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The contribution of bone marrow-derived cells to the human adipocyte pool
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ABSTRACT
White adipose tissue is a remarkably expandable organ with results in the last decade showing that
human white adipocytes are continuously turned over during the entire life-span. Data primarily in
murine models have demonstrated that adipocytes are derived from precursors present mainly in
the perivascular areas of adipose tissue but their precise origin remains unclear. Subsets of cells
present in bone marrow display a multipotent differentiation capacity which has prompted the
hypothesis that bone marrow-derived cells (BMDCs) may also contribute to the adipocyte pool
present in peripheral fat depots. This notion was initially demonstrated in a murine transplantation
model, however, subsequent animal studies have been conflicting resulting in a debate of whether
BMDCs actually differentiate into adipocytes or just fuse with resident fat cells. This controversy was
recently resolved in 2 studies of human subjects undergoing bone marrow transplantation. Using a
combination of different assays these data suggest that bone marrow contributes to at least 10% of
the adipocyte pool. This proportion is doubled in obesity, suggesting that BMDCs may constitute a
reserve pool for adipogenesis, particularly upon weight gain. This review discusses the possible
mechanisms and relevance of these findings for human pathophysiology.
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White adipose tissue (WAT) is a remarkably expandable
organ and obese individuals display twice the number of
white fat cells compared with age-matched normal
weight subjects.1,2 Despite this, it was for many years
unclear whether fat cells are renewed in adulthood. The
immergence of 14C-dating techniques could however
conclusively demonstrate that adult human fat cells dis-
play an annual turnover of »10%.2 Adipocyte turnover
is determined by the balance between fat cell generation
and death. Although this is independent of WAT mass,
the larger number of adipocytes in the obese state imply
that the total sum of fat cells generated per year is signifi-
cantly higher compared with lean individuals.2 This
implies that there must be a constant supply of adipocyte
precursors to allow generation of new fat cells and that
these sources must be expanded in the obese state.

Inter-individual variations in the capacity to generate
new fat cells may be of pathophysiological importance.
Thus, irrespective of body fat mass, subjects with adipose
hypertrophy (few but large fat cells), display significantly
reduced adipocyte turnover rates compared with age and
body weight matched subjects with hyperplasia (many
small fat cells).3 Furthermore, adipose hypertrophy asso-
ciates with insulin resistance/type 2 diabetes while

hyperplasia is protective.4-6 This suggests that influenc-
ing adipogenesis and thereby adipocyte number could
have therapeutic implications in common metabolic dis-
orders, a hypothesis supported by the antidiabetic
actions of thiazolidinediones. These agents improve sys-
temic insulin sensitivity, in part by increasing the differ-
entiation of adipocyte progenitor cells resulting in
adipose hyperplasia.7 Unfortunately, side effects medi-
ated via actions in non-adipose tissues (primarily fluid
retention and osteoporosis), have limited their clinical
use in recent years.8

A fundamental question in understanding fat cell for-
mation relates to the origin of adipocytes. While it is
clear that they differentiate from progenitor cells present
in the perivascular stroma,9-12 it is not yet known from
where, when or how these cells migrate into the tissue.13

Adipocyte precursors (APs) could in theory arise from
different multipotent cell types. A major obstacle to the
study of adipogenesis in vivo, is the fact that APs are not
distinctly identifiable by cell surface markers. Several epi-
tope panels have been suggested,14,15 indicating that a
variety of progenitor cells with adipogenic capacity may
operate within WAT. Furthermore, data in mice suggest
that adipocytes arise from APs that are specific for
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different depots18 or developmental periods.16,17 To date,
the majority of studies within this field have been per-
formed in mice, therefore even less is known regarding
human APs.19 Identification of the AP spectrum would
allow for a much better understanding of how WAT
mass expands and possibly also explain the inter-individ-
ual variations in metabolic phenotype observed upon
changes in fat mass.

Bone Marrow (BM) contains different sets of stem
cells, including haematopoietic stem cells and the less
abundant, non-haematopoietic mesenchymal stem cells
(MSCs).20 Following BM transplantation, several investi-
gators have assessed the contribution of BM-derived cells
(BMDCs) to different human tissues including brain,
liver and buccal epithelium. These reports suggest that a
significant proportion of the cells may be donor-
derived.21-27 However, in most studies, the presence of
donor-derived cells has been determined by assessing the
presence of the Y-chromosomes in female recipients
transplanted with BM from male donors, an approach
which limits the study population to females receiving
male BM. Moreover, virtually all investigators have ana-
lyzed sections and/or bulk cell preparations which can-
not exclude leukocyte contamination (which by
definition are all donor-derived) and/or cell/nuclear
fusion events accounting for the Y-chromosome detec-
tion. In fact, several studies, primarily in animal models,
have suggested that cell fusion is the major mechanism
explaining why BM transplantation results in the pres-
ence of donor-derived sequences in neurons, hepatocytes
and cardiomyocytes.28-32 With regard to WAT, several
groups have used allogeneic BM transplantation in mice
to study the contribution of BMDCs to selected WAT
depots. Unfortunately, the use of BM from transgenic
donor animals expressing green fluorescent protein
(GFP) (albeit under different promoters) has failed to
provide clarity with independent investigators coming to
divergent conclusions. In the initial study, transplanta-
tion of GFPC BMDCs into mice generated a small popu-
lation (2–7%) of GFP expressing adipocytes which
increased (up to 8–25%) in the presence of either pro-
adipogenic compounds or high fat diet.33 In subsequent
studies, the contribution of BMDCs was shown to be
gender-, depot- and age-specific.34 Thus, the highest
infiltrations rates were observed in the gonadal WAT of
female mice, occasionally reaching a maximum of
»25%. In contrast, other studies have reported no signif-
icant contribution of BMDCs to either rat35 or mouse36

WAT, resulting in an uncertainty regarding over the role
of BMDCs in murine adipogenesis.

These conflicting results in murine models moti-
vated 2 research groups to study BMDC contribution
in human subcutaneous WAT from adult subjects

previously transplanted with BM or mobilized periph-
eral blood stem cell (PBSC).37,38 Together, the studies
included >70 men and women spanning a broad
range in body mass index (BMI), thereby enabling an
assessment of the possible influence of gender and
body fat status on BMDC contribution. The investiga-
tors explored donor- and recipient-specific gene
sequences within the nuclear DNA (microsatellites
and/or single nucleotide polymorphisms) allowing the
determination of donor cell infiltration irrespective of
gender (of the recipient or donor). For these studies
to be valid it was essential to establish that the fat
cell preparations were free from donor leukocytes
and/or other non-adipocyte cell types. This was con-
firmed by microscopic analyses and qPCR for differ-
ent non-adipocyte markers and was further supported
in both studies by the observation that there was a
linear increase in donor cell infiltration following
time since transplantation (up to »30 years). More-
over, in repeated biopsies from the same subjects,
Gavin et al observed an increase in donor-derived fat
cells over time.38 If leukocyte contamination would
have been an issue, the proportion of donor-derived
sequences would have been independent of time.

Using bulk preparations of fat cells, the proportion
of donor-derived cells in the 2 studies was very simi-
lar ranging from 0.1–35% with an average of 5%37

and 14%,38 respectively. However, the percentage of
BMDCs-derived adipocytes in WAT at a given time
point is a rough estimate and does not consider the
contribution over the entire life span. To evaluate the
latter, Ryd�en et al developed a mathematical model to
estimate the contribution of donor cells at steady-
state. This “production ratio” was expressed as per-
cent of the total fat cell pool and revealed that on
average 10% of the fat cell population was BMDC-
derived. While this proportion was not influenced by
donor/recipient age, gender and/or different trans-
plantation-related parameters (e.g. cell dose, irradia-
tion, graft versus host reactions etc.), body weight
exerted a significant effect as there was a linear rela-
tionship between BMI and the production ratio. In
fact, the production ratio was more than 2-fold higher
in obese compared with lean subjects. Taken together,
these findings indicate that BMDCs constitute a sig-
nificant, but albeit not major reservoir for developing
fat cells in non-obese individuals. However, BMDCs
become important in obesity, a condition where
increased AP demand is met with a doubling in the
production ratio. It should be pointed out that the
donor cell proportion varied significantly even
between BMI-matched subjects. Several factors may
dictate this, including the degree of vascularity in
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WAT which could impact on the ability of BMDCs to
access the tissue. In addition, it is also possible that
other intrinsic properties of WAT related to the
microenvironment (e.g., inflammation, hypoxia, adi-
pokine secretion, leukocyte infiltration) may influence
BMDC migration/differentiation.

The results discussed so far were based on bulk
analyses of short stretches of donor-derived sequen-
ces. As discussed previously, this does not exclude the
possibility that donor-derived cells (e.g., leukocytes)
had fused with recipient fat cells, resulting in the
detection of donor-derived sequences in the purified
fat cells. To exclude this possibility Ryd�en et al devel-
oped techniques to retrieve individual mature fat cells
and analyze their full content of donor/recipient
DNA.37 A major obstacle when working with adipo-
cytes is their fragility and buoyancy once in suspen-
sion which makes them notoriously difficult to study
at the single cell level. By embedding fat cell suspen-
sions in low-temperature melting agarose, individual
adipocytes containing a single nucleus could be iso-
lated by laser capture microdissection. Single cells
were subjected to exome sequencing of homozygous
single nucleotide polymorphisms (SNPs) unique for
either the donor or the recipient. These genomic var-
iations were then called in the exome data as either
donor, recipient or mixed genotypes. As expected, the
majority of the cells contained only recipient-specific
SNPs. Nevertheless, some cells displayed entirely
donor-derived SNPs, demonstrating that the nuclear
DNA originated only from the donor. Interestingly,
some other cells displayed mixed genotypes with both
donor- and recipient-derived sequences. The presence
of both donor- and mixed sequences was confirmed
by genome-wide sequencing. Altogether, this supports
the notion that BMDCs can indeed differentiate into
mature fat cells, at least in the setting of BM/PBSC
transplantation. However, the mixed cells are some-
what more difficult to explain. In theory, BMDCs
could fuse with recipient cells which after reduction
divisions, results in mononuclear cells with hetero-
karyons containing sequences from both the donor
and the recipient. Ploidy analyses of isolated fat cells
were performed in the study by Gavin et al.38 Using
2 independent methods, flow cytometry or fluores-
cence in situ hybridization, they found no evidence of
polysomy suggesting that the presence of donor-
derived adipocytes cannot simply be explained by cell
fusion resulting in tetra- or aneuploid cells. Thus, adi-
pocytes with a mixed genetic profile may be generated
via more complex mechanisms, e.g. involving reduc-
tion division. Another possibility is that the mixed

and donor-derived cells derive from different cell
types, whereby the former result from recipient cell
fusion with BMDCs that lack the capacity to differen-
tiate into adipocytes while the latter derive from
BMDCs with adipogenic potential.

Neither of the human studies could establish whether
the fat cell phenotype differed between donor-derived or
recipient cells. This is relevant given that data in mice
suggest that BM-derived adipocytes, in comparison with
recipient fat cells, display higher expression of pro-
inflammatory genes and lower expression of genes
involved in mitochondrial biogenesis and lipid oxida-
tion.34 It would therefore be of interest to compare the
global gene expression in fat cells of donor, recipient or
mixed origins. Unfortunately, it is currently still a major
challenge to analyze both the genome and transcriptome
from the same single cell.

Another relevant issue is to identify the BMDC subset
that differentiates into the adipocyte lineage. It is cur-
rently a matter of debate whether haematopoietic stem
cells can develop into cells outside the haematopoietic
lineage32,39-45 and most investigators suggest that haema-
topoietic stem cells cannot cross lineage boundaries.42 In
accordance with this, bulk preparations of human fat
cells from BM-transplanted subjects expressed no detect-
able amounts of haematopoietic markers.37,38 Another
type of multipotent stem cells are the MSCs which have
the capacity to develop into functional cells of the mes-
enchymal lineage e.g., osteocytes, chondrocytes and adi-
pocytes.46,47 As MSCs can be found in both BM and
PBSC48,49 it could be speculated that these cells may con-
stitute “adipogenic” BMDCs. Based on data from murine
models, additional cell sources could be endothelial
cells.50

Admittedly, both the murine and human results dis-
cussed herein were obtained in transplanted subjects and
may not reflect normal physiology. However, the time-
dependent increase in donor cell infiltration,37,38 in the
absence of immunosuppressant therapy,37 suggests that
BMDC-derived adipogenesis is a continuous process
that may be relevant also outside the setting of transplan-
tation. The recent findings in mice, indicating that fat
cells may arise from distinct precursor pools, would be
in line with a notion that BM constitutes one of several
progenitor pools contributing to WAT mass growth
(Fig. 1). Future development of techniques allowing
identification of cellular origin also under non-trans-
planted conditions will hopefully resolve these issues.
Although speculative, BMDCs with adipogenic potential
could be of value in future approaches targeting geneti-
cally dysfunctional WAT, e.g., in severe forms of
lipodystrophy.
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