stages. 100 synaptic connections

with different time delay (1–100 ms) were set between each output

neuron and input neuron. The size of the time delay is represented on

the x-axis and the strength of the connection in that time delay is

represented on the y-axis. Connection strength was randomly set at

the start. Noticed that a little amount of connection recovery was set

to ensure that input neuron and output neurons were always connected
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output neuron, which caused depression of synaptic con-

nections as explained in experiment 1. Next, the simulated

fly left the punishment zone and perceived a blue cue on

the left. It turned left and received punishment again. After

several rounds of punishment, the simulated fly learned to

reject blue cues, as shown in Fig. 14b, c. Although

Fig. 13 Decision making and

learning from the interaction

with the environment

Fig. 12 a Architecture of the neural circuit in this study. Some neurons and connections are omitted for clarity. b A basic decision unit in the

circuit. c Diagram of simulated environment
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Fig. 14 Record of the firings in different stage of simulation. Neuron

1-4 are input neurons, corresponding to blue cue on the left, green

cue on the left, blue cue on the right, and green cue on the right

separately. Neuron 5-8 are output neurons for decision of turning

left. Neuron 9-12 are output neurons for decision of turning right.

Neuron 13 is punishment feedback neuron. a Before training.

b During training with punishment. c After training. (Color

figure online)
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reactions of the simulated fly to green cues were not

changed, the repulsion to blue cues produced the observed

relative preference for green cues, as shown in Fig. 15.

Experiment 3: choice behavior of Drosophila facing

conflicting cues

In the above two experiments, decision-making behaviors

based on one kind of cues (i.e., color cues) were investi-

gated. However, in the experiments in Tang and Guo

(2001), shape cues were also set in addition to color cues,

to investigate the decision-making behavior of Drosophila

facing conflicting cues. The experiments in Tang and Guo

(2001) is illustrated in Fig. 16, green upright T and blue

inverted T cues are firstly placed in the environment, and

train the flies to avoid blue inverted T cues, then recombine

the color and shape of cues (i.e., using green inverted T and

blue upright T) and record the preference of flies to these

new cues. The Preference Index (PI) defined as Eq. 24 was

used to evaluate the behavior of Drosophila, tshape is the

recorded time of flies facing blue upright T, tcolor is the

recorded time of flies facing green inverted T. The large

positive PI indicates strong preference to shape of cues, and

the large negative PI indicates strong preference to color of

cues. Tang and Guo (2001), the influence of color intensity

of cues on PI was investigated. In the wild flies, PI changed

Fig. 15 Flight trajectories and histograms of the time spent in different directions, the distance between the simulated fly and the center of the

environment is set proportional to time

Fig. 16 Illustration of the

color-shape choice experiment.

(Color figure online)
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with color intensity in a sigmoid curve manner. In the

mushroom body damaged flies, PI changed with color

intensity in a linear curve manner. Tang and Guo (2001)

and Zhang et al. (2007) suggested that Drosophila has two

types of cue selection ability, i.e., linear type and sigmoid

type, and the type of choice ability of a fly is closely related

to mushroom body.

PI ¼ ðtshape � tcolorÞ=ðtshape þ tcolorÞ: ð24Þ

The linear or nonlinear cue selection ability of Droso-

phila was not considered in the computing model in our

first two experiments. Then can our decision-making model

produce simulation results consistent with the real experi-

ment observations? In this experiment, we combined the

color-shape selection process with our decision-making

circuit to investigate the influence of linearity and nonlin-

earity of color-shape selection ability on the behavior of the

same decision-making circuit.

In this experiment, we added four basic decision-making

units to the circuit used in experiment 2, the learning

process was the same as in the experiment 2. Eight basic

decision-making processes were considered, i.e., blue cue

in the left, green cue in the left, upright T in the left,

inverted T in the left, blue cue in the right, green cue in the

right, upright T in the right, inverted T in the right. As in

experiment 2, the simulated fly entered into one of the eight

basic decision-making units according to the cues in the

environment. Then it turned left or right a constant degree

according to the output of the basic decision-making unit,

and entered into the next decision-making process. In this

experiment, the probability of the simulated fly entering a

certain decision-making unit was determined by both the

fly’s facial orientation and color intensity of cues. PL and

PR separately represent the probability of the simulated fly

choosing the left or right cues, Pcolor and Pshape separately

represent the probability of choosing color or shape cues.

PL and PR were constant in this experiment (both were set

as 0.5), Pcolor þ Pshape ¼ 1 and the values of Pcolor and

Pshape were determined by the color intensity and color-

shape selection ability (either linear or sigmoid selection

ability). Figure 17 illustrates the decision-making process

where color-shape cue selection process is considered. The

simulated fly perceived different cues from the environ-

ment, and entered into a certain decision-making unit with

a probability determined by color-shape selection ability

and current color intensity, then the decision-making unit

triggered an action according to the learned stimulus-action

association.

Simulation result

In this simulation, we considered two types of cue selection

mechanism, corresponding to the two types of visual cue

selection ability observed in Tang and Guo (2001) and

Zhang et al. (2007), i.e., the sigmoid cue selection ability

observed in wild flies and linear cue selection ability

observed in mushroom body damaged flies. By changing

the color intensity of cues, simulations were repeated under

different levels of conflict between color and shape cues.

The fitted PI curves on data produced by simulations are

Fig. 17 Illustration of the decision-making process with color-shape cue selection considered
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shown in Fig. 18. The nonlinear cue selection model pro-

duced nonlinear PI curve, and the linear cue selection

model produced linear PI curve. The same decision-making

circuit was used in all simulations, which means that the

stimulus-action association was not changed. However, the

change of cue selection ability caused two different

behaviors. This result is consistent with the observation in

Tang and Guo (2001) and Zhang et al. (2007). The con-

sistence between our simulation results and real experiment

observations indicates that the structure of our neural

computing circuit has the potential to explain the micro-

mechanism of decision-making process, it gives a possible

implementation mechanism of how the cue selection ability

affects behavior. With stimulus-action association

unchanged, mushroom body may affect the behavior of

Drosophila by regulating the cue selection ability.

The following question is that, how the cue selection

function can be achieved by a neural circuit composed of

spiking neurons? Model in Wang (2002) was originally

designed as a decision-making model, but it also gives the

feasibility of neural circuit implementation of the nonlinear

cue selection function. The neural circuit model in Wang

(2002) receives two independent input signals (for exam-

ple, signal S1 and S2). A winner signal is determined

between S1 and S2 with a probability related to their signal

strength. And with the increasing of signal strength of S1,

the probability of S1 being the winner increases in a non-

linear manner. Although Wang’s model (2002) can be used

to produce a nonlinear cue selection curve, the function and

design of mushroom body was not investigated. We still

need to explore more realistic neural circuit modeling to

study how mushroom body affects the cue selection ability.

Fig. 18 a Boltzmann fit (with r2 ¼ 0:99) of preference indexes produced by simulations using sigmoid-shaped color-shape selection curve. b

Linear fit (with r2 ¼ 0:98) of preference indexes produced by simulations using linear-shaped color-shape selection curve. (Color figure online)
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Conclusion

In this paper, we discussed the decision-making process

underlying the observed behavior in the Drosophila

experiment (Tang and Guo 2001; Zhang et al. 2007). We

proposed that the change in behavior after punishment

training given the same environmental stimuli could be

explained by flipping multiple two-choice decision outputs.

In addition, we proposed a neural circuit-based decision-

making model, which is similar to previously described

two-choice decision-making models such as the drift dif-

fusion model (Ratcliff 1978) and the pooled inhibition

model (2002). Our decision-making model utilizes the

process of accumulating membrane potential to fire. The

most significant difference between our model and previ-

ous models is that flipping the decision output given the

same input stimuli was investigated. Moreover, the bio-

logical meaning of parameters in our decision-making

models is discussed. In our experiments, we demonstrated

how our basic decision-making model works, and we

constructed a more complex circuit from the basic model in

order to reproduce behaviors observed in Drosophila

experiments (Tang and Guo 2001; Zhang et al. 2007). We

focused on extracting questions from observed results,

building a decision-making model to explain the results,

and reproducing the results using the decision-making

model. Future work will entail fitting our model to exper-

imental data as in Wang (2002). This study furthers our

understanding of how animal behaviors are regulated by

neural circuits as well as the underlying encoding and

decoding mechanisms from stimulus to response.
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