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Abstract

The exact density distribution of the nonlinear least squares estimator in the one-parameter 

regression model is derived in closed form and expressed through the cumulative distribution 

function of the standard normal variable. Several proposals to generalize this result are discussed. 

The exact density is extended to the estimating equation (EE) approach and the nonlinear 

regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. 

For a very special nonlinear regression model, the derived density coincides with the distribution 

of the ratio of two normally distributed random variables previously obtained by Fieller (1932), 

unlike other approximations previously suggested by other authors. Approximations to the density 

of the EE estimators are discussed in the multivariate case. Numerical complications associated 

with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as 

major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is 

formulated based on the near exact EE density approximation.
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1. Introduction

According to the JSTOR database, the search for “nonlinear regression” returns 47,988 

published items (on December 6, 2016) with the first article published by G.U. Yule in 1909. 

Since then, nonlinear regression has been studied along four lines of research: (1) 

Development of nonlinear least squares optimization algorithms. It is worthwhile to mention 

that the algorithm developed by Levenberg (1944) & Marquardt (1963) till now is the 

dominant method for sum of squares minimization and is widely used in modern numerical 

packages. (2) Developing curvature measures as a characterization of the model nonlinearity, 

starting from the pioneering 1961 paper by Beale and then continued by Bates & Watts 

(1980). (3) Connection of the curvature measures to criteria for existence and uniqueness of 

the nonlinear least squares estimate studied in the work by Demidenko (1989, 2000, 2006). 

(4) Derivation of the density of the nonlinear least squares estimator in small samples, 

mostly developed in the mid-eighties. The present paper continues the quest for the exact 
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probability density distribution of the NLS estimate as continuation of the work by Pazman 

(1984), Hougaard (1985) and Skovgaard (1985). Needless to say how important the exact 

distribution of any estimator might be: it can be used as the benchmark for other 

approximations, to construct accurate confidence intervals and to test hypotheses with the 

exact type I error.

Studying statistical properties of nonlinear models in small samples is the most formidable 

problem of statistics. Although several general techniques are available, such as the 

saddlepoint and Edgeworth approximations (Goutis & Casella, 1999; Barndorf-Nielsen & 

Cox, 1979) they are still approximations in scope. To illustrate, consider the popular 

Lugannani & Rice (1980) and Fraser et al. (1999) saddle point approximation of order 

O(n−3/2) for the cumulative distribution function (cdf) of the standardized maximum 

likelihood estimator with the sample size n used in the recent survey paper by Brazzale & 

Davison (2008)

where Φ and ϕ are the cdf and density of the standard normal distribution, and qn is a 

positive function of the Fisher information (we do not present the exact formula for brevity). 

However the cdf Fn(b) is not an increasing function of b which means that the density may 

become negative. In fact, many density approximations of the NLS estimator suggested by 

the previous authors may become negative as we learn from the next section. To the 

contrary, our exact density is always positive although derived under somewhat stringent 

conditions.

The study of the small-sample properties of nonlinear estimation tangles with numerical 

issues as nonexistence of the least squares solution and the presence of multiple solutions. 

Understandably, the previous authors who studied the distribution approximation for finite n 
even do not mention the possibility of the estimate nonexistence or multiplicity because their 

occurrence vanishes with n → ∞.

Several authors recognized the possibility of existence multiple local minima of the sum of 

squares in nonlinear regression and more generally multiple solutions of the estimating 

equation (M-estimator) leading to the concept of the intensity as a substitute of the density 

function (Skovgaard, 1990). This approach has been further developed in the following up 

work by Jensen & Wood (1998) and Almudevar et al. (2000). In contrast to that line of 

research, we aim at derivation of the explicit expression of the density distribution with 

applications to confidence interval and hypothesis testing in mind. Our method of derivation 

is different from those used by other authors: we use the fact that the estimating equation is 

linear in observations and derive the density by integrating out the multivariate density upon 

transformation.

For many years, it was believed that the distribution of the nonlinear least squares estimator, 

even if its unique, cannot be derived in closed form for a general model. We have derived 

this distribution and shown that it matches the distribution of a special case derived by 
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Fieller (1932) more than 80 years ago. First, the exact distribution is derived for a nonlinear 

regression model with one parameter and then extended to models with an arbitrary number 

of linear parameters and a coefficient (partial linear least squares). Second, the exact density 

is generalized to the estimating equation approach with fixed sample size.

In short, unlike extensive research on the approximation of the distribution from the 

asymptotic point of view we derived the distribution directly for fixed n. We outline how this 

derivation can be extended to incorporate the possibilities of nonexistence of the NLS 

estimate and multiple solutions of the normal equation.

The Gauss-Markov theorem is the landmark result of statistical science (Casella & Berger, 

1990; Schervish, 1995). The classic optimal estimation results with fixed n, such as 

uniformly minimum variance unbiased estimation, hold for the narrow exponential family of 

distributions (Bickel & Doksum, 2007) and therefore cannot be applied to nonlinear 

regression. Novel, non-quadratic loss function approaches are needed to expand the 

optimality theory to more complicated nonexponential distribution statistical models, such 

as nonlinear regression. As an example, we illustrate the application of the density of the M-

estimator by showing that the nonlinear least squares is optimal in the local sense.

The organization of the paper is as follows. The exact density distribution and its 

comparison with density approximations in the univariate case are presented in Section 2. In 

that section, we generalize the density to weighted nonlinear least squares and apply the 

result to a nonlinear regression with a linear part. In Section 3, we generalize our derivation 

to the estimating equation approach and apply the exact density to a regression with 

unknown coefficient. Numerical complications arising in nonlinear optimization or the 

solution of the normal equation and its effect on the density are discussed in Section 4. 

Section 5 contains results for the multivariate density approximation for nonlinear regression 

and the estimating equation approach. The formulation of the nonlinear Gauss-Markov 

theorem and the local optimality of the nonlinear least squares is found in Section 6. In the 

final section, we outline open problems for exact statistical inference in nonlinear statistical 

problems with small sample.

2. One intrinsically nonlinear parameter

In this section, we consider nonlinear regression with one intrinsically nonlinear parameter. 

First, we derive the exact density for the Nonlinear Least Squares (NLS) estimator. Second, 

we compare the exact density with the near exact density developed previously. Third, we 

generalize our derivation to the weighted NLS with a known weight matrix. Fourth, we 

apply the weighted NLS to a regression with one intrinsically nonlinear parameter and an 

arbitrary number of linear parameters.

With only one nonlinear parameter, β, the nonlinear regression is written as

(1)
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where yi is the ith observation of the dependent variable, fi(β) is the nonlinear regression 

function, and {εi} are iid normally distributed errors with zero mean and variance σ2. In 

many applications, the original regression function is written in the form f(β; xi), where xi is 

the explanatory (covariate) variable; we prefer the notation, fi(β) = f(β; xi), simply for 

brevity. Regarding regression functions {fi(β)}, we assume them to have continuous 

derivatives up to the second order on a fixed interval, β ∈ (a, b); typically a = −∞ and b = 

+∞ (we refer to a and b as to the lower and upper domain parameters). Also, to comply with 

identifiability condition, we assume that two different parameter values cannot produce the 

same function values. That is, fi(b1) = fi(b2) for at least one i implies b1 = b2.

The NLS estimate, , minimizes the sum of squared residuals,

(2)

One more comment regarding the notation: While  denotes the estimator, b denotes a value 

it takes (it will also act as a dummy argument of functions). The NLS estimate can be found 

from the solution of the normal equation,

(3)

where the dot over the function means the derivative, dfi/dβ = fi, because symbol ′ is 

reserved for vector/matrix transposition. If the normal equation has a unique solution then 

the solution is the NLS estimate, otherwise, it may yield spurious solutions. Throughout the 

paper, we use the vector/matrix notation, y = (y1, …, yn)′ and f(β) = (f1(β), …, fn(β))′, so 

that , . In this notation, the normal equation takes the form

(4)

The normal equation may have no solution. To avoid this complication, we may restrict our 

attention to regression with infinite tails: ||f(b)|| → ∞ when |b| → ∞. As was shown by 

Demidenko (2000), this assumption guarantees that equation (4) has at least one solution for 

each y.

Before formulating the main result, we introduce relevant quantities and functions:
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As is seen from the following theorem, the exact density distribution of the NLS estimator is 

expressed through the standard normal cumulative distribution function (cdf), Φ and its 

density ϕ.

Theorem 1—Let the solution of the normal equation, the NLS estimate, uniquely exist for 

each y. Let εi be iid  and  for at least one i. Then the exact density of the 

NLS estimator is given by

(5)

with the adjustment coefficient

(6)

The proof is found in the Appendix and proceeds as follows. First, without loss of generality, 

we can assume that . Expressing the first observation (i = 1) through b and the 

other n − 1 observations, a well-known theorem for the density upon nonlinear 

transformation is applied. Second, we derive the mean absolute value of a linear function of 

a normally distributed vector in closed form. Third, we express the function value and its 

derivatives for i = 1 through the full component vectors.

We make a few remarks regarding the exact density, pEX. First, we note that AE−C2 ≥ 0 due 

to the Cauchy inequality, so the square root function appearing in the adjustment coefficient 

is well defined. Second, the adjustment coefficient, aEX(b; β, σ) ≥ 0, so that the density 

cannot be negative. To prove that we rewrite the first term in (6) as

(7)

where  Since x(2Φ (x) − 1) ≥ 0 for all x, we have 

aEX(b; β, σ) ≥ 0.

2.1. Comparison with the near exact density and other approximations

Early authors, including Pazman (1984), Hougaard (1985), and Skovgaard (1985), 

developed the so-called Near Exact (NE) density of the NLS estimator. This density 

coincides with (5) but has a different (simplified) adjustment coefficient,
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(8)

A nice feature of the NE density is that the cdf of the NLS estimator can be expressed 

through the standard normal cdf as

(9)

which follows from straightforward differentiation. Equivalently, one can write, 

, where  is the NLS estimate. However, in order for 

(9) to be a real b cdf, three conditions must be met: (1) the argument of Φ must be an 

increasing function of b for each β, (2) the argument must approach −∞ when b approaches 

its lower parameter domain and (2) the argument must approach +∞ when b approaches its 

upper parameter domain.

There are two important distinctions between the EX and NE densities: (1) There is a 

presence of Φ in the former density, (2) the exact adjustment coefficient contains σ but the 

NE does not. When σ → 0, the argument of Φ in (6) approaches +∞, implying that Φ → 1. 

The second adjustment coefficient vanishes when σ → 0, so that

In another extreme situation, when σ → ∞, we have Φ → 1/2, so that

This observation suggests that the NE density approximation can be called “a small-variance 

approximation” because it coincides with the exact one when σ2 approaches zero.

Skovgaard (1985, formula (3.6)) suggested another expression for the density of the NLS 

estimator. As in the case of previous authors, the formula differs by the adjustment 

coefficients. More specifically, it has the same argument Q at functions Φ and ϕ, but 

different coefficients on these functions:

(10)
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The difference between this and our aEX (6) is in the coefficient at the first term. Clearly, the 

two expressions will be close when Q is large. It is possible to prove that the Skovgaard 

density is always positive because aSK > 0.

A nonlinear model that can be reduced to a linear model has the form f(β) = g(β)x, where g 
is a strictly monotonic function. In the terminology of Pazman (1993), this model is an 

Intrinsically Linear (IL) model. For an IL model, AB − CD = 0 and AE − C2 = 0, so we can 

approximate the density with a1 = 1 and a2 = 0, which leads to the IL approximation of ,

(11)

All three densities, (5), (8), and (11), are the same for an intrinsically linear nonlinear 

regression.

A further way to simplify the approximation of the density is to replace the derivative, , 

with the derivative evaluated at the true parameter value β:

(12)

This approximation will be called the Intrinsically Linear-Linear (ILL) approximation. This 

approximation is satisfactory in close proximity to the true value and reduces to the standard 

normal density upon transformation  under the 

assumption that  is a monotonic function of b for each β. However, the 

area under the curve (12) is less than 1 if the range of z does not cover the entire line.

Finally, as follows from the standard asymptotic results (e.g. Gallant 1987), when n → ∞ 

the distribution of  approaches the normal distribution with zero mean and varianc 

, which implies the normal approximation,

(13)

routinely used in nonlinear regression analysis.

The problem with approximations (8), (11) and (12) is that the area under the “density” is 

not 1. The fact that the area under the curve specified by the near exact density is not 1 has 

been mentioned by other authors, including Hougaard (1988), but perhaps the most 

discouraging feature of the NE density approximation is that it may become negative. For 
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example, for an exponential regression f(β) = eβx, where x =(x1, x2, …, xn)′, the adjustment 

coefficient evaluated at b = 0 is proportional to

Assuming that max x > 0, some algebra shows that this quantity becomes negative when β 
→ ∞. Although negative values of the density usually appear at the tails, it may lead to 

infinite confidence intervals with large σ; the same problem may arise when the area under 

the density is greater than one.

Example—Five density approximations, (8), (10), (11), (12) and (13), are compared with 

the exact density (5) for exponential regression, , where xi = i with i = 1, …, n = 

6 and the true value, β = 0 and σ = 2.5. The results are depicted in Figure 1. The area under 

the four curves is evaluated numerically by integration over the interval (−4, 0.5) using 

function integrate in R with 107 subdivisions (R Core Team, 2014). As seen from this 

figure, the problem with the NE density approximation starts when the NLS estimate takes 

values below −0.5, resulting in a considerable deviation of the area under the “density” from 

1. The negative density is due to the negative values of the adjustment coefficient which falls 

below zero starting from b = −0.5. The IL and ILL approximations are close to each other 

and to the EX/NE densities. From a statistical prospective, the NLS estimator has a long left 

tail which is less visible in the NE approximation. The NE density deviates from the true one 

because the curvature of the exponential model is unbounded (Pazman, 1984).

An obvious remedy for possible negative values of the adjustment coefficient (and the 

density) in the NE approximation is to take the absolute value, |aNE(b; β)| or set it zero. This 

suggestion can be justified by the fact that function x (2Φ (x) − 1) in (7) can be well 

approximated by |x|. After ignoring the second adjustment coefficient in aEX, we arrive at |

aNE(b; β)|.

2.2. Nonlinear regression with linear parameters

A nonlinear regression with m additive linear parameters takes the form

(14)

where it is assumed that the n × (m + 1) matrix, [X,h(b)], has full rank for all b. We can 

reduce this regression to a univariate linear regression by fixing β and applying least squares 

for γ, yielding  and f(b) = Wh(b), where W = I − P and P = X(X′X)−1X′ is the 

projection matrix, so that W1/2 = W. Sometimes, this procedure is called the partially linear 

least squares, or the Golub-Pereyra algorithm by the name of the original authors, Golub & 

Pereyra (2003). The reduced sum of squares can be rewritten as

Demidenko Page 8

Scand Stat Theory Appl. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where γ may be taken as the true parameter because WX = 0. Formally, the nonlinear 

regression is f(b) = Xγ − h(b), but since  and WX = 0, it is sufficient to use f(b) 

= h(b) with matrix W = I − X(X′X)−1X′. Consequently, the distribution of  does not 

depend on linear parameters γ. To obtain the joint density, (a) write the density of 

 conditional on ,

(15)

then (b) the joint density for  and  is the product of pEX and this normal conditional 

density.

2.3. Possible improvements of Theorem 1

The exact density of the NLS estimator is derived under a stringent assumption on the 

uniqueness of the solution of the normal equation. If this assumption does not hold the area 

under pEX may be different from 1, below is a motivating example.

Example (provided by a referee)—Define the circle nonlinear regression as f(β) = (cos 

β, sin β) on β ∈ (−π, π], n = 2. The normal equation has two solutions, 

and . One solution is the NLS estimate as the minimizer of the 

residual sum of squares (2) and another is the maximizer, the spurious solution. The 

conditions of Theorem 1 are violated and it is not difficult to find that the area under pEX 

density is 2. This example, gives rise to the following improvement of Theorem 1.

Find the density of the NLS estimator under condition that the second derivative of the 

residual sum of squares is positive: this condition eliminates the spurious solution of the 

estimating equation corresponding to the maximum of the criterion function.

An advantage of the proof of Theorem 1 is that we can easily incorporate the condition on 

the positiveness of the second derivatives because it is expressed as a linear function of 

observations. Indeed, in the notation of the proof from the Appendix, let in addition to the 

normal equation we define the condition of the positiveness of the 

second derivative as

where z = σ−1(y − f(β)) are normalized observations and g(b) = σ−1(f(b) − f(β)), and u < 0. 

The joint density of (b, u) can be derived by integrating out y2, …, yn following the line of 

the proof. Finally, to obtain the marginal distribution of b we condition on u > 0 by 

integration the bivariate density over (−∞, 0). For example, for the circle regression the 

density of the NLS (with the spurious solution eliminated) is proportional to
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This integral has been evaluated in closed form using a technique presented in the proof 

based on the formula . Remarkably, the circle regression gives 

rise to a new family of distributions on the circle (Mardia & Jupp, 2000). In Figure 2 we 

depict the empirical (using 100,000 simulations) and theoretical densities of the NLS 

estimator in the circle regression, wrapped around the unit circle, under two scenarios of true 

parameters: the densities match perfectly. The density has a peak, the distance from the unit 

circle, at the true β, and the density with σ = 2 is more “uniform.”

Another possible improvement of Theorem 1 is to incorporate the criterion on the global 

minimum into the derivation of the density. Indeed, the global criterion is usually formulated 

as follows: if b is a local minimizer such that ║y − f(b)║2 < ║y − f(b0)║2, where b0 is 

known, then b is the global minimizer of the sum of squared residuals (Demidenko, 2006, 

2008). Express the above inequality as ║y − f(b0)║2 −║y − f(b)║2 = 2u where u > 0, or 

equivalently as y′(f(b)−f(b0)) = u−(║f(b) ║2−║f(b0)║2)/2. Since this equation is linear in 

y we can derive the joint density of b and u and then find the marginal density of b by 

integrating out u. The same method can be utilized to incorporate an existence criterion into 

density derivation which is also expressed as the difference of the sums of squared residuals 

(Demidenko, 1989, 2000).

3. Extension to the estimating equation approach

Theorem 1 can also be generalized to the case when any function, say r, is used instead of ḟ 
in the normal equation (4). This leads to the estimating equation (EE) approach:

(16)

where r(b) is a nonnull vector function such that r′(b)ḟ(b) ≠ 0 for all b and, as before, {yi − 

fi(β)} are iid . The solution of this equation is usually referred to as the M-

estimator, or the EE estimator. Here we assume that the solution of (16) exists and is unique 

for each y (the discussion on the alternative intensity function is deferred to Section 5.2). 

Without loss of generality, one can assume r′(b)ḟ(b) > 0. It is well known that the EE 

approach yields a consistent M-estimator of β under mild conditions (Huber, 1981; 

Schervish, 1995). In particular, the estimating equation approach appears in the framework 

of the quasi (pseudo) -likelihood and the generalized estimating equation approach 

(Godambe, 1960; Gong & Samaniego, 1981; Zeger et al., 1988, Pawitan, 2001), robust 

statistics, and the instrumental variable approach in connection with the measurement error 

problem (Fuller, 1987).

Demidenko Page 10

Scand Stat Theory Appl. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 2—The exact density of the M-estimator, , defined by estimating equation 

(16), is given by

(17)

with adjustment coefficients computed by the same formulas as in Theorem 1, but

The Near Exact and IL approximations have adjustment coefficients

The proof is a slight modification of that for Theorem 1 and is found in the Appendix. 

Basically, we replace  with r and  with  and repeat the three steps of the proof outlined in 

the preceding section. Note that we use the absolute value in G, so  may be 

negative.

As in the case of the NE distribution for the NLS estimator, it is straightforward to check 

that the EE estimator has the cdf given by

(18)

Similar to our previous comment, in order for this function to be a cdf, FEE as a function of b 
must satisfy three conditions.

Linear instrumental variable check: Let f(β) = βx and r(β) = (r1, r2, …, rn)′ be a fixed vector 

such that r′x > 0, so that the estimating equation takes the form (y−βx)′r = 0. This estimator 

emerges as the instrumental variable approach (Fuller, 1987). As follows from linear theory, 

. But from Theorem 2, B = C = E = 0 and a1 = 

G/A = (r′x) ║r║2, a2 = 0, which yields

the same density as follows from the linear theory. All three densities, NE, IL and ILL, 

coincide for linear regression.
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3.1. Nonlinear regression with an unknown coefficient

In this section, we apply the theory of the estimating equation to regression with one 

intrinsically nonlinear parameter and an unknown coefficient at the nonlinear function,

(19)

assuming that the n × 2 matrix [h(b), h(b)] has a full rank for all b, and ν ≠ 0. After 

eliminating ν through linear least squares, we arrive at the estimating equation for β,

which is equivalent to

where ν is the true value. Thus, letting

Theorem 2 applies (the argument, b, is omitted for brevity). The required condition, 

 follows from the Cauchy inequality,

since matrix  has full rank. The exact and near exact densities require the derivative 

vector, , which is straightforward to obtain in terms of derivatives of h,

Fieller (1932) example. In this example, we test (17) through a distribution derived almost 

one hundred years in a very special case. Namely, we apply the estimating equation theory 

to the nonlinear regression

(20)
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In previous notation we have h(b) = 1+bx, r(b) = x − (1+bx)′x(1+bx) ║1+bx║−2. For this 

model the exact distribution of the NLS estimator of β reduces to the distribution of the ratio 

of two normally distributed random variables. Indeed, the NLS estimator of β is

(21)

where  and  are the least squares slope and intercept, respectively. They have a bivariate 

normal distribution with marginal distributions  and 

, respectively, and correlation coefficient 

. Fieller (1932) initially derived and Hinkley (1969) extended the 

distribution of the ratio of two normally distributed random variables, Z = X1/X2 with means 

μi, variances , and correlation coefficient ρ. Thus the Fieller result applies with μ1 

= νβ,  and μ2 = ν,  and 

 as the benchmark testing of our EE distribution specified in 

Theorem 2. After some algebra, one can show that our density pEX and the density of the 

ratio are identical while other known density approximations, such as NE or Skovgaard do 

not coincide with the density of the ratio.

3.1.1. Example: Michaelis-Menten model—The Michaelis-Menten model is a popular 

model in many application fields, especially in chemistry (Seber & Wild, 1989; Hadeler et 
al. 2007). It has a hyperbolic shape and describes the data with the right asymptote,

(22)

We use Puromycin data on the velocity of a chemical reaction from the example provided in 

Bates & Watts (1988, p. 269), n = 12 with the true parameter values β = 0.064 and ν = 212.7 

estimated from the data, where x is the substrate concentration and y is the velocity of the 

enzymatic reaction. The estimated residual standard error was σ = 10.9; we use σ = 40 here 

to amplify the difference between the densities. Four densities of the NLS estimator  with 

the associated 75% density limits are depicted in Figure 3 (we use the 75% confidence level, 

not 95%, for the illustrative purpose).

The exact and near exact densities practically coincide; that is why only three curves are 

seen. The IL density deviates only slightly from the exact/NE densities. The normal 

approximation is adequate only in a close proximity to the true value, but deviates from the 

exact density elsewhere due to the implied symmetry. Consequently, the normal density 

limits are narrow and symmetric around β. The Exact/NR and IL limits are wider and shifted 

to the right due to skewness of the estimates. The same conclusions, on average, can be 

drawn regarding confidence intervals for β.
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In Figure 4, the exact expected value of  and its MSE are computed using the function 

integrate in R based on the exact density as a function of the standard error of residuals. 

For σ larger than 40, the negative bias becomes considerable (left plot). For σ > 30 the 

normal approximation variance, routinely used in existing statistical packages, considerably 

exceeds the exact value and inflates the p-value as follows from the right plot.

The NLS estimate in the Michaelis-Menten model may not exist especially for large σ; 

complications associated with nonexistence are discussed below in Section 4. Criteria for the 

NLS existence for this model are developed in Hadeler et al. (2007). A simple criterion 

based on the concept of the existence level (Demidenko, 2000, 2004), is as follows. Denote 

 and ; if there is a starting value for ν and β with the sum of 

squares less than min(S1, S 2), the NLS estimate exists.

Now we derive the joint distribution of the estimator for two parameters, the linear 

coefficient,  and , where . As in (15), we note that the 

distribution of  conditional on  is normal with mean νh′(β)h(b)/h′(b)h(b) and variance 

σ2/h′(b)h(b). Therefore, the joint distribution is the product of this conditional normal 

distribution and the marginal density, pEX(b; β, σ2).

3.2. Nonlinear regression with an unknown coefficient and linear parameters

The regression with one intrinsically nonlinear parameter, a linear part and an unknown 

coefficient takes the form

(23)

where γ is an m-dimensional parameter vector and ν and β are scalars. It is assumed that the 

n × (m + 2) matrix, [X, h(β), h(β)], has full rank for all β. This regression is an obvious 

combination of (14) and (19) with applications arising from two-compartment modeling as 

the solution to ordinary differential equations. For example, Gallant (1987) uses model (23) 

with h(β) = eβz.

After elimination of the linear parameters, γ, we come to a one-parameter nonlinear least 

squares problem with coefficient ν treated as in the above section. Thus, the same formula 

for the density of  applies with f = νh and h replaced with f = νWh and Wh, as in Section 

2.2.

4. Numerical complications

The goal of this section is to examine how numerical complications arising when 

minimizing the sum of squares or solving the normal equation affect the density of the NLS 

estimator distribution. Apparently, two kinds of complications are possible: the solution does 

not exist and there are multiple solutions.
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4.1. What happens when the NLS estimator does not exist

In the traditional asymptotic approach, nonexistence of the NLS estimate is not an issue 

because according to the classical maximum likelihood theory this probability vanishes 

when n → ∞. However, in practice the probability that the NLS estimate does not exist 

cannot be ignored, see an example below. Only a handful of papers discuss the nonexistence 

of the NLS estimate either in terms of sufficient criteria Demidenko (1989, 2000, 2008) or 

necessary and sufficient conditions for specific nonlinear regression models Hadeler et al. 
(2007), Jukíc & Markovic (2010), and Jukíc (2014), to name a few. The purpose of this 

section is to illustrate how the probability of nonexistence affects the density distribution 

using simplistic examples of nonlinear regression where this probability is tractable.

The NLS estimate does not exist for some observations y1, …, yn when σ2 is large and the 

regression curve has finite tails, namely, when ║f(b)║ does not go to infinity when |b| → 

∞. To illustrate, let us consider an exponential regression  with two observations 

(n = 2). For simplicity, we assume that x1 = 1 and x2 = 2, implying that the regression curve 

is a half parabola in the observation space R2. The normal equation turns into a cubic 

polynomial 2θ3 + (1 − 2y2)θ − y1 = 0 where θ = eb. Although the cubic equation has at least 

one real root, there may be no positive roots which means that the NLS estimate does not 

exist.

Using some algebra on the cubic equation similar to Demidenko (2000), one can show that 

there are no positive roots for θ if y1 ≤ 0 and y2 < 1.2 |y1|2/3 + 0.5. These explicit conditions 

allow computation of the probability that the NLS estimate does not exist for given β and σ 
expressed as an integral,

(24)

These probabilities as functions of σ are depicted in Figure 5 for β = ln 0.5 and β = 0. The 

closer the true point is on the regression curve to zero or the larger σ, the greater the 

probability. For example, in regression with the true value β = ln 0.5 = −0.7 and the standard 

deviation, σ = 1, a quarter of all iterations would diverge to −∞ if standard nonlinear 

regression software such as nls in R were used.

Now we investigate the effect of nonexistence on the density of the NLS estimator. Two 

exact densities with the true value β = 0 and σ = 0.5, σ = 1 computed by formula (5) are 

depicted in Figure 6. Both densities have a long left tail, especially for σ = 1. The areas 

under the densities evaluated by numerical integration are shown in the upper-left corner. 

While for σ = 0.5 this area is 1, as it supposed to be, the area under the density for σ = 1 is 

less than 1 which reflects the fact that in approximately 20% of cases the NLS estimate does 

not exist. In general, numerical evaluation of the area under the density is a good test that 

points out to a nonignorable nonexistence of the NLS estimate.
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4.2. What happens when the normal equation has multiple roots

In this section, we analyze the effect of violation of another assumption under which the 

exact and near exact densities were derived, namely, when the normal equation has multiple 

roots. Lehmann & Casella (1998, p. 451) and Skovgaard (1990) presented the analysis of 

multiple solutions in general terms by showing that the maximum likelihood estimator lacks 

consistency. Here, we illustrate the consequences with an example similar to that from the 

previous section, the parabolic regression, f1(b) = b and f2(b) = b2, −∞ < b < ∞ (n = 2), see 

Figure 7. Then the normal equation reduces to a cubic equation which admits a closed-form 

solution. As was shown in Demidenko (2000), the sum of squares (y1 −b)2 + (y2−b2) has 

two local minima if y2 > 3/41/3 |y1|2/3 +1/2. In the figure, the data point y leads to two local 

minima as the distance to the parabolic curve; the positive value is the true NLS estimate and 

the negative value is the false NLS estimate. For given β and σ, one can compute the 

probability of two local minima as the integral

(25)

For example, for β = 0.5 and σ = 0.5 the probability that the sum of squares has two local 

minima is 0.026. In Figure 7, the circle around (0.5, 0.52) shows the 95% confidence region 

of (y1, y2). Probability (25) equals the density-weighted area of the intersection of this circle 

with the shaded area.

Now we turn our attention to how multiple roots (local minima) affect the densities. 

Although the NLS estimate should yield the absolute minimum of the sum of squares it may 

not hold in practice where a possibility of local minimum is a reality. In Figure 8, five 

densities are shown for β = 0.5 and σ = 0.5. The first two densities are theoretical and the 

last three densities are empirical, estimated with the Gaussian kernel based on 100,000 

simulations. Three strategies for handling multiple roots are studied through simulations: 

The “Global minimum” strategy is when the global minimum is taken, which leads to the 

true NLS estimate. The “False minimum” is when the wrong local minimizer is taken as the 

false NLS estimate. The “50/50” strategy is when the true or the false estimate is randomly 

chosen with equal probability. We notice that the NE density has a prominent dip and differs 

from the EX density in the interval (−0.5, 0.25). The probability of the false NLS estimate 

computed by formula (25) is 0.026. The left bump around −0.5 in the densities reflects the 

possibility of the false estimate. In fact, when y is close to the center of the multiple minima 

region (b = 0), the roots of the normal equation have the same magnitude but different signs. 

The existence of multiple roots makes the area under the EX density larger than 1; for this 

example, it is 1.10. As in the case of the NLS nonexistence, the deviation of the area under 

the density from 1 is indicative of the nonuniqueness of the NLS estimate.

5. Multivariate case

In multivariate nonlinear regression, parameter β is an m-dimensional vector, so we use 

boldface now,
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The NLS estimator, , is the solution to the vector normal equation

(26)

where F(b) =∂f/∂b is the n × m derivative (Jacobian) matrix assuming det(F′(b)F(b)) ≠0 for 

all b and that f(b1) = f(b2) implies b1 = b2 to ensure the identifiability. As in the univariate 

case, we assume that the solution of (26) uniquely exists for each y ∈Rn. The exact density 

for a multivariate nonlinear regression model cannot be derived in closed form, so we deal 

with approximations.

5.1. Density approximations for the NLS estimator

The NE density for the multivariate case was derived by Pazman (1984, 1993) using a 

geometric approach,

(27)

where H(b) is a (nm) × m stack matrix with the ith m × m block as the Hessian matrix of fi, 

namely, Hi = ∂2fi/∂b2, and P(b) = F(b)(F′(b)F(b))−1F′(b) is the n × n projection matrix. 

Notation ⊥ is used to indicate the row distance vector to the plane spanned by vector 

columns of matrix F(b), namely, (f(b) − f(β))⊥ = (f(b) − f(β))′(In − P(b)). Skovgaard 

(1985), Hougaard (1985) and Pazman (1999) derived expression (27) using the saddlepoint 

approximation.

We make several comments on density (27). First, the Kronecker product in (27) can be 

expressed explicitly as

(28)

Second, for m = 1, after some algebra, we arrive at the previous expression (5) with 

adjustment coefficient (8). Third, density (27) is equivalent to saying that

(29)

The IL approximation can be used as a simplification of pNE by omitting term (28),
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Again, one can prove that this density is exact for the intrinsically linear regression model, 

the nonlinear model that can be reduced to linear after reparametrization. The ILL 

approximation is a further simplification when matrices are evaluated at the true value:

The complications outlined in Section 4 apply to these densities as well. Namely, (27) can be 

negative and the volume under the densities may be not 1. Pazman (1984) expressed the 

deviation of (27) from the true density in terms of the minimum radius of intrinsic curvature 

as a part of the nonoverlapping assumption. The problem is that, in most nonlinear 

regression models, this minimum reaches zero if parameter space is not restricted, so that the 

nonoverlapping assumption does not hold. For example, the radius of intrinsic curvature 

approaches zero when β → −∞ in the exponential model  with 0 < x1 < … < 

xn. Of course, one can restrict the parameter space, say, β > 0, but that restriction would 

become questionable.

5.2. Density approximations for the estimating equation approach

In the multivariate EE approach, the M-estimator is found from the vector equation

(30)

where R(b) is a n × m matrix such that matrix R′(b)F(b) is positive definite. In a special 

case when R = F, the estimating equation approach reduces to NLS. Following the line of 

the proof in the univariate case, we obtain the NE approximation of the density of the M-

estimator,

(31)

where E(b) is a (nm) × m stack matrix, with the ith m × m block, Ei = ∂ri/∂b and ri = ri(b), 

being the ith row vector of matrix R(b), and the projection matrix is given by

Simple algebra shows that (31) reduces to (17) when m = 1. The IL approximation is an 

obvious simplification,
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The saddlepoint approximation to the density in more general settings expressed in terms of 

the cumulant generating function were developed by Field (1982) and Strawderman et al. 
(1996), among others (see a nicely written paper by Goutis & Casella (1999) as a general 

introduction to the saddlepoint approximation). One can show that the saddlepoint 

approximation yields pIL. There is a bulk of work on the distribution of the M-estimator in a 

less idealistic situation when there are several solutions of the EE with the density 

counterpart termed the intensity function derived in a general form. For example, Almudevar 

et al. (2000) provide an explicit solution for the density only for a linear Huber’s robust 

regression.

The multivariate version of the EE densities can be applied to nonlinear regressions with 

linear part and unknown coefficients, such as Xγ+ν1f1(β1) + ν2f(β2), similar to regression 

with one intrinsically nonlinear parameter.

5.3. Possible improvements of multivariate density derivation

We have indicated that our derivation of the univariate density may be improved by brushing 

off spurious solutions or by accounting for nonexistence of the estimate. Many previous 

derivations of the multivariate density relied on the saddle point approximation. We provide 

an outline of an alternative derivation of the density as a generalization of the univariate case 

in the Appendix. As before, we assert that this derivation is flexible enough to incorporate 

conditions on positive definiteness of the Hessian, or at least positiveness of the diagonal 

elements, and existence criteria once they are expressed as linear functions of observations.

6. Gauss-Markov theorem for nonlinear regression

The aim of this section is to show how the density results can be used to study methods of 

optimal parameter estimation. Classic quadratic loss function criteria for optimality do not 

work in this setting because (a) the moments may not exist, such as in Fieller problem, and 

therefore the concept of unbiasedeness is invalid, and (b) the distribution is highly 

asymmetric.

Gauss-Markov theorem is the landmark result of linear regression with normally distributed 

variables: if y = Xβ + ε, where components of error vector ε are iid normally distributed 

with zero mean and matrix X has full rank, then the maximum likelihood (least squares) 

estimators of the beta-coefficients are unbiased and have minimum variance for any finite n. 

This result holds for the NLS estimator in nonlinear regression in large sample (n → ∞). 

The paramount question: does it hold for finite n? One can guess that this question was on 

the mind of statisticians since the Gauss-Markov theorem was proved for linear regression. 

Two challenging questions should be answered before even formulating the problem:

1. What family of competitive estimators should be considered?
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2. How to define the most precise estimator with a known cdf which may have 

infinite mean or variance like in the Fieller test example when the traditional 

mean square error loss function does not work?

To answer the first question we suggest to consider the EE approach with the family of 

estimators defined by equation (30). To motivate our choice we refer to linear regression 

restricting to linear estimators that reduces to equation R′(y − Xβ) = 0, where matrix R has 

full rank and matrix R′X is nonsingular (‘linear’ means that matrix R does not depend on 

β). The EE estimator  is unbiased with the covariance matrix 

, as the Gauss-Markov 

theorem says (the last inequality follows from the fact that matrix I − X(X′X)−1X′ is 

nonnegative definite). Restriction on unbiased estimators is crucial—the EE approach 

defined by (30) can be viewed as the unbiasedeness counterpart.

To answer the second question, we invoke the concept of the confidence interval (CI) termed 

here as inverse cdf (see Casella & Berger, 1990, pp. 417–418). Hereafter in this section we 

consider the one-parameter statistical estimation problem. Let the cdf of an estimator be 

defined as F(b; β) such that F(b; β) is a strictly decreasing function of β for every fixed b 
and limβ→−∞ F(b; β) = 1, limβ→∞ F(b; β) = 0. If α is the significance level, say, α = 0.05 

and  is the EE estimator, the lower and the upper limits of the CI for β are the solutions to 

the equations F( ; β) = 1 − α/2 and F( ; β) = α, respectively. The solutions exist and 

unique as follows from the assumptions on cdf F, although the existence of the limiting 

values for F are not crucial— if the the solution does not exist the CI limit is set to ∞.

Definition 3

Let the cdfs of two estimators of the true β be F1(b; β) and F2(b; β). We say that the first 

estimator is more precise if its inverse cdf CI is a subinterval of the second for every α > 0.

It is easy to see that the two estimators are unbiased and normally distributed with cdfs Φ((b 
− β)/σ1) and Φ((b − β)/σ2) the first estimator is more precise if and only if σ1 ≤ σ2.

Now we turn our attention to formulation of the extended Gauss-Markov theorem; as 

mentioned before one intrinsically nonlinear parameter nonlinear regression with known σ is 

discussed here. Also we restrict ourselves with near exact approximation of the density 

distribution since the cdfs for the NLS and EE estimators admit a closed-form expression via 

Φ defined by (9) and (18). The family of nonlinear regressions has to be constrained as well 

to comply with the uniqueness of the cdf solutions in inverse cdf CI. We adopt the following 

definition of the unidirected regression (Demidenko, 2006):

Definition 4

A nonlinear regression is called unidirected if the vector derivatives constitute a sharp angle 

for any pair of parameter values, i.e. ḟ′(β1)ḟ(β2) > 0 for every β1 and β2.
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It is easy to see that for a unidirected regression the inverse cdf CI based on the cdf (9) is 

unique for any α. Indeed, if  is the NLS estimator the lower and upper limits of the CI are 

the solutions to the equation H.(β; ) = σΦ−1(1 − α/2), where

But for the unidirected function H is a strictly increasing function of β for any fixed b, 

including b =  so that the solutions are unique.

Now we turn our attention to the EE estimator as the solution to (16) defined by function r. 

In general terms, the Gauss-Markov theorem for nonlinear regression proves that r(b) = ḟ(b) 

yields a more precise EE estimator than any other choice of function r(b). The expression 

for cdf (18) is crucial here.

Theorem 5. Local near-exact Gauss-Markov theorem for nonlinear regression

Let (1) be a unidirected nonlinear regression and r(b) be such that r′(b)ḟ(β) > 0 for every b 

and β. Denote

Then (a) the EE estimator with r = r∗ is the most precise if Hr(β; b) ≤ Hr∗(β; b) for all β and 
b. (b) The NLS/ML estimator is locally precise meaning that

for any function r = r(b).

Proof

a. As follows from (18) the inverse cdf (1−α)100% CI can defined as the interval Ir 

= {β: Hr(β; b) ≤ σΦ−1(1−α/2)}. If r∗ is such that  then the 

interval  is a subinterval of Ir.

b. For the NLS/MLE estimator we have

For the EE estimator with any r = r(b) we have
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due to Cauchy-Schwarz inequality, end of proof.

We make a few comments regarding this theorem: (a) function H provides a criterion for 

search of the most precise EE estimator through the vector function r(b). (b) the Gauss-

Markov theorem holds in the local sense, for tight CI.

7. Future work

The present work on the density distribution for the estimating equation approach can be 

extended in several theoretical research directions. First, the density distribution of the 

variance estimate,  should be derived and the confidence 

intervals for the parameters should be corrected based on this density. We believe that this 

knowledge may show the way to find a better estimator of σ2.

Second, the extension to the estimating equation approach developed in this paper opens the 

possibility of studying the small-sample properties of the weighted nonlinear regression 

(Carroll & Ruppert, 1988), and the quasi/pseudo-likelihood approach (Gong & Samaniego, 

1981; Zeger et al. 1988) with a normally distributed response variable. In the former 

approach, which is sometimes called generalized nonlinear least squares, the weight matrix 

is a function of the regression parameters and the estimating equation takes the form

where W(b) is the weight matrix, which turns into estimating equation (30) by letting R(b) 

= W(b)F(b).

Third, following the line of our density derivation, one may study the small-sample 

properties of the Generalized Estimating Equation (GEE) approach, often applied to the 

analysis of longitudinal and cluster data (Fitzmaurice & Molenberghs, 2009), with 

estimating equation  and the weight matrix 

, where Rk is the correlation matrix and Dk(b) is the diagonal 

matrix of standard deviations.

Fourth, the exact (or improved) statistical inference can be extended to statistical models 

when variance-covariance matrices are subject to estimation using the estimating equation 

approach (Paige & Trindade, 2009).

Fifth, the normal approximation density can be improved for multivariate nonlinear 

regression (Vonesh et al., 2001) and, more generally, nonlinear mixed models (Demidenko, 

2013).
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Sixth, the near exact density approximation of estimating equation approach allows 

formulation of the nonlinear Gauss-Markov theorem. We have derived a local version of the 

theorem; more work has to be done in this direction, intriguing from the theoretical and 

important from practical perspective. In particular, the question whether NLS/ML estimator 

remains precise in the global sense is open and awaiting the solution. It is possible that for a 

concrete regression function one may find a better estimator.

Seventh, the idea finding the exact distribution conditional on the difference of residual sum 

of squares in Section 2.3 may be applied to adjust for nonexistence of the NLS, frequently 

forgotten in the literature of higher order asymptotics, because the criteria of existence 

usually have the form  where β0 is a fixed parameter value 

(Demidenko 1989, 2008).

On the practical side, as was mentioned above, the existing commercial statistical packages, 

such as SAS and STATA, or freely available R rely on the normal approximation which 

yields symmetric Wald confidence intervals. Arguments against computationally intensive 

confidence intervals in nonlinear models were adequate several decades ago, but not today. 

In addition to Wald confidence intervals and p-values, software offering nonlinear regression 

should be augmented with more precise numerical and statistical features, such as testing 

whether the found minimum of the sum of squares is global and improved asymmetric 

profile-confidence intervals and associated p-values such as implemented in the recent R 

package nlreg (Brazzale et al., 2007, Brazzale & Davison, 2008).
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Appendix

A. Proof of Theorem 1

The following lemma is an obvious reformulation of a textbook result on the density of the 

multivariate distribution under a nonlinear transformation.

Lemma 6

Let random vector y = (y1, y2, …, yn) have density py(y1, y2, …, yn) and random variable b 

be a unique solution to a nonlinear equation,

(32)

where g is a nonlinear function such that . Moreover, let y1 be 
expressed from (32) via inverse function, y1 = h(b, y2, …, yn). Then the density of b is given 
by
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Since the normal equation does not depend on σ, we can assume that σ is fixed and known. 

Moreover, we can normalize the normal equation by replacing the observations and the 

regression function with yi/σ and fi(β)/σ, respectively, so that observations will have unit 

variance. Also, without loss of generality, we can assume that  for all b. The proof 

has three steps.

#1. Express y1 through the NLS estimator b and y2, …., yn. as

and apply Lemma 3 to obtain the density of the NLS estimator as an integral:

(33)

The needed derivative is obtained using elementary calculus, , where 

 and

Introducing the (n − 1) × 1 vectors z, q and g with the ith components zi, qi and 

, respectively, rewrite integral (33) in a compact form as

(34)

where .

#2. Express integral (34) as an expectation of |R + q′z| over a normally distributed vector 

using cdf Φ. Using an elementary fact (a > 0),
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which follows from equality  where ϕ = Φ′. After some algebra, 

we obtain

(35)

We apply this formula to (34) letting X = R + q′z and expressing the integrand through a 

density of a (n − 1) dimensional normal variable. Using the formula

we represent

where μ=−p(I + gg′)−1 g = −p(1 + ||g||2)−1 g. Using this result, we can rewrite the 

exponential part as

But det (I + gg′) = 1 + ||g||2, so finally the distribution of R + q′z is a constant times the 

normal distribution, or symbolically,

Combining this result with formula (35) and letting X = R + q′z with

we obtain the following result. Let , p and R be scalar and g and q be vectors. 

Then
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(36)

where

(37)

(38)

Note that without the absolute value, we obtain an easier expression,

(39)

where

(40)

#3. Express the density through the n-dimensional vector f and its derivatives and simplify. 

Letting

for brevity, some tedious algebra yields
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and

Plugging these expressions back into (36), we obtain the exact density of the NLS estimator 

(5) with the adjustment coefficients, which follow from (37) and (38). Note that the NE 

density approximation with adjustment coefficient (8) follows from (39). Thus, this 

approximation is obtained from density (33) by ignoring the absolute value of the derivative/

Jacobian.

B. Proof of Theorem 2

This proof follows the proof of Theorem 1 closely. Express y1 through the NLS estimator b 
and y2, …., yn. as

and find the derivative , where
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Introducing the (n − 1) × 1 vectors z, q and g with the ith components zi, qi and gi = ri(b)/

r1(b), respectively, and p = [(f(b) − f(β))′r(b)]/r1(b). We notice that the derivative  appears 

only in the expression of R; in the rest of the expressions, ri acts as  and subsequently 

acts as . Thus, we need to work on the terms containing R,

Thus, we come to the formula for density in Theorem 2 by replacing  with r(b) and 

with .

C. Outline of the multivariate density derivation

Partition the Jacobian matrix F(b), the data vector y and the regression function f(b) as 

follows:

assuming that the square matrix F1(b) is nonsingular for every b. Using the normal equation 

express y1 through the NLS estimator b and z2 = y2 − f2(β),

and apply the multivariate version of Lemma 6 to obtain the density of the NLS estimator as 

an integral over Rn−m,
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where  and H2i = ∂2fi2/∂2b. 
Approximate

using the Jacobi’s formula and proceed as in the univariate case since the right-hand side 

may be treated as a normally distributed random variable and as such exact density can be 

derived beyond this point. Note that if the absolute value of the determinant in pNLS 

expression is approximated as det(R) we obtain the NE density.
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Figure 1. 
Exact and four density approximations for the exponential regression fi(β) = eiβ with i = 1, 

2, …, 6, σ = 2.5 and the true β = 0. The figure in the parentheses shows the area under the 

curve (must be 1).
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Figure 2. 
The theoretical and empirical densities of the NLS estimate in circle regression wrapped 

around the unit circle under two scenarious (symbols represent simulations and curves 

represent the analytic density).
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Figure 3. 
Four densities of the NLS estimator of β = 0.064 in the Puromycin example (σ = 40) with 

the 75% density limits. The exact and near exact densities practically coincide.
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Figure 4. 
Computation of the expected value and the MSE of the NLS estimator using the numerical 

integration of the exact density.
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Figure 5. 
Probabilities that the NLS estimate does not exist in the exponential regression with two 

observations (n = 2) computed as the integral (24). The smaller the value of β the greater the 

probability.
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Figure 6. 
Two densities for an exponential regression with β = 0 and different σ. For σ = 0.5, there is a 

tiny probability that the NLS estimate does not exist. For σ = 1 this probability is about 0.1, 

as follows from the previous figure.
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Figure 7. 
Parabolic regression on the plane (n = 2). If y = (y1, y2) is from the shaded region the sum of 

squares, (y1 − b)2 + (y2 − b2)2, has two local minima.
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Figure 8. 
Two theoretical and three empirical densities from simulations (N = 100,000) estimated with 

the Gaussian kernel for parabolic regression, β = 0.5, σ = 0.5. The left bump reflects the 

existence of the false NLS estimate. The probability that the sum of squares has two local 

minima, computed by formula (25), is 0.026.
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