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ABSTRACT
Background. Cardiac stem cells (CSCs) play a vital role in cardiac homeostasis.
A decrease in the efficiency of cardiac stem cells is speculated in various cardiac
abnormalities. The maintenance of a healthy stem cell population is essential for
the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine,
a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach
and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy
and improvement in cardiac function of spontaneously hypertensive rats (SHR) was
reported by our group. Given that stem cells are affected in cardiac pathologies, the
effect of histamine-2 receptor antagonism on CSC characteristics was investigated.
Methods. To examine whether famotidine has a positive effect on CSCs, spontaneously
hypertensive rats (SHR) treated with the drug were sacrificed; and CSCs isolated
from atrial appendages was evaluated. Six-month-old male SHRs were treated with
famotidine (30 mg/kg/day) for two months. The effect of famotidine treatment on
migration, proliferation and survival of CSCs was compared with untreated SHRs and
normotensive Wistar rats.
Results. Functional efficiency of CSCs from SHR was compromised relative to that in
Wistar rat. Famotidine increased the migration and proliferation potential, along with
retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress
were also reduced. The expression of H2R was unaffected by the treatment.
Discussion. As anticipated, CSCs from SHRs were functionally impaired. Stem cell
attributes of famotidine-treated SHRs was comparable to that ofWistar rats. Therefore,
in addition to being cardioprotective, the histamine 2 receptor antagonist modulated
cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine
is possibly mediated by reduction of oxidative stress as the expression of H2R was
unaffected by the treatment. Maintenance of healthy stem cell population is suggested
as a possible mechanism underlying the cardioprotective effect of famotidine.
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INTRODUCTION
The discovery of cardiac stem cells challenged the notion of heart being a post-mitotic organ
(Beltrami et al., 2003). Cardiomyocyte turnover ranges from 0.5–1% annually (Bergmann et
al., 2009), implicating the involvement of cardiac stem cells in the maintenance of cardiac
homeostasis. Protecting resident cardiac stem cells as a prelude to prevention of cardiac
failure has not received much attention. The adverse microenvironment and the cycling
of stem cells for replenishment of lost myocytes in the pathological heart can lead to stem
cell aging. In the event of myocardial injury, cardiac stem cells mediate tissue repair and
regeneration. The positive effect of stem cell transplantation for myocardial regeneration
highlights the role of stem cells in tissue repair (Smits et al., 2005). Impaired efficiency of
human cardiac stem cells has been documented in pathological conditions (Cesselli et al.,
2011). Studies on the influence of cardioprotective drugs on cardiac stem cells are limited.
Comparison of the effects of an angiotensin receptor blocker losartan and a beta-blocker
metoprolol on left ventricular (LV) remodeling, in rat surgical model showed that along
with improvement in LV function, the number of c-kit+ cells as well as expression of Ki-67
was increased by metoprolol but not losartan (Serpi et al., 2009). Therefore, selective cardio
protective drugs are envisaged to modulate stem cell characteristics, to maintain a healthy
stem cell pool.

Histamine, secreted by mast cells in the heart, has been implicated in cardiac diseases
and the development of heart failure (Francis & Tang, 2006). Histamine receptors are
present widely in the heart (Felix et al., 1988). We have reported that the H2 receptor
antagonist famotidine promotes reverse cardiac remodeling in spontaneously hypertensive
rats (SHRs) (Potnuri et al., 2016). Though impairment of CSCs is implicated in cardiac
pathologies, modulation of stem cell characteristics by famotidine has not been reported.
Hence, this study was carried out based on the assumption that famotidine will restore the
cardiac stem cell efficiency, that is compromised in SHRs.

MATERIALS AND METHODS
Experimental design
Six-month old SHRs were used as the experimental model. Twelve male SHRs were
randomly assigned into two groups of six rats each. One group of untreated SHRs served
as hypertensive control and the other group received a daily oral dose of 30 mg kg−1 day−1

of famotidine for two months. The response to treatment was evaluated by comparison
with stem cell characteristics of untreated SHRs and normotensive Wistar rats (WST).
The animals were housed at 22 ◦C, maintained on a 12 h light-dark cycle, fed with regular
Rat Chow (Scientific Animal Food & Engineering, Augy, France) and had free access to
drinking water. All animal procedures were approved by the Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Institutional Animal Ethics Committee, according
to the Committee for the Purpose of Control and Supervision of Experiments on Animals
(CPCSEA) Guidelines (Approval Reference No. B 2422012 XXI). The stem cell research was
approved by The Sree Tirunal Institute for Medical Sciences and Technology, Institutional
Committee for stem cell research (Approval No. SCT/IC-SCRT/01/Mar-2012).
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Isolation, characterisation and expansion of CSCs
Atrial explants were established in 2% gelatin coated dishes supplemented with IMDM and
10% FBS. c-kit+ CSCs were isolated immunomagnetically using Easy Sep Magnet and Easy
Sep FITC positive selection kit (Stem cell Technologies, Vancouver, Canada). The CSCs
were expanded in culture medium containing IMDM along with 10% FBS, 10 ng/ml basic
Fibroblast growth factor, 10 µl/ml Insulin- selenium-transferrin along with the antibiotics
penicillin and gentamycin. The cells in passage 3 were assessed for their purity based on
expression of cell surface markers –c-kit, CD 45, CD34 and CD 31 using flow cytometry
and immunocytochemistry. The cells from the third passage were used for further studies.

Colony forming unit assay
Self renewing ability is a characteristic of stem cells. CSCs were plated at a cell density of
500 cells per 60 mm culture plate. After 14 days, the cells were washed with PBS and stained
with 3% crystal violet in methanol for 30 min at room temperature. The colonies larger
than 2 mm were counted.

Proliferation capacity
Cells were plated at a density of 10,000 cells per plate (Zhang et al., 2013). The cell number
was obtained every 48 h till the 10th day. Growth kinetics was obtained by plotting the
cell count. Growth rate (GR) and Population doubling time (PDT) were calculated using
standard mathematical formulae. GR= ln(Nt/N0)/T , where T is the incubation time, N0

is the cell number at the beginning of the incubation time and Nt is the cell number at the
end of the incubation time. Population doubling time was calculated using the formula,
PDT = ln(2)/GR.

Migration ability
The migration potential was assessed by trans-well migration assay using serum as chemo-
attractant. A total of 1×104 cells were seeded onto the upper chamber of the trans-well (BD
Falcon, pore size—8 µm) in serum free medium. IMDM containing 10% serum was added
in the lower chamber, where serum acted as the chemoattractant. Following incubation
for 18 h, the cells on the upper surface of the membrane were removed and those that
migrated to the lower surface were fixed with 4% paraformaldehyde, stained with crystal
violet and counted.

Intracellular reactive oxygen species levels
The intracellular reactive oxygen species (ROS) levels in CSCs were determined from
H2DCFDA fluorescence intensity (LeBel, Ischiropoulos & Bondy, 1992). CSCs were
incubated for 10 min with 10 µM of DCFH2DA in DMSO. The fluorescence intensity
of DCF was measured using Microplate reader. Fluorescence values were monitored by
excitation at 498 nm and emission at 530 nm.

Senescent CSCs
The proportion of senescent cells was assessed based on the cytochemical analysis of
senescence associated β-galactosidase staining using commercially available kits (Abcam,
Cambridge, UK). The cells that stained positive for β-galactosidase were counted with
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the help of a light microscope. A minimum of five random fields from each dish with a
minimum of 500 cells were counted and percentage of senescent cells was calculated.

Western blot analysis for expression of Histamine 2 receptor in CSCs
Twenty-five micrograms of protein from each sample were electrophoresed on 10%
polyacrylamide SDS gel along with the histamine-2 receptor peptide. After transferring
proteins to nitrocellulose membranes, they were incubated with the primary antibodies
followed by appropriate secondary antibodies. Protein bands were visualized by chemi-
luminescence and images were quantified using ImageJ software (Rasband, 1997–2017).
The expression of target protein was normalised to their respective beta actins.

Statistical analysis
Values are presented as mean ± SD. One-way ANOVA was carried out and if there was
significant variation between samples, Student t -test was used for evaluation of differences
between samples. Results were considered statistically significant for p values less than 0.05.

RESULTS
Isolation, culture and characterization of CSCs
Following famotidine treatment for 60 days, animals were sacrificed, hearts were
dissected under aseptic conditions and atrial tissue was cultured as explants. Small,
phase bright cells migrated from the explants within 14 days. The cells were trypsinised
and subjected to immunomagnetic isolation to sort out the c-kit+ and lineage negative
CSCs. The purity of the cultured CSCs was confirmed at passage 3 by flow cytometry
and immunocytochemistry. The analysis revealed that 92 ± 3% cells were positive for
c-kit and negative for hematopoietic, endothelial and mast cell markers CD45, CD31 and
CD 34 respectively (Fig. 1). The cultured CSCs in the third passage were used for further
experiments. The cells so isolated were able to form colonies when seeded at the rate of 0.5
cell/well in 96 well-plate further confirming their stem cell characteristics.

Effect of famotidine on self renewing ability of CSCs
Colony formation is characteristic of stem cells. The number of colonies formed from
CSCs of SHR was 68% lower than that fromWST. Famotidine treatment improved the self
renewing capacity of CSCs and the values were comparable with that of WST (Fig. 2).

Effect of famotidine on proliferation capacity of CSCs
Proliferation capacity as assessed by cell number, growth rate and PDT was significantly
lower in SHR, reiterating the compromised efficiency of CSCs in hypertensive heart disease.
The proliferation capacity of CSCs from SHRs improved significantly following treatment
with famotidine (Fig. 3).

Effect of famotidine on migration ability of CSCs
The migration rate of CSCs was 38% lower in SHR compared to WST, when assessed
by trans-well assay. The lower infiltration towards the chemo-attractant serum reiterates
their compromised efficacy. However, following treatment with famotidine, the migration
potential improved by 15% indicating the beneficial effect of the drug (Figs. 4B–4E).
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Figure 1 Characterization of the cultured CSCs at passage 3. (A–D) Representative FACS images and
(E) the percentage distribution of specific markers.

Effect of famotidine on intracellular ROS levels of CSCs
Extracellular ROS, the major contributor towards hypertophic remodelling in SHR, influ-
ences the functional efficiency of CSCs by interacting with their microenvironment/niche.
The intracellular ROS levels of CSCs as assessed by H2DCFDA fluorescence intensity,
was significantly high in SHR and regressed on treatment with famotidine indicating the
antioxidant effect of the drug (Fig. 4A).

Effect of famotidine on senescence of CSCs
The efficiency of CSCs is remarkably compromised in the presence of senescent cells. The
proportion of senescent cells as assessed by SA-β-galactosidase staining was high in SHR
compared to age-matched WST, but regressed significantly on treatment with famotidine
(Figs. 5A–5D).

Expression of Histamine 2 receptor in CSCs
Western blot analysis of the protein samples revealed the presence of histamine-2- receptor
inCSCs.Uponnormalizationwith β-actin, the expression levels ofH2Rwas similar between
age matched WST and SHR (Figs. 5E, 5F) The treatment did not alter the expression of the
receptor.

DISCUSSION
Hypertensive heart disease progresses through cardiac hypertrophy paving the way to heart
failure, making it a major shareholder of all themortalities worldwide. Cardiac hypertrophy
involves the enlargement of cardiomyocytes along with increased fibrosis and decreased
capillary density. Though cardiac remodelling starts as an adaptive response, in course of
time it becomes maladaptive and the heart fails to counterbalance the pressure overload.
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Figure 2 Effect of famotidine on self-renewing ability of atrial CSCs. (A–C) Representative images and
(D) Graphical representation of colony forming units (CFU) shown as number of colonies/culture plate
(60 mm diameter). Data presented as mean± SD. Variation was analyzed by ANOVA followed by Student
t -test. (∗∗p< 0.01 SHR Vs WST; †p< 0.05 SHR Vs Famotidine) ANOVA p< 0.01 (n= 6/group).

Many physiological, cellular and molecular mechanisms play an interconnecting role in
inducing remodelling. Of the several mechanisms predicted, oxidative stress is considered
to be the critical determinant; being both the cause and consequence of pathological
changes in cardiac hypertrophy. Studies from our laboratory has shown that oxidative
stress precedes the hypertrophic remodeling in SHR and is evident as early as one month
of age (Purushothaman et al., 2011).

The cardiac stem cells were discovered in 2003 and ever since, studies have been
extensively carried out on c-kit+ cells. The endogenous stem cells in the heart play a
critical role in maintaining cardiac homeostasis and regeneration (Bergmann et al., 2009),
highlighting the significance of this minor population of cells. Studies have implicated
the prominent role of cardiac stem cells in mediating tissue repair (Nadal-Ginard,
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Figure 3 Effect of famotidine on growth kinetics, growth rate and population doubling time of atrial
CSCs. (A) Growth kinetics of CSCs represented as cell number*104 (B) Growth rate calculated as LogN
of the ratio of cell number at two fixed time points (C) Population doubling time (PDT) represented as
number of days. Data presented as mean± SD. Variation was analyzed by ANOVA followed by Student
t -test. (∗∗p < 0.01 SHR Vs WST; † † p < 0.01 & †p < 0.05 SHR vs. Famotidine) ANOVA p < 0.01 (n =
6/group).

Figure 4 Effect of famotidine on intracellular reactive oxygen species (ROS) andmigration potential
of atrial CSCs. (A) ROS levels in CSCs represented as H2DCFDA fluorescence intensity (B) Graphical rep-
resentation and (C–E) Representative images of the migrated cells. Extent of migration is represented as
mean number of cells/field. Data presented as mean± SD. Variation was analysed by ANOVA followed by
Student t -test. (∗∗p < 0.01 & ∗p < 0.05 SHR Vs WST; † p < 0.05 SHR vs. Famotidine) ANOVA p < 0.01
(n= 6/group).
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Figure 5 Effect of Famotidine on the senescence and Histamine-2-receptor expression of atrial CSCs.
(A) Graphical representation and (B–D) Representative images of senescent CSCs. Proportion of senes-
cent cells is expressed as percentage of the total population. (E and F) Representative blots and graphical
representation of the expression levels of H2R in atrial CSCs.Data presented as mean± SD. Variation was
analysed by ANOVA followed by Student t -test. (∗∗p < 0.01 SHR Vs WST; †p < 0.05 SHR Vs Famoti-
dine) ANOVA p< 0.01 (n= 6/group). WST, Wistar rat, SHR, Untreated Spontaneously Hypertensive rat,
Treated, SHR treated with Famotidine (30 mg/kg/day for two months).

Ellison & Torella, 2014). Very little information is available on the impact of pathological
conditions on resident CSCs and the influence of cardioprotective drugs on modulating
stem cell characteristics. The adverse microenvironment prevailing in the pathological
heart can affect the efficient functioning of resident cardiac stem cells. Therefore, a
conducive microenvironment is expected to protect the heart by modulation of stem
cell characteristics. A study carried out in our laboratory showed that the anti-ulcer
drug famotidine, a histamine-2 receptor antagonist, regressed hypertrophy with evident
morphological and molecular changes (Potnuri et al., 2016). Other studies also support
the role of histamine-2 receptor antagonism in prevention of heart failure (Francis &
Tang, 2006). Finding improvement in cardiac structure and function in SHR, we chose to
examine whether famotidine modulated the CSCs.

Heart was procured during the sacrifice of animals treated with famotidine for two
months. Atria was dissected out and c-kit+ CSCs were immunomagnetically isolated from
atrial explant cultures. The CSCs were then expanded in culture. Assessment of the purity
and stemness of the CSCs at passage 3 confirmed the cardiac origin of these cells (Fig. 1) as
they were positive for c-kit and negative for haematopoietic (CD 45), endothelial (CD 31)
and mast cell (CD 34) markers (Okayama & Kawakami, 2006; Dahlin & Hallgren, 2015).
Since the yield of CSCs from the primary isolation was low, the cells were expanded in
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culture to obtain cells in sufficient numbers for evaluation of the variables. Studies have
shown that long term culture, up to passage 40 maintains the c-kit nature/stemness of
CSCs (Miyamoto et al., 2010). The cells in the third passage were assessed for stem cell
characteristics.

The ability to form colonies is a characteristic feature of stemness. CSCs from SHR,
formed lower number of colonies compared to their age matched WST. Nevertheless,
colony formation ability improved significantly in response to the treatment (Fig. 2)
indicating restoration of stemness. Maintaining stem cells in their quiescent state within
the niche will help to preserve the growth reserve of the heart. CSCs from SHRs had
compromised proliferation capacity as evident from the decreased growth kinetics and
increased PDT. Increase in growth kinetics (Figs. 3A–3C) upon treatment signifies the
revival of proliferation efficiency and improved efficacy of theCSCs.Decreased proliferation
and colony formation implies that CSCs from SHRs in the stable phase of hypertrophy
are affected by maladaptive remodeling of the heart. Similar observations have been found
when Adipose derived stem cells from Twitcher mice were compared with normal mice.
The Adipose derived stem cells from diseased mice exhibited less self-replicating and
proliferative capacity (Zhang et al., 2013).

Homing in of stem cells to the site of injury is an essential component for tissue repair.
The functional efficiency of stem cells is determined by its ability to effectively invade
and repair the damaged tissue (Guo et al., 2014). The deficient migratory capacity of CSCs
with hypertensive heart disease implies functional impairment of CSCs for repair and
regeneration upon demand. The migration potential of CSCs in SHRs was restored by
famotidine (Figs. 4B–4E), denoting functional recovery. The improved invasive capacity is
expected to aid the CSCs to effectively home in to the site of injury and replace the damaged
myocytes; that occur at a relatively higher frequency in hypertrophic remodeling.

Stem cells, like somatic cells undergo aging process and express senescent markers
(Chambers et al., 2007; Akunuru & Geiger, 2016). The presence of senescent cells in the
niche can release paracrine signals that adversely affect the neighboring healthy cells
(Schellenberg et al., 2011). The proportion of senescent cells was significantly higher in SHR
compared with the age matched WST (Figs. 5A–5D). Famotidine-mediated decrease in
senescence helps in preserving the stem cell pool.

The positive response of CSCs to famotidine can be mediated either by modulation of
the microenvironment or the blockade of H2R, since famotidine is a H2R antagonist. H2R
receptor is known to be present in stem cells and progenitor cells (Yamada et al., 2013; Liu
et al., 2017), but the presence of histamine-2-receptors in CSCs has not been reported. This
is the first study to report the presence of H2R in CSCs. Though the CSCs expressed H2R,
the levels of receptor was not significantly different between SHR, WST and the treated
group (Figs. 5E, 5F) implicating the role of other mechanisms for the improvement in the
functionality of CSCs. This is also supported by the fact that stem cells residing within the
niches are resistant to drugs due to the specific miroenvironment and hypoxic stability
(Vinogradov & Wei, 2012; Alonso, Jones & Ghiaur, 2017). This can account for the lack of
change in expression of H2R in SHR treated with famoidine (Figs. 5E, 5F).
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The proposed mechanism of action of famotidine is the decrease in oxidative stress
of the microenvironment. Famotidine treatment decreased myocardial oxidative stress
and improved cardiac function, along with decrease of left ventricular wall thickness
(Potnuri et al., 2016). Oxidative stress is the key regulator of multiple pathways involved
in hypertrophy, and is detected at an early stage in SHR which prevails throughout the
pathological remodelling (Purushothaman et al., 2011). An adverse microenvironment
can contribute to the aging of stem cells. Enhanced oxidative stress in SHRs can be the
major determinant for the inefficient functioning of stem cells. Though no reports on
the intracellular ROS of CSCs is available, oxidative stress has been reported to affect the
endothelial progenitor cells (Case, Ingram & Haneline, 2008). The increased ROS levels in
CSCs from SHRs (Fig. 4A) suggest that intracellular oxidative stress can affect the overall
efficiency of stem cells. The reduction of ROS upon treatment further supports the notion
that the improved efficacy of CSCs is due to decreased oxidative stress both at the tissue
and cellular levels. Hence, modulation of stem cell attributes by famotidine is possibly
mediated by reduction of oxidative stress.

CONCLUSION
The fate of an organ is determined by the reserve of functionally efficient stem cells. In
hypertensive heart disease, maintenance of a healthy stem cell population is expected
to prevent progressive cardiac remodeling. Famotidine-mediated restoration of stem
cell attributes therefore gains significance. The improvement in stem cell efficiency is
possibly mediated by reduction of oxidative stress since the H2R expression in CSCs
of SHRs was comparable to that of Wistar rats and was unaltered by treatment with
famotidine. The modulation of stem cell efficiency by H2 receptor antagonism lends scope
for further investigations enabling therapeutic application for prevention of progressive
cardiac remodeling. Retrospective and prospective studies on the response to famotidine
treatment has to be carried out for further validation of our findings.
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