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Abstract

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate 

these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid 

participates in multiple pathways and functions in a complex network, which can also be 

compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-

resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole 

organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes 

it possible to resolve simultaneously the utilization of these precursors in a single experiment. 

Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace 

the allocation of e.g. C and N atoms through the network.

Such dual-label experiments however challenge the resolution of conventional mass spectrometers, 

which must distinguish the neutron mass differences among different elemental isotopes. This 

requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined 

with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, 

global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, 

very low mass polar metabolites such as amino acids can be difficult to analyze by current models 

of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause 

unacceptable ion suppression for sources such as nano-ESI.

Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to 

enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-

FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar 

range represented in microgram quantities of biological specimens, which results in extracts with 

total analyte abundances in the low to sub-femtomole range. We have applied this method to 
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profile amino acids and their labeling patterns in 13C and 2H doubly labeled PC9 cell extracts, 

cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein 

hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13C6-glucose.

The multi-element isotopologue distributions provided key insights into amino acid metabolism 

and intracellular pools in human lung cancer tissues in high detail. The 13C labeling of Asp and 

Glu revealed de novo synthesis of these amino acids from 13C6-glucose via the Krebs cycle, 

specifically the elevated level of 13C3-labeled Asp and Glu in cancerous versus non-cancerous 

lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of 

double tracers, (13C6-Glc + 2H2-Gly or 13C6-Glc + 2H3-Ser) in PC9 cells clearly resolved pools of 

Ser and Gly synthesized de novo from 13C6-Glc (13C3-Ser and 13C2-Gly) versus Ser and Gly 

derived from external sources (2H3-Ser, 2H2-Gly). Moreover the complex 2H labeling patterns of 

the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic 

pathway in PC9 cells.
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1. Introduction

1.1 Importance of amino acid metabolism

Amino acids play crucial roles in anabolic and catabolic metabolism. Not only are they the 

building blocks of proteins, they also are precursors to many key metabolites and oxidized to 

provide metabolic energy [1]. It was reported that amino acids account for the majority of 

dry cell mass in proliferating mammalian cells [2]. The non-essential amino acids Ala, Asp, 

and Glu play important roles in nitrogen metabolism via transamination, along with Arg, 

Orn, and citrulline in the urea cycle. Ser, Gly, Gln, and Asp are precursors in nucleotide 

synthesis, providing both carbon (Asp, Gly) and nitrogen (Gln, Asp) to the nucleobases [3]. 

Gln is also the nitrogen donor in the synthesis of amino sugars [4]. Arg, Orn, and Met are 
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also precursors of polyamines, which are essential in stress tolerance and nucleic acid 

function [5, 6]. These are just a few out of hundreds of vital metabolic roles of amino acids.

1.2 Stable Isotope-Resolved Metabolomics (SIRM) for robust pathway tracing

It is therefore crucially important to quantify amino acids to measure changes in 

concentrations and help determine their transformation pathways. The metabolic 

information contained in steady-state concentrations of metabolites, however, is often very 

limited, as each metabolite usually participates in multiple pathways, and most pathways are 

parallel, branched, reversible, and/or intersecting with each other to form a complex 

network. Thus, to robustly discern the precursor-product relationships for metabolic 

functions, it is necessary to “label” selected atoms in given metabolites so that their fates can 

be traced through metabolic pathways. Although radioisotopes such as 14C were popular 

tracers in the past [7–9], many studies now use stable isotopes since they are nonhazardous 

for ease-of-use, and key elements can be readily observed by both NMR (e.g. 13C and 15N) 

and MS, given sufficient sensitivity and resolution of the instruments [10, 11]. We have 

coupled stable isotope tracers with NMR and MS analysis in stable isotope-resolved 

metabolomics (SIRM) to track the provenance of individual atoms through various 

transformation pathways in cells, tissues and whole organisms (including human subjects) 

while still achieving wide metabolome coverage [10, 12–16]. By determining the label 

position (isotopomer) and number (isotopologue) distribution in the various metabolites, 

SIRM generates the information that is used to reconstruct the turnover in pathways and 

abundances of newly synthesized metabolites with low ambiguities, providing a solid 

foundation for metabolic flux determination [17–19].

1.3. Need for ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS)

Using multiple precursors, each with distinct stable isotopes, makes it possible to 

simultaneously discern intersecting, cyclical, and even compartmentalized pathways in a 

single experiment, thereby providing novel insights into metabolic networks as perturbed by 

disease or other stressors. For example, administering 13C6-glucose and 2H2-Gly 

simultaneously to a biological system would enable not only tracing of glycolysis, the Krebs 

cycle, pentose phosphate pathway (PPP), nucleotide synthesis, and one carbon metabolism 

pathway but also delineation of the fate of de novo synthesized or exogenously derived Gly. 

Interpretations would be initially based on well-established networks [20].

Stable isotopes such as 13C, 15N, and 2H differ from their most abundant isotopes by a single 

neutron. The apparent mass of a neutron in the nucleus differs slightly for each element due 

to differential nuclear binding energy [21]. The resulting mass difference for a molecule 

where 12C was substituted by 13C, versus 14N substituted by 15N, is too small to be resolved 

by the common “high resolution” mass spectrometers such as time-of-flight (TOF) MS with 

a maximum mass resolution (which is generally defined as m1/(m1-m2), where m1 and m2 

are two peaks of equal intensity with less than 10% overlap, and by convention stated for an 

m/z such as 400 [22]) up to about 60,000. Instead, they can be distinguished using 

sufficiently high m/z resolution, as afforded by certain models of Fourier transform mass 

spectrometers (FTMS) [10, 13]. In practice, we have found that UHR-FTMS with a minimal 

resolving power in excess of 200,000 (at 400 m/z, 10% valley) is required [13, 22], and 
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usually a resolving power of 400,000 or more is needed [22–25]. In addition to “ultra” high 

resolution, all current models of UHR-FTMS instruments are capable of high m/z accuracy 

(<0.2 ppm RMS error with external calibration) for operative assignment of molecular 

formula candidates, yet have high sensitivity permitting quantification of analytes at low 

femtomole abundance in a sample [10].

1.4 Considerations of analyte derivatization for chromatography versus direct infusion 
UHR-FTMS

Most, if not all, MS-based analytical methods reported for quantitative analysis of amino 

acids in biological systems have been in combination with gas-liquid chromatography (GC) 

or liquid chromatography (LC). N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, 

introduced by Fan et al. in 1986 for GCMS analysis of organic and amino acids [26], has 

been a widely used silylation method for GC-based quantification of amino acids in 

biological materials. This method provides a high yield of molecular-ion isotopologue 

patterns under electron ionization [26–28], making it well suited for SIRM studies. 

Subsequently, Husek [29] reported a method of derivatizing amino acids with ethyl 

chloroformate (ECF) and demonstrated the fast analysis of amino acids by GCMS. Other 

researchers then modified the ECF derivatization method and applied it to a variety of 

materials including food, plant and urine samples [30, 31]. 9-Fluorenylmethyl-chloroformate 

(Fmoc-Cl) coupled with high performance liquid chromatography (HPLC) or fluorescence 

detection was also used to analyze amino acids in fruit juices and hydrolyzed peptides [32, 

33]. Related reagents such as isobutyl chloroformate, methyl chloroformate, 

pentafluorobenzyl chloroformate have also been reported in amino acids analysis using 

GCMS or LCMS [34–36], although none of these were intended for use with SIRM.

With chromatography sample introduction to the MS, the short duration of each analyte 

available to the MS limits signal averaging, often causing critical isotopologues to be 

undetected [25]. In addition, the rapidly changing concentrations presented to the MS from 

chromatography compromises the quality of isotopologue data required for accurate and 

reproducible quantification. In contrast, through extensive signal averaging, the continuous 

infusion UHR-FTMS acquisition can provide high quality spectra rapidly with expanded 

dynamic range and accurate molecular formulae. Among the direct infusion methods, we 

have chosen the nano-electrospray ionization source (nano-ESI) because of its high 

sensitivity and capability of small sample consumption (typically 15 μL) and negligible 

sample waste. The latter is crucial to the increasing demand for microanalysis of cell or 

tissue samples (particularly those from human subjects), which is a result of sample size 

limitations such as the need to share the same biospecimens with other analyses such as 

genomics, transcriptomics, and proteomics, plus a wide range of biological assessments 

needed for interpretation, i.e. immunohistochemistry. For these reasons, UHR-FTMS 

coupled with nano-ESI has been a high priority for SIRM studies.

1.5 Limitations of direct infusion FTMS analysis of amino acids can be overcome by 
derivatization

Nano-ESI-UHR-FTMS has been successfully applied to analyze lipids, nucleotides, and 

other metabolites in SIRM studies [10, 13, 23]. Despite this versatility, it has been difficult 
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to detect some low m/z and/or polar metabolites such as amino acids and polyamines in 

crude cell extracts because of the ion suppression and instability of any ESI ion source 

caused by the high salt content inherent in crude cell or tissue extracts. This increases 

sample consumption, compromises sample throughput due to re-analyses, and interferes 

with quantitative data analysis. Furthermore, all current UHR-FTMS models are optimized 

for analytes with m/z greater than 150, compromising performance for smaller m/z 

metabolites. These problems are exacerbated by the need to analyze numerous isotopologues 

present at very low abundance in SIRM experiments, even abundant metabolites whose 

monoisotopic species are readily detected by UHR-FTMS can have low enrichment 

isotopologues crucial for biochemical interpretation. Lastly, the biochemical liability of 

some metabolites makes them impractical to quantify with confidence. Therefore, there is a 

need to develop a suitable derivatization method for these small metabolites for nano-ESI-

UHR-FTMS analysis.

In this report, we have coupled ECF derivatization with nano-ESI-UHR-FTMS for 

microanalysis of amino acids. ECF can derivatize both –NH2 and –COOH groups on amino 

acids. After the ECF derivatization, all amino acids have an m/z greater than 170, which 

makes them suitable for UHR-FTMS analysis by current models. The derivatives are also 

more hydrophobic and can be extracted by chloroform to eliminate the salt effect. The 

derivatization can also stabilize some labile amino acids such as Gln. We applied the method 

to analyze the stable isotopologue distribution in polar extract of various isotope-labeled 

biological samples including single-opportunity surgical lung cancer patient tissues, lung 

cancer cells, patient-derived mouse xenograft tissues, hydrolyzed protein samples from these 

sources, and human plasmas.

2. Materials and Methods

2.1 Reagents

All unlabeled amino acid standards were purchased from Sigma Aldrich (St. Louis, MO) as 

a mixture of acidic and neutral amino acids (A6407) and basic amino acids (A6282). Gln, 

ethyl chloroformate (ECF), ethanol, pyridine and chloroform were also purchased from 

Sigma Aldrich. The uniformly 15N-labeled amino acids mixture was purchased from 

Cambridge Isotope Laboratories (NLM-6695, Cambridge, MA).

2.2 Methods

2.2.1 Preparation of amino acid standards—Immediately prior to analysis, the amino 

acids mixtures A6407 and A6282 were combined in equal volumes before experiments, and 

then a freshly prepared aqueous solution of Gln solution was added. In the final solution, the 

concentration of each amino acid was 0.556 mM except cystine, which was 0.278 mM. This 

stock was then serially diluted to concentrations of 0.278 mM, 0.111 mM, 0.056 mM, 0.028 

mM, 0.011 mM, 0.0056 mM and 0.0011 mM.

2.2.2 Preparation of unlabeled PC-9 cell polar extract—Human lung 

adenocarcinoma PC-9 cells were grown on 10 cm cell culture plates in Dulbecco’s Modified 

Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS) (Life Technologies, 
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Carlsbad, CA), 50 U mL−1 penicillin (Thermo Fisher Scientific), 50 μg mL−1 streptomycin 

(Fisher Scientific, Waltham, MA), 0.2% unlabeled glucose (MP Biomedicals, LLC) for two 

days. Then the media was changed to DMEM media containing 10% dialyzed FBS (Life 

Technologies, Carlsbad, CA), 50 U mL−1 penicillin, 50 μg mL−1 streptomycin, 2 mM Gln 

(Sigma Aldrich), 0.45% glucose, 0.4 mM unlabeled Ser (Sigma Aldrich) and 0.4 mM 

unlabeled Gly (Sigma Aldrich). After 24 h, the cells were quenched, harvested and extracted 

with CH3CN:H2O:CHCl3 (2:1.5:1) [37]. Then the aqueous phase containing polar extracts 

was distributed into aliquots and lyophilized for ECF derivatization.

2.2.3 Preparation of plasma polar extract from NOD/SCID/Gamma (NSG) mice 
fed with 13C6- Glc enriched liquid diet—The NOD/SCID/Gamma (NSG) mice were 

fed with a custom liquid diet in which 13C6-glucose is the primary carbohydrate source for 

18 h as described previously [38]. The mice were then sacrificed and 20 μl of plasma was 

extracted twice with 600 μL acetonitrile:methyl tert-butyl ether (MTBE):H2O (2:3:1) 

mixture to eliminate lipids [39]. Then the polar phase was deproteinized with 800 μL 

acetonitrile:acetone:methanol (8:1:1), followed by taking a 1/10 aliquot to lyophilize for 

ECF derivatization.

2.2.4 Preparation of lung cancer patient tissue polar extract—Both cancer tissues 

and surrounding non-cancer tissues of patients were collected in the operating room within 5 

minutes of resection from patient UK018 under our University of Kentucky Internal Review 

Board (IRB) protocol (IRB 14-0288-F6A). The tissues were cut into thin slices at 

approximately 0.7 to 1 mm thickness each. Paired cancer and non-cancer tissue slices were 

collected and incubated in glucose, Gly and Ser-free DMEM medium (Life Technologies, 

Carlsbad, CA) with 10% dialyzed fetal bovine serum, 50 U mL−1 penicillin, 50 μg mL−1 

streptomycin, 2 mM Gln, 0.4 mM Ser, 0.4 mM Gly and 0.45% 13C6-Glc (Sigma, St. Louis, 

MO). The slices were cultured at 37 °C with 5% CO2 for 24 h with gentle rocking as 

described [40]. The slices were quickly rinsed in cold PBS 3 times to remove any remaining 

media, vacuum aspirated, and then flash frozen in liquid N2. The frozen tissue slices were 

then homogenized in 60% cold CH3CN in a ball mill (Precellys-24, Bertin Technologies, 

Washington, DC, MD), then extracted with CH3CN:H2O:CHCl3 (2:1.5:1) [37]. Again the 

aqueous phase containing polar extracts was distributed into aliquots and lyophilized for 

ECF derivatization.

2.2.5 Hydrolysis of proteins from human lung tissues—After polar and lipid 

extraction of the ground tissue sample, the protein pellet was dried in a vacuum centrifuge 

and then extracted with 62.5 mM tris(hydroxymethyl)aminomethane (Tris) (Fisher 

Scientific) with 2% sodium dodecyl sulfate (SDS) (Fisher Scientific), 1 mM dithiothreitol 

(DTT) (Fisher Scientific), pH 6.8 [37]. The protein solution was precipitated with 10% 

trichloroacetic acid (TCA) (Fisher Scientific) and washed twice with H2O. Then the protein 

pellet was hydrolyzed in 6 N HCl with a focused beam microwave (CEM, Discover-SP, 

Matthews, NC, USA) at 160 °C for 10 min at a maximum power of 150 W, guided by 

previous work [41] and optimized by Y. Yang [42]. The hydrolyzed samples were then 

distributed into aliquots and lyophilized for ECF derivatization.
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2.2.6 Preparation of double tracer labeled PC-9 cell polar extract—Human lung 

adenocarcinoma PC-9 cells were grown on 10 cm cell culture plates in DMEM containing 

10% FBS, 50 U mL−1 penicillin, 50 μg mL-1 streptomycin, 0.2% unlabeled glucose for two 

days first. Then the media was changed to DMEM media containing 10% dialyzed fetal 

bovine serum, 50 U mL−1 penicillin, 50 μg mL−1 streptomycin and 2 mM Gln, and also with 

0.45% 13C6-Glc/0.4 mM unlabeled Ser/0.4 mM unlabeled Gly, or 0.45% 13C6-Glc/0.4 

mM 2H3-Ser (Cambridge Iosotope Laboratories, Tewksbury, MA)/0.4 mM unlabeled Gly, or 

0.45% 13C6-Glc/0.4 mM unlabeled Ser/0.4 mM 2H2-Gly (Cambridge Iosotope Laboratories, 

Tewksbury, MA) respectively for different isotope tracer groups. After 24 h, the cells were 

quenched, harvested and extracted with CH3CN:H2O:CHCl3 (2:1.5:1) [37]. Then the 

aqueous phase containing polar extracts was distributed into aliquots and lyophilized for 

ECF derivatization.

2.2.7 ECF derivatization—For the amino acid standards, 9 μL of each amino acid 

standard sample was used at the concentration stated in section 2.2.1. For the cell/tissue/

plasma polar extract, the freeze-dried fraction was used directly. H2O/Ethanol/Pyridine 

(6:3:1) mixture (100 μL) was added, followed by 5 μL of ECF. The mixture was allowed to 

react by vortexing for 30 s. Chloroform (100 μL) was then added to extract the products 

followed by 10 μL of 7 M NaOH to adjust the aqueous layer to pH 9–10, after which a 

further 5 μL of ECF was added and allowed to react again for 30 s. The solution was 

extracted a second time with 100 μL chloroform, and combined with the first extract. The 

combined chloroform extract was diluted 100 fold for the amino acid standards and 10 fold 

for cell or tissue samples with acetonitrile/water (9:1) solution to a final concentration of 20 

μM NaCl to convert the ions to their sodium adducts. The samples were then directly 

injected into the FTMS using nano-ESI for UHR-FTMS analysis.

2.2.8 Mass spectrometry and peak assignments—UHR-FTMS analysis was carried 

out using the Tribrid Fusion Orbitrap (Thermo Scientific, San Jose, CA, USA), interfaced 

with an Advion Triversa Nanomate (Advion Biosciences, Ithaca, NY, USA). The Nanomate 

was operated at 1.5 kV and 0.5 psi head pressure in positive ion mode. The maximum ion 

time for the automatic gain control (AGC) was set to 100 ms, acquiring 5 micro scans, and 

each sample was acquired for >5 min with m/z range 100–1000 selected using quadrupole 

isolation. For data analysis, a single spectrum was obtained for each sample by averaging 

spectra over the entire acquisition time.

All 12C, 13C, 15N and 2H isotopologue peaks were assigned using “PREMISE” 

(PRecalculated Exact Mass Isotopologue Search Engine) [13] based on their accurate m/z 

values and the natural abundance distribution of each isotopologue was corrected (or 

“stripped”) using the method developed by Moseley [43].

3. Results and discussion

3.1 Analysis of amino acid standards

The ECF derivatization method was first evaluated using the amino acid mixture (Figure A.1 

and Table 1). NMR analysis established that the ECF reaction efficiency was between 82–

99.9% for the amino acid standards (Table A.1), based on 15N labeled amino acids added as 
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internal standards for quantification. Since these 15N standards were added before reaction 

with ECF, the ratio between each amino acid and its spiked 15N counterpart was used to 

correct for the reaction and extraction efficiency, thus enabling quantification of each amino 

acid and its 13C labeled isotopologues despite lacking the actual reaction efficiency. Note 

that the use of UHR-FTMS enables the deployment of such isotopic surrogates as internal 

standards for biologically stable isotope labeled analytes. The ECF-derivatized amino acids 

were observed as sodium adducts except Arg, which was measured as the protonated form 

that dominated over the sodium adduct. For His and Lys, both protonated and Na adducts 

were present, but the Na adducts dominated at low concentrations.

For all amino acids tested, the UHR-FTMS quantification showed excellent linear response 

over more than three orders of magnitude with high sensitivity (Figure A.1 and Table 1), 

indicating that reliable absolute quantification of amino acids was achieved by this method. 

Leu and Ile are shown as a single entry as they are isobaric, and therefore are not resolved by 

direct infusion MS.

3.2 Analysis of amino acids in unlabeled polar extracts of PC9 cells

Direct analysis of cell extracts without derivatization by direct infusion nano-ESI UHR-

FTMS was unsuccessful, even after 100-fold dilution to reduce the ion suppression. 

However, after ECF derivatization and chloroform extraction, the nano-ESI spray was stable 

for more than fifteen minutes, which readily enabled sensitive detection and reliable 

quantification of amino acids and their isotopologues. Figure 1 shows a typical positive-ion 

mode spectrum of a polar extract of PC9 cells after ECF derivatization and chloroform 

extraction. Small amino acids such as Gly and Ala were now detected with good sensitivity 

(at low femtomole levels), even though their underivatized forms were difficult to analyze by 

direct infusion-FTMS due to their low m/z values.

3.3 Analysis of amino acids in plasma from NOD/SCID/Gamma (NSG) mice fed with 13C6-
Glc enriched liquid diet

Figure 2 summarizes the 13C enrichment of amino acids in mouse plasma after 18 h of 

feeding with 13C6-glucose diet. We found that about a third of the Ala was 13C3 labeled, and 

about half of Glu was 13C labeled (sum of all 13C isotopologues), indicating that about one 

third of Ala and one half of Glu in plasma was synthesized de novo from dietary glucose. 

The rationale is as follows: 13C3-Ala is synthesized from 13C6-Glc via the production 

of 13C3-pyruvate through glycolysis followed by transamination. 13C3-pyruvate can also 

enter the Krebs Cycle to produce 13C2-α-ketoglutarate, which can in turn generate 13C2-Glu 

via the action either of glutamate dehydrogenase or glutamate-α-ketoglutarate 

aminotransferase. The 13C2-Glu may subsequently be converted to 13C2-Gln by glutamine 

synthetase. Additional cycling through the Krebs cycle can produce 13C3-, 13C4 -, 13C1 - 

and 13C5-α-ketoglutarate and thus generate 13C3-, 13C4 13C1 - and 13C5-Gln via 

correspondingly labeled Glu. Glu, however, was present at low concentrations and showed 

very little 13C enrichment (Figure 2), which suggests the majority of Glu originated from the 

diet rather than by de novo synthesis from glucose, and further, the majority of newly 

synthesized Glu was consumed for Gln synthesis. The total concentrations of amino acids 

Yang et al. Page 8

Anal Chim Acta. Author manuscript; available in PMC 2018 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measured (the sum of all isotopologues) in mice plasma was comparable to values reported 

in the literature [44].

3.4. Analysis of free amino acids in 13C6-Glc labeled tissue slices from a lung cancer 
patient

We obtained freshly resected cancerous (CA) and paired non-cancerous (NC) lung tissues 

from human subjects, which were thinly sliced and incubated in 13C6-Glc containing 

DMEM media, as previously described [25, 40]. Figure 3 shows the isotopologues of 

selected amino acids determined in these tissue slices. The left three figures show the 

absolute quantification of amino acids in NC versus CA tissue extracts normalized to protein 

weight (nmole/mg protein) while the right three figures show the corresponding fractional 

enrichment. We found that after 24 h of incubation with 13C6-Glc, about 14% Ala was 

synthesized de novo in NC tissues and 62% in CA tissues, which suggested higher 

glycolytic and aminotransferase capacity in CA tissues. This is consistent with the metabolic 

reprogramming shown previously [12]. In addition, 13C2-Asp and 13C3-Asp were 

synthesized, evidently via the pyruvate dehydrogenase (PDH) and pyruvate decarboxylase 

(PCB) reactions, respectively (Figure 4). The fractional enrichment data suggested that 

compared with paired NC tissue slices, CA tissue slices had a relatively higher capacity for 

PCB- than PDH-initiated Krebs cycle reactions, which was consistent with previous report 

[11]. Moreover, since 13C3- and 13C4-Glu can be produced from additional Krebs Cycle 

turns and 13C4-Glu can be synthesized from the PCB activity (Figure 4), the relatively 

higher enrichment of these isotopologues in the CA versus NC tissue slices pointed to more 

active Krebs cycle in the CA tissues. This is consistent with a higher energy and carbon 

demand of cancer cells to support their survival and growth.

3.5 Analysis of proteinaceous amino acids from lung cancer patient UK018

We also extracted protein fractions from the tissue slices of the same patient described 

above. To determine the incorporation of 13C labeled amino acids into proteins, we first 

hydrolyzed the protein extracts by microwave digestion using a modified method [41, 42] 

Independent of the hydrolysis efficiency, the fractional enrichment data of the isotopologues 

of each amino acid is reliable. Figure 5 shows the 13C fractional enrichment in amino acids 

hydrolyzed from the protein fraction of the lung cancer patient (UK018) tissue slice 

experiment. While the essential amino acids were unlabeled in the protein pool as expected, 

we observed appreciable 13C enrichment in non-essential amino acids, Glu, Ala, and Asp. 

The Glu and Asp data showed that the 13C enrichment was significantly increased in 

proteins from the CA tissue slices compared to the NC counterparts. It should be noted that 

Glu represented Glu+Gln as acid hydrolysis converts Gln to Glu. This result indicates that 

amino acids synthesized de novo from glucose were incorporated into proteins, and that the 

capacity of protein synthesis was higher in CA than in NC tissues. True protein turnover 

would require measurements of synthesis and degradation rates, which can be obtained with 

the present method but is beyond the scope of this report.

3.6. Analysis of amino acids in polar extracts of PC9 cells grown on dual labeled sources

Stable isotope labeling is indispensible for robust mapping of metabolic pathways. Due to 

the complexity of metabolic networks, even the single tracer approach is often insufficient in 

Yang et al. Page 9

Anal Chim Acta. Author manuscript; available in PMC 2018 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms of biochemical resolving power and coverage for gaining a comprehensive 

understanding of the system. The use of UHR-FTMS enables freedom to design experiments 

that multiplex different isotopes in the same experiment, including 13C, 15N and 2H (cf. 

Figure A2). We have grown PC9 cells in DMEM media for 24 h with 13C6-Glc + 2H2-Gly, 

or with 13C6-Glc + 2H3-Ser (see Methods) to distinguish the de novo synthesis of Ser and 

Gly (derived from 13C6-Glc) from metabolism of exogenous 2H labeled Ser or Gly present 

in the growth medium. Ser can be synthesized from glucose via the glycolytic intermediate 

3-phosphoglycerate (3-PGA) and Ser can be subsequently converted to Gly by the action of 

serine hydroxymethyl transferase (SHMT), as shown in Figure 6. This Ser-Gly-one carbon 

pathway provides precursors for the synthesis of purines [3]. Thus the enrichment of Ser and 

Gly with 13C is expected to proceed via this pathway. Both Ser and Gly, however, can be 

taken up from the medium, which can be simultaneously tracked using 2H-labeled Ser or 

Gly in the medium. The SHMT-catalyzed exchange between Ser and Gly may lead to 

scrambling of the deuterium label, which is discerned by ECF derivatization UHR-FTMS 

analysis independently of the 13C enrichment in the amino acids pools. Recent report has 

shown that Ser is more likely than Gly to support one-carbon metabolism and proliferation 

of cancer cells [45]. It is therefore crucial to understand the pools and fates of Ser and Gly in 

regard of cancer metabolism.

Figure 7 shows the Gly and Ser regions in the UHR-FTMS spectrum of a polar extract of 

dually labeled PC9 cells. The expanded region illustrates clear resolution of 13C2 - 

from 2H2-isotopologues of Gly, and 13C3- from 2H3-isotopologues of Ser, and Figure 8 

shows the fractional enrichment results of these assigned isotopologue species. After 24 h of 

growth in labeled cell media, about 20 to 30% of Gly and Ser were labeled with 13C only, 

which indicates de novo synthesis of Gly and Ser from glucose via glycolysis and the 3-PG 

pathway (Figure 6). A further 20–30% were 2H labeled only, indicating that these amino 

acids were newly imported from the external medium. However, more than half of the 

exogenously derived 2H3-Ser was converted to 2H2- and 2H1-Ser, while the main deuterated 

isotopologue of Gly was 2H1-Gly when either 2H3-Ser or 2H2-Gly was present in the 

medium. As before, these scrambled products of Ser and Gly indicated extensive deuterium 

exchange processes between Ser and Gly via 1-carbon metabolism, as catalyzed by SHMT, 

glycine decarboxylase complex (GLDC), and methylenetetrahydrofolate dehydrogenase 

(MTHFD).

4. Conclusions

We have harnessed and modified the rapid ECF derivatization coupled with nano-ESI-UHR-

FTMS method for microanalysis of amino acids. The resulting hydrophobic derivatives 

allowed use of chloroform extraction to minimize salt in polar extracts of biological 

samples, which avoided major matrix interferences. Together with the use of internal 15N 

labeled amino acid standards, we achieved highly sensitive, rapid, and reliable quantification 

of amino acids without the need for chromatography. Isobaric compounds such as Leu and 

Ile are not resolved with this new method, which would require chromatographic separation. 

We have applied this method to analyze amino acids in a wide range of biological matrices 

including cells, tissues, biofluids, and their protein hydrolysates. This, in turn, demonstrated 

the ability of mass spectrometry at sub-atomic (neutron) resolution to resolve dual tracers 

Yang et al. Page 10

Anal Chim Acta. Author manuscript; available in PMC 2018 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13C and 2H) simultaneously present in amino acids, thereby opening new avenues for 

studies of metabolic networks at the atom-resolved level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Chloroformate-based UHR-FTMS method shows excellent linear response to 

amino acids.

• UHR-FTMS resolves simultaneous 13C and 2H isotopologues of amino acids 

in mSIRM.

• Method was used to characterize metabolic change in lung cancer cells and 

tissues.

• Characterized metabolic changes in cancer are consistent with previous 

reports.
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Figure 1. Typical positive ion mode spectrum of an unlabeled polar extract of PC9 cells after 
derivatization with ECF
Panel A shows the full m/z range profile spectrum, which included the Na adducts of GSH 

and GSSG derivatives along with amino acid derivatives. Panel B shows the zoom-in profile 

spectrum in the amino acid range. The m/z peaks were assigned using “PREMISE” [13]. 

Most of the amino acids shown represented Na adduct species except for Arg and His, which 

were protonated species.
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Figure 2. 13C labeled amino acids in blood plasma of mice fed with a 13C6-glucose diet
Blood plasma from mice fed with the 13C6-glucose diet was obtained and treated as 

described in the methods. Isotopologues of the amino acids were determined via the ECF 

derivatives by UHR-FTMS. High 13C enrichment was observed in Ala (ca. 33%) and Gln 

(ca. 50%) but not in Glu (<10–15%).
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Figure 3. 13C labeling in human lung tissues
The polar extract of lung tissues slices incubated for 24 h in the presence of 13C6-glucose 

were processed as described in the methods. The amounts of different isotopologues of three 

amino acids were normalized to the tissue protein weight (left) and the fractional 

enrichments were calculated (right). Non-cancerous (NC, blue) and cancerous (CA, red) 

tissue slices procured from a lung cancer patient (UK018). N=2; error bars represent 

standard error of mean (SEM).
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Figure 4. 13C atom-resolved tracing of 13C6-Glc oxidation through the interconnecting 
cytoplasmic glycolysis and mitochondrial Krebs cycle
Panel A shows 13C incorporation from 13C6-Glc into various metabolites via the PDH 

(pyruvate dehydrogenase) pathway; panel B shows 13C incorporation from 13C6-Glc into 

metabolites via the PCB (pyruvate carboxylase) pathway. ●: 12C; ●: 13C; ●,● 
indicates 13C derived from PDH or PCB mediated Krebs cycle reactions, respectively; In 

panel A, the labeled patterns of the first and second (in brackets) turns of the PDH-initiated 

Krebs cycle are shown. In panel B, 13C3-pyruvate (Pyr) is carboxylated to form 13C3-
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oxaloacetate (OAA), leading to the formation of 13C3-Asp, -malate, -fumarate, and -

succinate (patterns outside brackets); the labeled structures in brackets are derived from the 

reaction of 13C3-OAA with 13C2- or unlabeled acetyl CoA (AcCoA) to form other labeled 

Krebs cycle intermediates after one cycle turn. α-KG: α-ketoglutarate; not all expected 

labeled patterns of metabolites are shown [10].
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Figure 5. Fractional enrichment of isotopologues in different amino acids hydrolyzed from non-
cancerous or cancerous tissue proteins
N=2; error bars represent SEM.
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Figure 6. De novo synthesis of Ser and Gly from glucose via glycolysis and the 3-
phosphoglycerate (3-PG) pathway and exchanges of exogenously derived Ser and Gly via one-
carbon metabolism
Selected Ser and Gly exchange reactions are depicted for the cytoplasmic and mitochondrial 

compartments to illustrate the production of different 2H isotopologues of Gly and Ser in 

Figs. 7 and 8. For example, the serine hydroxymethyl transferase (SHMT) reaction was 

shown for the cytoplasm (SHMT1) but omitted for the mitochondria (SHMT2) [10, 46]. 

Blue text blocks depict the de novo synthesis carbon pathway from 13C6-glucose while 

green and beige text blocks respectively depict the hydrogen exchange pathway of Gly and 

Ser via 1-carbon metabolism catalyzed by SHMT1, glycine decarboxylase complex 

(GLDC), and methylenetetrahydrofolate dehydrogenase (MTHFD). PHGDH: 

phosphoglycerate dehydrogenase; PSAT1: phosphoserine amino transferase 1; MTHFD2: 
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mitochondrial NAD+-dependent methylene tetrahydrofolate dehydrogenase/methylene 

tetrahydrofolate cyclohydrolase; MTHFD2L: mitochondrial NADP+-dependent methylene 

tetrahydrofolate dehydrogenase.
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Figure 7. UHR-FTMS of an extract of PC9 cells
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Panel A shows the UHR-FTMS profile spectrum of the Gly-ECF region of a polar extract of 

PC9 cells grown in a medium containing 13C6-Glc+2H2-Gly. Panel B shows the UHR-FTMS 

profile spectrum of the Ser-ECF region of a polar extract of 13C6-Glc+2H3-Ser labeled PC9 

cells.
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Figure 8. 
13C and 2H Isotopologue distribution of Ser and Gly in dually labeled PC9 cell extracts 

indicates extensive exchanges between the two amino acids. N=3; error bars represent SEM.
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Table 1

Linearity of response of the ECF-derivatized amino acids standard

Amino acids N Linear
range (nM) R2

Ala 4 5-5000 0.995

Arg 4 5-5000 0.999

Asn 4 5-5000 0.997

Asp 4 5-5000 0.998

Cystine 4 5-1250 0.988

Glu 4 5-5000 0.990

Gln 4 5-5000 0.997

Gly 4 5-5000 0.994

His 4 5-5000 0.999

Leu+Ile 4 5-5000 0.999

Lys 4 5-5000 0.999

Met 4 5-5000 0.999

Phe 4 5-5000 1.000

Pro 4 5-5000 0.999

Ser 4 5-5000 0.992

Thr 4 5-5000 0.987

Trp 4 5-5000 0.998

Tyr 4 5-5000 1.000

Val 4 5-5000 0.997
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