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ABSTRACT
Adipose-derived stem cells represent a reliable adult stem cell source thanks to their abundance,
straightforward isolation, and broad differentiation abilities. Consequently, human adipose-derived
stem cells (hASCs) have been used in vitro for several innovative cellular therapy and regenerative
medicine applications. However, the translation of a novel technology from the laboratory to the
clinic requires first to evaluate its safety, feasibility, and potential efficacy through preclinical studies
in animals. The anatomy and physiology of pigs and humans are very similar, establishing pigs as an
attractive and popular large animal model for preclinical studies. Knowledge of the properties of
porcine adipose-derived stem cells (pASCs) used in preclinical studies is critical for their success.
While hASCs have been extensively studied this past decade, only a handful of reports relate to
pASCs. The aim of this concise review is to summarize the current findings about the isolation of
pASCs, their culture, proliferation, and immunophenotype. The differentiation abilities of pASCs and
their applications in porcine preclinical models will also be reported.
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Isolation and Culture of pASCs

Adult stem cells have been identified in several tissues
and organs including peripheral blood, bone marrow,
adipose tissue, skin, and skeletal muscle.1,2 Bone marrow
mesenchymal stem cells have been the established stan-
dard for adult stem cells, but their harvest from bone
marrow is a highly invasive procedure involving pain,
morbidity and low cell yield.2 Adipose tissue has proven
to be an attractive alternative cell source to bone mar-
row.3,4 It has the advantage of being an abundant and
easily attainable cell source, with a straightforward and
significant less invasive isolation procedure.

The standard process highlighted in Figure 1 to isolate
pASCs from adipose tissue is similar to protocols previ-
ously reported for hASCs.5–7 The goal of this procedure
is to isolate the stromal vascular fraction (SVF) contain-
ing the pASCs from the adipocytes by using simple phys-
ical treatments. The first step consists of obtaining
adipose tissue from a pig biopsy. The most common
locations for subcutaneous adipose tissue are the dorsal
and abdominal areas. Other white adipose tissue sources
can also be used to obtain pASCs. Niada et al. deter-
mined that the buccal fat pad, which is an encapsulated
fat mass in the cheek, contains pASCs with comparable

properties to cells harvested from the subcutaneous
interscapular region.8 After procurement, the adipose tis-
sue is finely minced then digested (typically via collage-
nase type I treatment). Centrifugation and filtration with
cell strainers separate adipocytes from the SVF contain-
ing the pASCs. After separation, adipocytes remain in
the supernatant while the SVF pelletizes. The adipocytes
are then discarded and the SVF pellet is resuspended in
culture medium and seeded into culture flasks. Typical
cell seeding densities range from 5000 to 7000
cells/cm2.5,9,10 Dulbecco’s Modified Eagle Medium
(DMEM) mixed 1:1 with Ham’s F-12 Nutrient Mixture
and supplemented with 10% Fetal Bovine Serum has
been reported as ideal for the culture of pASCs.5,10 After
48/72hrs in culture the non-adherent haematopoietic
cells are removed. The remaining adherent cells are
pASCs who display an elongated morphology, similar to
fibroblasts. These primary pASCs complete a cell cycle in
60 to 80 hours.5,11,12 Reports suggest that pASCs can
reach up to 30–40 population doublings without reach-
ing replicative senescence.5,11

On average, 0.5 to 1£106 viable and adherent pASCs
are obtained per mL of adipose tissue.5,12 One parameter
that has been shown to affect the recovery yield of pASCs
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is the age of the source animal from whom the cells are
extracted.13,14 However, the abundance and accessibility
of subcutaneous adipose tissue in pigs results in the abil-
ity to isolate several million cells from a single biopsy.
Long term cryopreservation can also be used to store
pASCs indefinitely. Cryopreserved pASCs have been
shown to display similar proliferative characteristics,
expression of cell surface markers, and differentiation
abilities to fresh pASCs.15

Immunophenotype of pASCs

hASCs have been thoroughly characterized with an
extensive literature available detailing their isolation,
proliferation, immunophenotype, and differentiation
abilities. The International Federation for Adipose Ther-
apeutics and Science (IFATS) and the International Soci-
ety for Cellular Therapy (ISCT) have defined phenotypic
and functional criteria to identify hASCs.16 Currently, no
criteria have been established to facilitate the identifica-
tion of porcine stem cells, either bone marrow or adipose
derived. Characterization of these animal cells is largely
based on morphologic, phenotypic and functional prop-
erties, and can still appear rather ambiguous.

Flow cytometry is a convenient and fast method to
analyze the immunophenotype of a cell population. It is
a powerful tool routinely used to assess the characteris-
tics of a freshly isolated population of cells and verify
that they have not been contaminated with endothelial
or haematopoietic cells. Indeed, the SVF can include cells
other than adipose stem cells such as blood cells, smooth
muscle cells, fibroblasts, and endothelial cells.

Fluorescence-activated cell sorting (FACS) can be
used to purify a cell population by removing undesired
subpopulations. Protocols have also been established
with hASCs to isolate specific subpopulations of progeni-
tor cells among the hASCs population.1,3 Similar strate-
gies haven’t been implemented on pASCs yet but could
prove beneficial for future studies.

Flow cytometry analysis of some pASCs surface
markers can prove challenging. Many porcine surface
antigens are not cross-reactive with antibodies

designed for other species and require porcine-specific
antibodies. For instance, among the 7 porcine surface
antigens reported in Table 1, only CD44, CD90, and
CD105 are cross-reacting with anti-human antibodies.
A limited number of porcine-specific antibodies are
currently commercially available. Consequently, pub-
lished studies were consistent with one another and
reported the use of similar antibodies. The expression
of several cell surface markers for pASCs and hASCs
are summarized in Table 1.

CD29, CD44, CD90 and CD105 are part of the typical
panel of surface markers characteristic of mesenchymal
stem cells. These markers are positively expressed by
pASCs, demonstrating their stemness. Analysis of stem
cell transcription factors (Oct-4, Sox-2, and Nanog) by
RT-PCR also reveals that pASCs express these markers
of primitive stem cells.20

pASCs do not express haematopoietic stem cell
markers CD14 and CD45, nor do they express CD31
which is a marker characteristic of endothelial cells. Mea-
suring the expression of CD14, CD45, and CD31 after
isolating a new population of pASCs is a useful technique
to verify that the stem cell population is not contami-
nated with endothelial or haematopoietic cells.

Overall, the cell surface marker expression profile for
these typical markers appears similar between pASCs
and hASCs. However, the few antibodies available for

Figure 1. Illustrations of the standard protocol used to isolate pASCs. Subcutaneous porcine adipose tissue is finely minced before being
digested in a collagenase type I solution at 37�C. Centrifugation separates the supernatant containing adipocytes from the SVF pellet.
Cells are then plated in a tissue culture flask. pASCs are adherent and adopt a fibroblast-like morphology in culture.

Table 1. Expression of cell surface markers for pASCs and hASCs
determined by flow cytometry analysis for cells cultured at low
passage numbers and in regular FBS supplemented culture
medium. “C” corresponds to a positive expression of the cell sur-
face marker, “¡” for a low or non-expressed cell surface antigen.

pASCs hASCs

Surface Antigen Expression Refs Expression Refs

CD14 ¡ 17,18 ¡ 1,4

CD29 C 6,15,17–19 C 1,4

CD31 ¡ 6,15,19 ¡ 1,3,4

CD44 C 6,15,17–19 C 1,3,4

CD45 ¡ 6,17,19 ¡ 1,3,4

CD90 C 6,15,17–19 C 1,3,4

CD105 C 17,19 C 1,3,4
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pASCs only provide a limited representation of the
expression of surface antigens by pASCs.

Multilineage differentiation abilities

Besides self-renewal, a high proliferative capacity, and
the expression of specific cell surface markers, another
defining characteristic of a stem cell is its ability to differ-
entiate into multiple lineages.1,16 hASCs have demon-
strated the ability to differentiate into multiple cell types
such as osteoblasts, chondrocytes, adipocytes, epithelial
cells, endothelial cells, smooth muscle cells, neural cells,
and hepatocytes.1,2,21 While the differentiation abilities
of hASCs have been extensively studied this past decade,
only a handful of reports have been related to pASCs.
Figure 2 illustrates the differentiation pathways previ-
ously reported with pASCs along with the major reagents
typically used to promote each cell lineage.

The adipogenic, osteogenic and chondrogenic differ-
entiation are classic and easily obtainable mesodermal
lineages differentiation pathways. Differentiation proto-
cols for these 3 lineages are well established, and have
been reported with pASCs.9,22,23 However, studies
related to ectodermal or endodermal lineages are
scarce. Currently, it has been reported that pASCs can
transdifferentiate into hepatocytes,17,24 neurons,11,25

and pancreatic islet-like clusters.26 Using lentivirals car-
rying reprogramming factors, pASCs have also been
reprogrammed into induced pluripotent stem cells
(iPSCs).19,27 Song et al. also described that pASCs
could also differentiate into oocyte-like cells.20

pASCs have been shown to demonstrate similar char-
acteristics to other porcine-derived adult stem cells such
as those derived from bone marrow, peripheral blood,
adipose tissue, synovial membrane, and skin.7,28,29 These
include comparable morphology, proliferative capacity,
alkaline phosphatase activity, cell surface marker expres-
sion, metabolic pathways, biologic functions, and tran-
scription factors.10,23,30 pASCs have often been
compared side-by-side with porcine stem cells from
these other tissue sources, revealing characteristics and
comparable multilineage differentiation abilities as
well.9,23,28

While knowledge of the differentiation abilities of
pASCs is currently limited to a few reports, porcine bone
marrow-derived stem cells (pBMSCs) have been differen-
tiated into myocytes,31 endothelial cells,32 and epithelial
cells.33 Since pBMSCs and pASCs characteristics are very
similar,34 it can be assumed that these differentiation
pathways reported for pBMSCs should also apply to
pASCs.

Applications in preclinical models

Adult stem cells have proven to be effective for the treat-
ment of several diseases and the repair and regeneration
of damaged tissues in vitro.1,3,29 Preclinical animal stud-
ies represent a critical step in the translation of a cell
transplantation or tissue engineering technology from
the laboratory to the clinic. They are required to evaluate
the safety, feasibility and potential efficacy of novel ther-
apies.2,9 Two criteria need to be addressed in order for

Figure 2. Multilineage differentiation abilities of pASCs. Major typical reagents are specified for each pathway. pASCs have been shown
to be able to differentiate into adipocytes, osteoblasts, chondrocytes, hepatocytes, and neurons, as well as being able to be reprog-
rammed into induced pluripotent stem cells.
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an animal study assessing a novel cell-based approach to
be beneficial. The animal chosen for the study has to
mimic human physiology as closely as possible, and the
animal cells that are being used need to be precisely iden-
tified and characterized. Some previous clinical trials did
not adhere to these guidelines and concluded with unsat-
isfactory results. One shortcoming often comes from the
use of rodents whose physiology and organ size does not
properly match that of humans.35 Results obtained with
small animals, whose anatomy is different to humans, do
not typically extrapolate properly to human clinical tri-
als.9 Large animals such as pigs represent a preferable
model. Their organ size along with cell number and dis-
tribution more closely mimic human characteristics. Pigs
are some of the most attractive and relevant large animal
models for preclinical studies since their size, anatomy,
genomic organization, and physiology are very similar to
humans.7,9,36 In a porcine preclinical model, the autolo-
gous transplantation of pASCs avoids triggering an
adverse immune response.

Pigs have been used to investigate innovative pASCs
bone regeneration strategies.36 The osteogenic differentia-
tion of pASCs is a well-known process.23,37,38 Several studies
combined pASCs differentiated into osteocytes with various
types of scaffold such as hydroxyapatite,22 polycaprolac-
tone,39 or oligo (polyethylene glycol) fumarate (OPF)
hydrogel40 to repair osteochondral defects. pASCs have also
been implanted in pigs to evaluate their therapeutic effect in
the treatment of osteonecrosis of the femoral head41 and for
the regeneration of osteochondral defects.42,43 Pigs have also
proven a suitablemodel for oral andmaxillofacial studies.8,44

Wilson et al. demonstrated that injections of pASCs
enhanced healing of mandibular defects in pigs.45

The vascular anatomy and physiology of pigs are quite
similar to humans. Pigs have consequently been broadly
used to evaluate novel vascular therapies.46 Recent stud-
ies include the intracoronary administration of pASCs
after an acute myocardial infarction model47–49 and the
transplantation of pASCs cell sheets in a porcine model
of chronic heart failure.50

The structures of porcine and human skin are similar,
making pigs a suitable model for dermatologic preclinical
studies. Hanson et al. harvested pASCs and pBMSCs and
injected them in a dermal wound model to study the fea-
sibility of stem cells injections to promote wound heal-
ing.18 pASCs performed similarly to pBMSCs, safely
promoting tissue regeneration.

Future perspectives

pASCs express cell surface markers characteristic of mesen-
chymal stem cells and are able to differentiate into several
lineages. Knowledge about the possible transdifferentiation

abilities of pASCs is currently limited but will expand in the
foreseeable future. The development of standard protocols
for the isolation, culture and differentiation of pASCs
would further improve pASC-based preclinical studies.51

Pigs represent an excellent animal model for preclini-
cal studies. Besides their similar morphology and physi-
ology to humans, they also have the advantage of
providing large quantities of easily obtainable subcutane-
ous tissue, resulting in a generous supply of pASCs.

Miniature pigs are being developed with the goal to
increase the efficiency and translation of preclinical stud-
ies in pigs. Minipigs have the advantage of slower growth
curves and a similar weight to an average human male,
between 150 to 200lbs.40,52,53 Such a new advantageous
animal model has the potential to become increasingly
popular and supplant rodents for relevant preclinical
animal studies.
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