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Abstract

Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal

cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated.

Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current

computational models remained too abstract to allow direct confrontation with experimental

data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-

rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical anal-

ysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern

formation, and we establish a direct link to classical pattern-forming systems of the Turing

type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity.

Author summary

When an animal explores an environment, grid cells activate at multiple spatial locations

that form a strikingly-regular triangular pattern. Grid cells are believed to support high-

level cognitive functions such as navigation and spatial memory, yet the origin of their

activity remains unclear. Here we focus on the hypothesis that grid patterns emerge from

a competition between persistent excitation by spatially-selective inputs and the reluc-

tance of a neuron to fire for long stretches of time. Using a computational model, we gen-

erate grid-like activity by only spatially-irregular inputs, Hebbian synaptic plasticity, and

neuronal adaptation. We study how the geometry of the output patterns depends on the

spatial tuning of the inputs and the adaptation properties of single cells. The present work

sheds light on the origin of grid-cell firing and makes specific predictions that could be

tested experimentally.

Introduction

Grid cells are neurons of the medial entorhinal cortex (mEC) tuned to the position of the

animal in the environment [1, 2]. Unlike place cells, which typically fire in a single spatial loca-

tion [3, 4], grid cells have multiple receptive fields that form a strikingly-regular triangular

pattern in space. Since their discovery, grid cells have been the object of a great number of
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experimental and theoretical studies, and they are thought to support high-level cognitive

functions such as self-location [e.g. 5, 6], spatial navigation [e.g. 7–9], and spatial memory [10,

11]. Nevertheless, to date, the mechanisms underlying the formation of grid spatial patterns

are yet to be understood [12, 13].

The attractor-network theory proposes that grid fields could arise from a path-integrating

process, where bumps of neural activity are displaced across a low-dimensional continuous

attractor by self-motion cues [14–21]. The idea that self-motion inputs could drive spatial fir-

ing is motivated by the fact that mammals can use path integration for navigation [22], that

speed and head-direction signals have been recorded within the mEC [23, 24], and that, in the

rat [1, 25] but not in the mouse [26, 27], grid firing fields tend to persist in darkness. However,

grid-cell activity may rely also on non-visual sensory inputs—such as olfactory or tactile cues

—even in complete darkness [28]. Additionally, the attractor theory alone cannot explain how

grid fields are anchored to the physical space, and how the properties of the grid patterns relate

to the geometry of the enclosure [29–31].

A different explanation for the formation of grid-cell activity is given by the so-called oscil-

latory-interference models [32–36]. In those models, periodic spatial patterns are generated by

the interference between multiple oscillators whose frequencies are controlled by the velocity

of the animal. Speed-modulated rhythmic activity is indeed prominent throughout the hippo-

campal formation in rodents and primates [37–40], particularly within the theta frequency

band (4-12 Hz). Additionally, reduced theta rhythmicity disrupts grid-cell firing [41, 42], and

grid-cell phase precession [43] is intrinsically generated by interference models; but see [44].

Despite their theoretical appeal, however, these models cannot explain grid-cell activity in the

absence of continuous theta oscillations in the bat [45], and they are inconsistent with the

grid-cell membrane-potential dynamics as measured intracellularly [46, 47]; see [48] for a

hybrid oscillatory-attractor model.

Here we focus on the idea that grid-cell activity does not originate from self-motion cues,

but rather from a learning process driven by external sensory inputs. In particular, it was pro-

posed that grid patterns could arise from a competition between persistent excitation by spa-

tially-selective inputs and the reluctance of a neuron to fire for long stretches of time [49–53].

In this case, Hebbian plasticity at the input synapses could imprint a periodic pattern in the

output activity of a single neuron. Spatially-selective inputs, i.e., inputs with significant spatial

information, are indeed abundant within the mEC [54–56] and its afferent structures [57–61]

And spike-rate adaptation, which is ubiquitous in the brain [62], could hinder neuronal firing

in response to persistent excitation.

Kropff and Treves [49] explored this hypothesis by means of a computational model; see

also [63–67] and Sec Related models for similar works. The emergence of grid-like patterns

was demonstrated with theoretical arguments and with numerical simulations of a rate-based

network. However, because of a relatively abstract level of description, the outcomes of the

model could not be easily confronted with experimental data. Specifically, the simulations

included a network-level normalization mechanism that constrained the mean and the sparse-

ness of the output activity, and it remained unsettled whether grid patterns could emerge in a

single-cell scenario. Additionally, the synaptic weights did not obey Dale’s law. And the

robustness of the model was not tested against shot noise due to stochastic spiking. Finally, the

link between the numerical simulations and the underlying mathematical theory remained

rather loose.

To overcome these issues, we propose here a single-cell spiking model based on similar

principles as the model by Kropff and Treves [49], but that is, on the one hand, more biologi-

cally realistic, and on the other hand, better suited for mathematical treatment. Importantly,

we show that grid patterns can emerge from a single-cell feed-forward mechanism needless of
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any network-level interaction (although recurrent dynamics may be still required to explain

the coherent alignment of grid patterns [1]). To increase biological plausibility, we consider a

stochastic spiking neuron model, and we constrain the synaptic weights to non-negative values

(Dale’s law). Finally, by studying the model analytically, we quantitatively predict the require-

ments for grid-pattern formation, and we establish a direct link to classical pattern-forming

systems via the Turing instability [68].

Results

Model of neural activity

We consider a single cell that receives synaptic input from N spatially-tuned excitatory neu-

rons. Input spike trains Sin
i ðtÞ ≔

P
k dðt � tin

i;kÞ for i = 1, 2, . . ., N are generated by indepen-

dent inhomogeneous Poisson processes with instantaneous rates rin
i ðtÞ where δ(t) is the Dirac

delta function, and tin
i;k is the timing of the kth input spike at synapse i. Similarly, the output

spike train SoutðtÞ ≔
P

k dðt � tout
k Þ is generated by an inhomogeneous Poisson process with

instantaneous rate rout(t) where tout
k denotes the timing of the kth output spike.

We assume that inputs are integrated linearly at the output, and that the output neuron is

equipped with an intrinsic spike-rate adaptation mechanism, that is,

routðtÞ ≔ r0 þ

Z 1

0

dt KðtÞ
XN

i¼1

wiS
in
i ðt � tÞ ð1Þ

where r0 is a baseline rate, wi is the synaptic weight of input neuron i, and the function K is a

temporal filter modeling the spike-rate adaptation dynamics. Note that the instantaneous out-

put rate rout depends only on the temporal history of the input spikes and that there is no reset

mechanism after the emission of an output spike.

The impulse response of the adaptation kernel K is the sum of two exponential functions:

KðtÞ ≔
1

tS
exp �

t
tS

� �

�
m

tL
exp �

t
tL

� �

for t � 0

0 for t < 0

8
><

>:
ð2Þ

where τS and τL are the short and long filter time constants (0 < τS < τL), and the parameter

μ> 0 sets the filter integral
R1

0
dt KðtÞ ¼ 1 � m (Fig 1A). Intuitively, at the arrival of an input

spike, the firing probability of the output neuron is first increased for a short time that is con-

trolled by the time constant τS, and then decreased for a longer time that is controlled by the

time constant τL. This second hyper-polarization dynamics effectively hinders the neuron to

fire at high rates for long stretches of time, mimicking a spike-rate adaptation mechanism [69–

71]. From a signal-processing perspective, the adaptation kernel K performs a temporal band-

pass filtering of the input activity (Fig 1B), and the two time constants τS and τL control the res-

onance frequency kres at which the filter response is maximal. Note that in Sec Pattern forma-

tion with after-spike potentials we study a variant of the present model where neuronal

adaptation is obtained though after-spike hyperpolarizing potentials associated to the output

activity of the neuron.

Model of synaptic plasticity

We assume spike-timing dependent plasticity (STDP) at the input synapses [e.g. 72–76].

Input and output spikes trigger weight changes Δwi according to the following rule:
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1. For each pair of a post-synaptic spike and a pre-synaptic spike at synapse i, we set

Dwi ¼ ZWðDtÞ ð3Þ

2. For each pre-synaptic spike at synapse i, we set

Dwi ¼ Zðb � awiÞ ð4Þ

where η� 1 is a small learning rate, and the STDP learning window W(Δt) sets the weight

change as a function of the time difference Δt≔ tpre − tpost between pre- and post-synaptic

spikes. We consider a symmetric STDP learning window [77]

WðDtÞ ≔
Wtot

2tW
expð� jDtj=tWÞ ð5Þ

where the time constant τW > 0 controls the maximal time lag at which plasticity occurs, and

Wtot ¼
R1
� 1

dt WðtÞ is the integral of the learning window. The first part of the learning rule

(Eq 3) is the classical Hebbian term whereas the second part (Eq 4) is a local normalization

term that stabilizes the average synaptic strength wav ¼ N � 1
PN

i¼1
wi and prevents the individ-

ual weights to grow unbounded. This normalization term mimics local homoeostatic processes

observed experimentally [78–80]; see also [81] for a review. The parameters α> 0 and β set,

respectively, the rate of weight decay and the target average weight wav (Sec Weight normaliza-

tion). Importantly, the synaptic weights are constrained to non-negative values by imposing

the hard bounds

wi � 0 8i : ð6Þ

Fig 1. The temporal adaptation kernel K. (A) Impulse response of the filter (Eq 2). A positive peak with amplitude K(0) = 1/τS − μ/τL

� 3.4 spikes/s is followed by a slow negative response. Note that the kernel is small for t > τmax, i.e., |K(t)| < 0.01|K(0)| for t > τmax,

with τmax = 5τL = 0.8 s. (B) Frequency response of the filter. The dashed vertical line indicates the filter’s resonance frequency kres =

1.23 s−1. Parameter values: τS = 0.1 s, τL = 0.16 s, μ = 1.06. The integral of the filter is 1 − μ = −0.06.

https://doi.org/10.1371/journal.pcbi.1005782.g001
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Model of input spatial tuning

We consider excitatory inputs with firing rates rin
i that are tuned to the spatial position of a vir-

tual rat exploring a square arena of side-length L, i.e.,

rin
i ðtÞ ≔ C

in
i ðxtÞ ð7Þ

where xt is the position of the virtual rat at time t, and C
in
i is a spatial tuning curve. We charac-

terize the spatial tuning curves C
in
i in two alternative scenarios:

1. spatially-regular inputs, i.e., each input has a single spatial receptive field;

2. spatially-irregular inputs, i.e., each input has multiple spatial receptive fields at random

locations.

The first scenario, which is reminiscent of hippocampal place-cell activity [3, 82, 83], is easier

to study analytically and cheaper to simulate numerically. The second scenario, which is remi-

niscent of parasubicular activity [57–61], is motivated by the anatomy of the entorhinal circuit

(Sec Input spatial tuning and the origin of grid-cell patterns). In both cases, we consider circu-

larly-symmetric receptive fields that cover the arena evenly. Indeed, place fields in open envi-

ronments do not show systematic shape biases, and, in the absence of specific reward or goal

locations, their centres are roughly homogeneously distributed [3, 57–61, 82, 83]. Note, how-

ever, that border-like inputs [84, 85]—which are not radially-symmetric—are present in the

real system, but not explicitly modeled here. Finally, for simplicity, we assume periodic bound-

aries at the edges of the arena.

Spatially-regular inputs. In the case of spatially-regular inputs, we assume tuning curves

of the form

C
in
i ðxÞ ≔ Gðjx � rijÞ with i ¼ 1; 2; . . . ;N ð8Þ

where ri is the receptive-field center of neuron i and G is a Gaussian function:

GðrÞ ≔
L2rav

2ps2
exp �

r2

2s2

� �

: ð9Þ

The parameter σ> 0 sets the width of the receptive field, and rav is the average firing rate in

the environment. We assume that the input receptive-field centers ri cover the entire arena

evenly.

This input scenario is considered for the mathematical derivations in Sec Weight

dynamics for spatially-regular inputs and for the numerical simulations in Secs Emergence of

grid spatial patterns and Geometrical properties of the grid patterns.

Spatially-irregular inputs. In the case of spatially-irregular inputs, each tuning curve C
in
i

is the sum of M> 1 Gaussian receptive fields with random amplitudes Aij and random recep-

tive-field centers rij with i = 1, 2, . . ., N and j = 1, 2, . . ., M, that is,

C
in
i ðxÞ ≔

1

bi

XM

j¼1

Aij Gðjx � rijjÞ : ð10Þ

The scaling factors bi ¼
PM

j¼1
Aij normalize the inputs C

in
i to the same average rate rav, and all

the superimposed fields share the same field size σ (Eq 9). The field amplitudes Aij are uni-

formly distributed in the range (0, 1), and the receptive-field centers rij are uniformly distrib-

uted in the environment.
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This input scenario is considered for the mathematical derivations in Sec Eigenvalue spec-

trum for spatially-irregular inputs and for the numerical simulations in Sec Pattern

formation with spatially-irregular inputs.

Model of spatial exploration

The movement of the virtual rat follows a smooth random walk that satisfies the following

three assumptions: (i) the movement speed v is constant in time; (ii) the random walk is isotro-

pic and ergodic with respect to the auto-covariance; (iii) the virtual-rat trajectories are smooth

within time stretches shorter than the time length τmax = 5τL of the adaptation kernel K (Fig

1A). Note that assumption (i) is obviously not valid in general. However, because synaptic

plasticity acts on a time scale that is much slower than behaviour, the relevant variable for pat-

tern formation is the rat running speed averaged over long stretches of time (e.g. minutes),

which can be considered approximately constant. We assume an average running speed of 25

cm/s, which is experimentally plausible [86]. Assumptions (ii) and (iii) hold by ignoring direc-

tional anisotropies deriving from the geometry of the environment, and by observing that

experimental rat trajectories are approximately straight over short running distances (e.g, over

distances shorter than 25 cm) [86].

Mathematically, the two-dimensional virtual-rat trajectories xt are sampled from the sto-

chastic process

dXt

dt
≔ v ½ cos ðytÞ; sin ðytÞ� with yt ¼ syW t ; ð11Þ

where the angle θt sets the direction of motion and W t is a standard Wiener process (Fig 2).

The parameters v and σθ control the speed of motion and the tortuosity of the trajectory. Note

that we also perform simulations with variable running speeds. In this case, the speed is sam-

pled from an Ornstein-Uhlenbeck process with long-term mean �v ¼ v.

Mathematical results on grid-pattern formation

The grid-cell model presented above is studied both analytically and numerically. In this sec-

tion, we obtain an equation for the average dynamics of the synaptic weights, and we derive

the requirements for spatial pattern formation. In Sec Numerical results on grid-pattern for-

mation we demonstrate the emergence of grid-like activity by simulating both the detailed

spiking model and the averaged system. The analytical results presented here may be skipped

by the less mathematically-inclined reader.

We study structure formation in the activity of an output cell by averaging the weight

dynamics resulting from the stochastic activation of input and output neurons (Sec Model of

neural activity) and the STDP learning rule (Sec Model of synaptic plasticity), while a virtual

rat explores a two-dimensional enclosure and the inputs are spatially tuned (Secs Model of

input spatial tuning and Model of spatial exploration). We take both ensemble averages across

spike-train realizations and temporal averages within a time window of length T. The averag-

ing time length T separates the time scale of neural activation (of the order of the width τW of

the learning window W) from the time scale τstr of structure formation, i.e., τW� T� τstr.

Because τstr is inversely proportional to the learning rate η (Eq 29), such averaging is always

possible provided that the learning rate η is small enough. In other words, we assume that

within a time T, the virtual rat has roughly explored the entire environment, but the synaptic

weights did not change considerably. In this case, the dynamics of the synaptic weights wi is

A single-cell spiking model for the origin of grid-cell patterns
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approximated by a drift-diffusion process, where the deterministic drift term reads [74]

Z� 1
d�wi

dt
¼ ðb � a�wiÞhSin

i ðtÞiþ
Z 1

� 1

dsWðsÞhSin
i ðt þ sÞSoutðtÞi ð12Þ

with �wi � 0. The functions Sin
i and Sout denote input and output spike trains (Sec Model of

neural activity), the angular brackets denote ensemble averages over input and output spike

trains, and the overbars denote temporal averages, i.e., �f ðtÞ ≔ T � 1
R t
t� T ds f ðsÞ. Following

Kempter et al. [74] we derive

hSin
i ðt þ sÞSoutðtÞi ¼ hSin

i ðt þ sÞihSoutðtÞiþ �wi hSin
i ðtÞiKð� sÞ ; ð13Þ

where the ensemble averages read

hSin
i ðtÞi ¼ rin

i ðtÞ ð14Þ

hSoutðtÞi ¼ hroutðtÞi ¼ð1Þ r0 þ

Z 1

0

dt KðtÞ
XN

j¼1

wjr
in
j ðt � tÞ : ð15Þ

Fig 2. Example virtual-rat trajectories. Colored lines denote example virtual-rat trajectories obtained by

integrating Eq 11 starting at the center of the gray disk. Filled dots indicate the position of the virtual rat at time

τmax = 5τL = 0.8 s. Note that the trajectories are smooth within time stretches shorter than τmax. Parameter

values: v = 0.25 m/s, θσ = 0.7. The disk radius is vτmax = 20 cm.

https://doi.org/10.1371/journal.pcbi.1005782.g002
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Finally, from Eqs 12–15 we obtain

Z� 1
d
dt

�wi ¼
XN

j¼1

Cij �wj � a�wi þ b with �wi � 0 ð16Þ

where we defined

Cij ≔
Z 1

0

dtKðtÞ
Z 1

� 1

dsWðsÞ rin
i ðt þ sÞrin

j ðt � tÞ ð17Þ

a ≔ rav a �

Z 1

� 1

dsWðsÞKð� sÞ
� �

ð18Þ

b ≔ rav ðWtotr0 þ bÞ : ð19Þ

Note that in deriving Eq 16 we approximated the temporal average of the input rates rin
i with

the spatial average rav of the input tuning curves C
in
i . This approximation holds with the

assumption that in a time T the virtual rat roughly covers the entire space evenly.

By ignoring the non-linear weight constraints �wi � 0, the average weight dynamics is

described by a linear system with coupling terms Cij (Eq 16). The coefficients Cij are given by

the temporal correlations of the input rates rin
i and rin

j , filtered by the adaptation kernel K and

the STDP learning window W (Eq 17).

To further simplify the calculations, we assume that the low-pass filtering introduced by the

STDP learning window can be neglected for the purpose of studying pattern formation. In par-

ticular, we assume that the learning window W decays much faster than the changes in the

input correlations rin
i ðt þ sÞrin

j ðt � tÞ(Eq 17), which holds for τW� σ/v. In this case, we obtain

Cij �Wtot

Z 1

0

dt KðtÞ rin
i ðtÞrin

j ðt � tÞ ð20Þ

where Wtot is the integral of the learning window (Eq 5).

Finally, by assuming smooth virtual-rat trajectories at constant speed v, the correlation

matrix Cij can be estimated solely from the input tuning curves C
in
i and the adaptation kernel

K (Sec Input correlation for general inputs, Eq 47):

Cij �
Wtot

L2

Z 1

0

dtKðtÞ
I

jzj¼tv
dz C

in
i ? C

in
j

�
�
�
�
z

ð21Þ

where L2 is the area explored by the virtual rat. In Eq 21, the matrix element Cij is obtained by

integrating the spatial cross-correlation of the input tuning curves C
in
i ? C

in
j over circles of

radius τv, and by weighting each integral with the amplitude of the adaptation kernel K at time

τ. Note that Eq 21 holds for generic spatial tuning curves C
in
i .

Weight dynamics for spatially-regular inputs. To study the emergence of spatial pat-

terns, we now consider the simplified scenario of spatially-regular inputs (Sec Spatially-regular

inputs). That is, the input tuning curves C
in
i are circularly-symmetric Gaussian functions that

cover the entire space evenly (Eqs 8 and 9). This input representation is particularly useful

because it establishes a direct mapping between the neuron identity (the index i) and a position

in physical space (the receptive-field center ri). Therefore, studying pattern formation in the

activity of the output neuron is reduced to studying pattern formation in the space of the

A single-cell spiking model for the origin of grid-cell patterns
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synaptic weights. Note, however, that such a simple input scenario is not necessary for the for-

mation of grid-cell patterns in general, as shown in Sec Pattern formation with

spatially-irregular inputs.

With spatially-regular inputs, the average weight dynamics in Eq 16 can be rewritten by

labeling the synaptic weights according to the corresponding receptive-field centers ri:

Z� 1
d
dt

�wðriÞ ¼
XN

i¼1

Cðri; rjÞ�wðrjÞ � a�wðriÞ þ b ð22Þ

where �wðriÞ ¼ �wi and C(ri, rj) = Cij. Additionally, in the limit of a large number N� 1 of

input neurons and receptive fields that cover the environment with constant density ρ = N/L2,

the sum in Eq 22 can be replaced by an integral over all the receptive-field centers r0:

Z� 1
d
dt

�wðrÞ ¼ r

Z

dr0 Cðr; r0Þ�wðr0Þ � a�wðrÞ þ b ð23Þ

where the correlation function C(r, r0) is the continuous extension of the correlation matrix

Cij = C(ri, rj). Because the inputs are translation invariant (Eq 8), the correlation function C is

also translation invariant, i.e., C(r, r0) = C(r − r0, 0) = C(r − r0), where we omit the second argu-

ment 0 ≔ (0, 0) for readability. In this case, the integral in Eq 23 can be expressed as a two-

dimensional convolution in space:

Z� 1
d
dt

�wðrÞ ¼ r

Z

dr0 Cðr � r0Þ�wðr0Þ � a�wðrÞ þ b : ð24Þ

Fig 3 shows the correlation C as a function of the input receptive-field distance |r − r0| for

the adaptation kernel K in Fig 1 and Gaussian input fields with size σ = 6.25 cm (Eq 9). The

function C has the shape of a typical Mexican-hat kernel, i.e., it is positive for short receptive-

Fig 3. Input correlation function C for spatially-regular inputs. The function is circularly symmetric, i.e., it

depends only on the distance |r − r0| between the receptive-field centers r and r0 (Eq 54). In the attraction

domain (red shaded area) the correlation is positive and the synaptic weights grow in the same direction. In

the repulsion domain (blue shaded area) the correlation is negative and the synaptic weights grow in opposite

directions. Parameter values: σ = 6.25 cm, rav = 0.4 s−1, τS = 0.1 s, τL = 0.16 s, μ = 1.06, Wtot = 1 s, L = 1 m,

v = 0.25 m/s.

https://doi.org/10.1371/journal.pcbi.1005782.g003
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field distances (attraction domain), negative for intermediate distances (repulsion domain),

and zero otherwise. In this case, the synaptic weights of close-by input fields grow together

whereas the synaptic weights of input fields that are further apart are repelled from each other

(Eq 24). Such a competitive Mexican-hat interaction is at the basis of many pattern-forming

systems found in nature, and it is directly related to diffusion-driven instabilities of the Turing

type [see e.g. 87].

Eigenvalue spectrum for spatially-regular inputs. To study spatially-periodic solutions,

we take the two-dimensional Fourier transform with respect to r at both sides of Eq 24:

Z� 1
d
dt

ŵðkÞ ¼ ðrĈðkÞ � aÞ ŵðkÞ þ dðkÞb ð25Þ

where we defined the Fourier transform pair

ŵðkÞ ≔
Z

dr �wðrÞexpð� 2pj k � rÞ ; �wðrÞ ¼
1

ð2pÞ
2

Z

dk ŵðkÞexpð2pjk � rÞ ; ð26Þ

k is a two-dimensional wave vector, and j ¼
ffiffiffiffiffiffiffi
� 1
p

is the imaginary unit. Solving Eq 25 for

k 6¼ (0, 0), we obtain

ŵðkÞ ¼ ŵ0ðkÞexpðZlðkÞtÞ ð27Þ

where ŵ0ðkÞ denotes the weight spectrum at time t = 0, and we defined

lðkÞ ≔ rĈðkÞ � a for k 6¼ ð0; 0Þ : ð28Þ

The function λ(k) defines the eigenvalue spectrum of the dynamical system in Eq 24, and the

corresponding eigenfunctions are the elements of the Fourier basis exp(2πj k � r). Eq 28 is also

called the dispersion relation of the system. Note that solving Eq 25 for k = (0, 0) one obtains

the dynamics of the total synaptic weight, which is kept normalized by the learning rule (Sec

Weight normalization).

From Eq 27, the Fourier modes of the synaptic weights ŵðkÞ grow or decay exponentially

with rates proportional to the eigenvalues λ(k). Therefore, a structure in the synaptic weights

emerges on a time scale

tstr ≔
1

Zlmax
ð29Þ

where λmax ≔maxk[λ(k)] is the largest eigenvalue in the system.

Importantly, the eigenvalues λ(k) are linearly related to the Fourier transform of the input-

correlation function ĈðkÞ (Eq 28), which is circularly-symmetric for circularly-symmetric

inputs. In this case, in Sec Input correlation for spatially-regular inputs (Eq 62) we derive

ĈðkÞ �
Wtot

L2
4p2 ~G 2ðkÞ ~K spðkÞ with k ≔ jkj ð30Þ

where ~G and ~K sp (Eqs 63 and 64) are the zeroth-order Hankel transforms (Eq 59) of the input

tuning curve G (Eq 9) and of the equivalent adaptation kernel in space

KspðrÞ ≔
ð61Þ 1

rv
K

r
v

� �
: ð31Þ
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Finally, by plugging Eqs 30 into 28, we obtain

lðkÞ � r
Wtot

L2
4p2 ~G2ðkÞ ~K spðkÞ � a with k 6¼ 0 : ð32Þ

From Eqs 27 and 32 we recognize a necessary condition for spatial patterns to emerge: the

eigenvalue spectrum λ(k) = λ(k) shall have a global maximum λmax > 0 at a frequency kmax >

0. In this case, all the Fourier modes k at the critical frequency |k| = kmax are unstable (Eq 25),

and spatially-periodic patterns could emerge.

Fig 4 shows the critical frequency kmax (panels A1 and B1) and the largest eigenvalue λmax

(panels A2 and B2) as a function of the parameters of the adaptation kernel K, i.e., the short

time constant τS, the long time constant τL, and the kernel integral 1 − μ (Eq 2). The input

Fig 4. Impact of the adaptation kernel on grid-pattern formation. (A1-A2) Critical spatial frequency kmax (A1) and largest

eigenvalue λmax (A2) as a function of the kernel integral 1 − μ and the long kernel time constant τL. The short time constant is τS = 0.1

s. The black lines are iso-levels (see annotated values). Regions enclosed by two adjacent iso-lines are colored uniformly (darker

colors denote larger values). Within the black region in A1 we obtain λmax� 0 s−1 (see white region in A2). Within the black region in

A2 we obtain kmax = 0 m−1 (see white region in A1). The dashed horizontal line indicates zero-integral kernels. The star denotes the

parameter values τS = 0.1 s, τL = 0.16 s, μ = 1.06 of the kernel in Fig 1. (B1-B2) Same as in A but varying the short kernel time

constant τS. The long time constant is τL = 0.16 s. The eigenvalue spectrum is estimated from Eq 32. Further parameter values: σ =

6.25 cm, rav = 0.4 s−1, Wtot = 1 s, ρ = 900 m−2, L = 1 m, v = 0.25 m/s, a = 1.1 s−1.

https://doi.org/10.1371/journal.pcbi.1005782.g004
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receptive-field width σ is kept constant. In panels A1 and B1, the green-shaded regions corre-

spond to parameter values where periodic grid-like patterns could emerge (kmax > 0). Con-

versely, the white regions denote parameter values where place-cell-like receptive fields could

emerge (kmax = 0) [88]. We note that the spatial scale of the periodic patterns depends on the

long adaptation time constant τL (panel A1), but is largely unaffected by the short time con-

stant τS (panel B1). Additionally, the largest spatial frequencies are obtained for small values of

τL and negative kernel integrals (panel A1). This leads us to the following predictions: the grid

scale shall depend on the long temporal dynamics of the adaptation kernel, and the smallest

grid scales require adaptation kernels with an overall inhibitory effect on the activity of the out-

put neuron. We also note that larger values of τL correspond to larger values of λmax (panel

A2). Thus, we predict that grids at larger scales shall develop faster than grids at smaller scales

(Eq 29).

Importantly, the formation of grid-like patterns also requires a nonlinearity in the system.

Indeed, for triangular lattices to emerge, only three wave vectors k of the same length |k| shall

survive. But this cannot be achieved in a linear system where all Fourier modes develop inde-

pendently from each other (Eq 27). Yet the non-linear weight constraints imposed in our

model (Eq 6) are sufficient to generate triangular patterns (Sec Emergence of grid spatial

patterns).

In summary, the theory presented here gives necessary conditions for spatial pattern forma-

tion, and it predicts how the shape of the adaptation kernel K influences the scale of the grids

and the relative time required for their formation. The theory remains however agnostic about

the specific two-dimensional periodicity of the resulting patterns, i.e., it cannot predict

whether the final solutions are, e.g., planar waves, square, rhomboidal, or triangular lattices.

Further mathematical insights on this topic could be obtained by using perturbation methods

[see e.g. 89], but this is beyond the scope of the current manuscript.

Numerical results on grid-pattern formation

In Sec Mathematical results on grid-pattern formation we derived an equation for the average

dynamics of the synaptic weights wi, under the STDP learning rule and the stochastic activa-

tion of input and output neurons (Eq 16). In the case of spatially-regular inputs, we then com-

puted the systems eigenvalue spectrum λ(k) in terms of the Gaussian input tuning curve G and

the temporal adaptation kernel K (Eq 32). We showed that periodic spatial patterns could

emerge if the eigenvalue spectrum λ(k) had a global maximum λmax > 0 at a frequency

kmax > 0 (Fig 4).

Fig 5A shows the eigenvalue spectrum λ(k) for a choice of the parameter values such that

this condition is satisfied. With adaptation time constants τS = 0.1 s and τL = 0.16 s (Eq 2,

Fig 1, star in Fig 4), and Gaussian input receptive fields of size σ = 6.25 cm (Eq 9), the eigen-

value spectrum peaks at the critical frequency kmax = 3 m−1. In the following, we simulate the

emergence of grid-like patterns in this scenario.

Emergence of grid spatial patterns. First, we simulate the detailed spiking model with

spatially-regular inputs (Sec Spatially-regular inputs). The results are shown in Fig 5B–5E. In

line with the theory, a structure emerges in the synaptic weights (Fig 5B and 5C) on a time

scale of τstr = 1/(ηλmax)� 5 � 104 s (Eq 29) where η = 2 � 10−5 is the learning rate and λmax� 1 s−1

is the largest eigenvalue in the system. Additionally, the weight spectrum is quickly dominated

by the critical frequency kmax = 3 m−1 (Fig 5C, bottom row) at which the eigenvalue spectrum

has a global maximum (Fig 5A).

Importantly, the synaptic weights also develop a periodic triangular symmetry, which is

reminiscent of grid-cell patterns. Such triangular symmetry emerges after a substantial fraction
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Fig 5. Grid-pattern formation with spatially-regular inputs. (A) Eigenvalue spectrum λ(k) of the averaged weight dynamics (Eq 32). The

black solid line shows the continuous spectrum in the limit of infinite-size environments; the red dots show the discrete eigenvalues for a

square arena of side length L = 1 m with periodic boundaries. The horizontal dashed line separates positive and negative eigenvalues. The

vertical gray line indicates the critical spatial frequency kmax = 3 m−1. The eigenvalue at frequency k = 0 is not shown. Parameter values: τS =

0.1 s, τL = 0.16 s, σ = 6.25 cm. (B) Time-resolved distribution of N = 900 synaptic weights updated according to the STDP rule in Eqs 3–6. Red

triangles indicate the time points shown in C. Inset: fraction of weights close to the lower saturation bound (wi < 5 � 10−3). (C) Top row: evolution

of the synaptic weights over time. Weights are sorted according to the two-dimensional position of the corresponding input receptive-field
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of weights has hit the low saturation bound (Eq 6, Fig 5B, inset). Periodic pattern formation is

indeed a strictly non-linear phenomenon, and excluding the spike generation process, weight

saturation is the only non-linearity present in the system. In the linear regime, all Fourier

modes k with frequency |k| = kmax exponentially grow with equal rate ηλmax and independently
from each other (Eq 25). In this case, the random weight pattern at time t = 0 s is amplified at

the frequency kmax, but no periodic structure emerges. In the non-linear regime, instead, the

exponentially growing modes are mutually coupled, and a spontaneous symmetry breaking

occurs: only three Fourier modes with wave vectors that are 60 degrees apart survive in our

simulations (see Fig 5C and 5D).

In the example of Fig 5, a triangular symmetry starts to emerge after 2 � 105 s, i.e., about 50

hours of exploration of the virtual rat. Yet the time scale of learning depends on the learning

rate η and on the largest eigenvalue λmax (Eq 29), which are under-constrained by experimen-

tal data (see Eq 32 for the dependence of λmax on other model parameters). From a theoretical

standpoint, the speed of learning is limited by the noise in the system, which is due to the vir-

tual-rat random walk and the stochastic spiking of the neurons. To theoretically explore this

limit and test the robustness of the model against noisy initial conditions, we simulated the

development of the synaptic weights for different values of the learning rate and multiple ran-

dom initializations of the synaptic weights. The results are reported in Fig 6A. With larger

learning rates, grid-like patterns emerge faster. However, if the learning rate is too large, e.g.,

centers. Note that each panel has a different color scale (maximum weight at the bottom-left corner, see B for distributions). Bottom row:

Fourier amplitude of the synaptic weights at the top row. The red circle indicates the frequency kmax = 3 m−1 of the largest eigenvalue (see

panel A). (D) Time evolution of weights’ Fourier amplitudes jŵðkÞj for wave vectors k at the critical frequency |k| = kmax. Wave vector angles

(color coded) are relative to the largest mode at the end of the simulation (t = 106 s). The black triangles indicate time points in C. (E) Gridness

score of the weight pattern over time. The gridness score quantifies the degree of triangular periodicity. See Sec Numerical simulations for

further details and parameter values.

https://doi.org/10.1371/journal.pcbi.1005782.g005

Fig 6. Time scales of learning. (A) Median gridness scores of the input synaptic weights for 40 random weight initializations and different

learning-rate values, i.e., η = (2, 3, 5, 10) � 10−5. The weight development is simulated with the detailed spiking model with spatially-regular inputs

and constant virtual-rat speed (see also Fig 5). (B) Median gridness scores of the input synaptic weights simulated with constant (black line) and

variable (green line) virtual-rat speeds for 40 random weight initializations. Variable running speeds are obtained by sampling from an Ornstein-

Uhlenbeck process with long-term mean �v ¼ 0:25 m/s, volatility σv = 0.1 m � s−1.5 and mean-reversion speed θv = 10 s−1. The inset shows the

distribution of running speeds (mean: 0.25 m/s std: 0.02 m/s). Note that the long-term mean �v of the process equals the speed v in constant-speed

simulations. See Sec Numerical simulations for further details and additional parameter values.

https://doi.org/10.1371/journal.pcbi.1005782.g006
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η = 10 � 10−5 in our simulations, the gridness score fluctuates at low levels and no stable grid

pattern emerges (yellow line in Fig 6A). Therefore, our results suggest that tens of hours of spa-

tial exploration are required for stable grid patterns to emerge. Finally, the model is robust to

random initializations of the synaptic weights, and to variations of the running speed of the

virtual rat (Fig 6B).

Geometrical properties of the grid patterns. We now discuss the geometrical properties

of the simulated grid patterns. A periodic triangular grid is characterized by three fundamental

properties: i) the grid scale, i.e., the distance between two neighboring peaks; ii) the grid spatial

phase, i.e., the spatial offset of the grid peaks with respect to a reference point; and iii) the grid

orientation, i.e, the angle between one of the three grid axes and a reference direction.

Grid scale. In our model, the grid scale is set by the critical frequency kmax at which the

eigenvalue spectrum has a global maximum (Eq 32 and Fig 5). This critical frequency depends

only on the movement speed v of the virtual rat, the width σ of the input tuning curve G, and

the temporal dynamics of the adaptation kernel K (Fig 4). Therefore, grid patterns at different

scales are obtained, for example, by varying the width σ of the input receptive fields or the long

time scale τL of the adaptation kernel (Fig 7, see also Fig 4). This theoretical result is consistent

with the facts that spatial tuning in the hippocampal formation is typically broader ventrally

Fig 7. Spatial scale of the grid patterns. Example grid patterns obtained with different adaptation kernels K (Eq 2, top row) and

different input tuning curves G (Eq 9, left-most column). For each choice of the functions K and G, the synaptic weights (left) and their

corresponding Fourier spectra (right) at the end of the simulation are shown (t = 106 s). The synaptic-weight maps have different color

scales (maximal values at the bottom-left corner). The red circles indicate the spatial frequency kmax of the weight patterns. Synaptic

weights were obtained by simulating the average weight dynamics in Eq 16. Note that we used a larger enclosure (L = 2 m) as

compared to the one in Figs 5 and 6 (L = 1 m). See Sec Numerical simulations for further details and parameter values.

https://doi.org/10.1371/journal.pcbi.1005782.g007
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than dorsally [90–92], and that grid scales vary in the same direction [1, 93]. Additionally, we

predict that the adaptation time scale may also have a dorso-ventral gradient, similarly to other

intrinsic cellular properties in the mEC [e.g. 71, 94–97].

Grid spatial phase. With evenly-distributed input fields and periodic boundaries, the spa-

tial phases of the grid patterns depend only on the initial condition of the synaptic weights, i.e.,

random weight initializations result in uniformly-distributed grid phases (Fig 8A1 and 8B1).

This result is in line with the phases of nearby grid cells being roughly evenly distributed in

experimental data [1], but see also [98]. Yet it remains unclear whether the same results would

be obtained in the case of non-periodic boundaries.

Grid orientation. With periodic boundary conditions, our model produces grid orienta-

tions that are distributed non-uniformly. Precisely, the distribution of grid orientations

depends on the scale of the pattern relative to the size of the environment, e.g., in the same

environment patterns at different scales tend to align differently (compare panels A2 and B2 in

Fig 8). In the examples of Fig 8A3, one of the grid axes tends to align to a border of the arena

whereas in the examples of Fig 8B3 one of the grid axes tends to align to a diagonal of the

arena. Similar results are obtained by keeping the grid scale fixed and varying the size of the

environment, e.g., compare Fig 8A2 (kmax = 3 m−1 and L = 2 m) and Fig 9F (kmax = 3 m−1 and

L = 1 m). In general, we expect grid orientations to be uniformly distributed only in infinite-

Fig 8. Geometric properties of the grid patterns. (A) Distribution of grid spatial phases (A1) and grid orientations (A2) for

patterns at frequency kmax = 3 m−1 in an arena of side-length L = 2 m (σ = 6.25 cm, τL = 0.16 s; see also Fig 7, bottom-left panel).

Distributions were obtained from the average weight dynamics in Eq 16 for 200 random initializations of the synaptic weights

(t = 106 s). Only patterns with gridness scores larger than 0.5 were considered (197/200). Panel A3 shows example weight patterns

for the two most common orientations in A2 (maximal values at the bottom-left corner). (B) Same as in A but for patterns at spatial

frequency kmax = 2 m−1 in an arena of side-length L = 2 m (σ = 6.25 cm, τL = 0.35 s; see also Fig 7, bottom-right panel). A fraction of

182/200 grids had a gridness score larger than 0.5. See Sec Numerical simulations for further details and parameter values.

https://doi.org/10.1371/journal.pcbi.1005782.g008
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sized environments, or in environments that are much larger than the pattern size. Neverthe-

less, because grid orientation depends on the boundary conditions, it remains difficult to com-

pare the distributions obtained here with the ones observed experimentally [1, 93, 99, 100].

Finally, in order to explain grid alignment across cells and/or environments [1, 93], collateral

interactions between developing grid cells may be required [50, 51, 101] (see also Sec Recur-

rent dynamics).

Pattern formation with spatially-irregular inputs. We demonstrated the emergence of

grid-like patterns in the case of spatially-regular inputs, i.e., for each input cell having a single

Gaussian receptive field in space (Sec Spatially-regular inputs). We now show that similar

results are obtained in the case of spatially-irregular inputs (Sec Spatially-irregular inputs). We

generate spatially-irregular inputs C
in
i by superimposing M> 1 Gaussian receptive fields with

equal width σ, but random centers and random amplitudes (Eq 10, see Fig 9A for examples).

Fig 9. Grid-pattern formation with spatially-irregular inputs. (A) Four examples of irregular input firing-rate maps (top row) and

the corresponding Fourier spectra (bottom row). The maximal firing rate (spikes/s) is reported at the bottom-left corner. The red

circles indicate the spatial frequency kmax = 3 m−1. (B) Four examples of output firing-rate maps (top row) and the corresponding

Fourier spectra (bottom row). The gridness score is reported at the bottom-right corner. Output firing-rate maps were estimated from

the average weight dynamics in Eq 16 (t = 106 s) for four different realizations of the spatial inputs. (C-F) Distribution of gridness

scores (C), grid spatial frequencies (D), grid spatial phases (E), and grid orientations (F) for 100 random realizations of the spatial

inputs. The red vertical line in C indicates the mean score (0.77). See Sec Numerical simulations for further details and parameter

values.

https://doi.org/10.1371/journal.pcbi.1005782.g009
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The functions C
in
i are normalized such that their average firing rate rav is constant for all input

neurons and independent from the number M of superimposed receptive fields.

We test grid-pattern formation in this scenario by simulating the average dynamics of the

synaptic weights (Eqs 16 and 21) for random realizations of the input tuning curves C
in
i , with

N = 3600 input neurons and M = 10 receptive fields per neuron. We then estimate output fir-

ing-rate maps from the synaptic weights at the end of the simulations (t = 106 s). The results

are shown in Fig 9B and 9C. In the majority of the cases (73/100) a regular grid-like pattern

emerges at the output.

Like in the case of spatially-regular inputs, the spatial scale of the output patterns depends

on the long adaptation time constant τL and on the width σ of the input receptive fields.

Indeed, for σ = 6.25 cm and τL = 0.16 s, we obtain output grid patterns with spatial frequency

kmax = 3 m−1 (Fig 9D), which is equal to the one obtained for spatially-regular inputs with the

same parameter values (Figs 5 and 7, bottom-left panel). This can be understood by the fact

that the expected eigenvalue spectrum for spatially-irregular inputs hλirr(k)i is qualitatively

similar to the eigenvalue spectrum λ(k) for spatially-regular inputs (Sec Eigenvalue spectrum

for spatially-irregular inputs, Eq 72):

hlirrðkÞi � FlðkÞ þ const: ð33Þ

where 0� F� 1 is a scale factor. We also find that the scale factor F depends on the number

M of superimposed fields, i.e., F� 4/(3M) for M> 3 (Eq 82), meaning that structure forma-

tion is slower for larger numbers of superimposed fields (Eq 29).

Finally, like in the case of spatially-regular inputs, with periodic boundary conditions the

spatial phases of the simulated grids distribute evenly in the arena (Fig 9E), and the grid orien-

tations tend to cluster according to the grid scale and the size of the environment (Fig 9F, see

also Fig 8A2 for the same grid scale in a larger environment).

Discussion

We studied the origin of grid-cell patterns in a single-cell spiking model relying solely on 1)

spatially-tuned feed-forward inputs, 2) spike-rate adaptation, 3) and synaptic plasticity at the

input synapses. We considered two input scenarios: spatially-regular inputs (reminiscent of

place-cell activity), and spatially-irregular inputs (reminiscent of parasubicular activity). First,

we studied the average dynamics of the system analytically, and we derived necessary condi-

tions for the emergence of spatially-periodic solutions (Sec Mathematical results on grid-pat-

tern formation). We then simulated the model numerically, and showed that grid-like patterns

emerge both with spatially-regular and spatially irregular inputs (Sec Numerical results on

grid-pattern formation). In the following, we discuss the main assumptions and predictions of

our model.

Input spatial tuning and the origin of grid-cell patterns

We assumed that the feed-forward input activity is spatially tuned. Such spatial tuning could

be provided by hippocampal place cells, or by other cortical or sub-cortical structures with less

regular spatial firing. From a theoretical point of view, we find that grid patterns emerge faster

with place-cell-like inputs, i.e., with inputs having a single receptive field in space. From an

anatomical point of view, both scenarios seem plausible. On the one hand, grid-cell activity

requires excitatory drive from the hippocampus [102], which projects to the deep layers of the

mEC [103, 104] where grid cells are found [23, 60]. On the other hand, parasubicular inputs

target layer II of the mEC [61, 105–108] where grid cells are most abundant [23, 60]. Although

a small fraction of parasubicular cells already shows grid-like tuning [60, 61], the activity in
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parasubiculum is often characterized by multiple spatially-irregular fields [57–61] similar to

those assumed in our model (Fig 9A).

That grid-cell activity could originate from parasubicular inputs is further supported by the

detailed layout of the entorhinal circuit. Layer II principal neurons segregate into stellate and

pyramidal cells, which are distinguished by their morphology, intrinsic properties [69], and

immunoreactivity [109–111]. Interestingly, pyramidal-cell somata cluster into anatomical

patches [110, 111], which are preferentially targeted by parasubicular axons [61]; and the spik-

ing activity in parasubiculum precedes the activity of layer II pyramidal cells by a few degrees

in the theta cycle [61]. Such a network configuration suggests that grid patterns may originate

in the layer II pyramidal cells via parasubicular inputs, and be inherited by the stellate cells via

feed-forward projections. Consistent with this view is that both stellate and pyramidal cells

show grid spatial tuning [55], and that direct intra-laminar connections are found from pyra-

midal onto stellate cells and not vice-versa [112, 113]; but see [114].

In summary, our model is consistent with entorhinal grid-cell activity originating either in

the superficial layers via parasubicular input or in the deep layers via hippocampal input. It is

also possible that multiple sites of origin exist, and that grid-like tuning is inherited—and even

sharpened—via feed-forward projections from the deep to the superfical layers [115–119] or

from the superficial to the deep layers [104].

Spike-rate adaptation

Our grid-cell model relies on the presence of a spike-rate adaptation mechanism. Spike-rate

adaptation has been observed throughout the cortex [62], and is prominent in layer II of the

mEC, in both stellate and pyramidal neurons [69, 70]. Yoshida et al. [71] also reported a

dorso-ventral gradient in the adaptation strength of layer II entorhinal cells. However, because

adaptation was found to be stronger ventrally than dorsally, Yoshida et al. [71] interpreted

their results as evidence against grid-cell models based on adaptation. Yet the critical variable

controlling the grid scale is not the strength of adaptation, but rather its temporal dynamics

(Fig 7), which was not systematically analyzed [71]; see also [101] for a similar discussion on

this point.

We modeled spike-rate adaptation by applying a temporal kernel K to the input spike trains

(Eq 1). The kernel K, was composed of a brief depolarization peak and a slower hyper-polariz-

ing potential (on a time scale of hundreds of milliseconds). Such a slow hyper-polarizing

potential reduced the output firing rate in response to persistent excitation, and it filtered the

input activity in a low-frequency band (i.e. with a resonance frequency of about 1 Hz, see Fig

1). The shape of the kernel was motivated by long-lasting hyper-polarizing potentials following

excitatory post-synaptic potentials found in hippocampal CA1 pyramidal neurons [120],

although similar responses have not been observed in the mEC yet.

However, the formation of grid-cell patterns could rely on any other cellular or synaptic

mechanism that effectively acts as a band-pass filter on the input activity. A candidate mecha-

nism is the after-spike hyperpolarizing potential (AHP). AHPs are indeed observed in the

superficial layers of the mEC where single action potentials are followed by both a fast (2-5 ms)

and a medium AHP (20-100 ms) [69, 97, 121]. To assess whether such hyperpolarizing poten-

tials could underlie grid-pattern formation, we extended our model to account for AHPs (Sec

Pattern formation with after-spike potentials). However, we found that grids at typical spatial

scales cannot be obtained by AHPs alone. Yet after-spike potentials could amplify the effects of

a band-pass filtering mechanism that is already present at the input.

Spike-rate adaptation could also rely on hyperpolarization-activated cation currents (Ih),

which depend on HCN channels [122, 123]. Fast Ih currents (mediated by HCN1 channels)

A single-cell spiking model for the origin of grid-cell patterns

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005782 October 2, 2017 19 / 41

https://doi.org/10.1371/journal.pcbi.1005782


have been shown to control the theta-frequency resonance of entorhinal stellate cells in vitro

[95, 97, 124–126]. Instead, slower Ih currents (mediated by HCN2-4 channels) could generate

in entorhinal cells the low-frequency resonance assumed by our model (Fig 1B).

Synaptic plasticity

We propose that grid-cell patterns emerge from a synaptic reorganization of the mEC net-

work, which is assumed to be plastic. This is in line with both LTP and LTD being reported in

the entorhinal cortex [121, 127–130], but see also [131]. Additionally, asymmetric STDP was

observed in the mEC [76]. Although we used a symmetric learning window in our model, the

exact window shape has little effect on grid-pattern formation, provided that its temporal

width (on the order of tens of milliseconds) is much shorter than the correlation length of the

input activities (on the order of hundreds of milliseconds).

Structure formation via Hebbian learning is typically a slow process. In our model, grid-like

patterns emerge on a time scale that is inversely proportional to the learning rate η and to the

maximal eigenvalue λmax (Eq 29). The latter depends on the spatial density ρ = N/L2 of input

receptive fields, on the integral Wtot of the learning window, on the shapes of the input-tuning

curves G, and on the dynamics of the adaptation kernel K (Eq 32). Because most of these quan-

tities are under-constrained by empirical data, a direct comparison with experimental time

scales remains difficult. Yet learning shall be slow enough such that the input correlations that

drive structure formation dominate over random fluctuations of the synaptic weights, which

are due to the random walk of the virtual rat and the shot noise of the stochastic spiking. In

our simulations, we find that this requires tens of hours of spatial exploration (Fig 6A).

Such slow process may seem in contrast with grid-cell activity appearing immediately in a

novel environment [1, 132]. However, grid-like tuning may not need to be learned in each

environment anew, but rather recalled—and possibly refined—from the experience of similar

environments explored in the past. Although hippocampal place cells [133, 134] and entorhi-

nal non-grid spatial cells [56] seem to remap completely in novel spaces, pattern formation

could still leverage on residual correlations across environments that are hardly observable

from the simultaneous recordings of only a few tens of neurons. Additionally, grid-cell learn-

ing could generalize across spatial contexts through border and boundary-vector inputs [84,

85], which are invariant across environments.

We suggest that a structure in the synaptic weights may be formed during the animal’s

ontogenetic development, i.e., within a two-week period after the animal leaves the nest [135–

137]. Consistent with this hypothesis is that stable spatial firing is observed before grid-cell

maturation, e.g., hippocampal place cells develop prior to grid cells [135, 136] and irregular

spatial cells are present before grid cells [137].

Recurrent dynamics

We studied the emergence of grid patterns in a purely single-cell model, ignoring any net-

work-level interaction between the neurons. However, because excitatory and inhibitory

recurrent circuits have been described in the mEC [19, 20, 112, 113, 138], grid cells are likely

to be mutually coupled [139, 140]. Such recurrent connections could explain the modular

organization of grid-cell properties [93, 101] and their coherent responses to environmental

changes [139]. Feedback interactions within a module may also amplify an initially broad grid-

tuning given by the feed-forward inputs, similarly to the sharpening of receptive fields in visual

cortex [141, 142]. Finally, recurrent dynamics may sustain grid-like activity when the feed-for-

ward inputs are temporally untuned, like in attractor models [14]. Still, spatially-tuned feed-

forward inputs could be required for the initial formation of grid-like patterns [see e.g. 21].
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Related models

Our work—and the one by Kropff and Treves [49]—belong to a broad category of grid-cell

models based on spatially-tuned feed-forward inputs and Hebbian synaptic plasticity [63–67].

In all these models, periodic spatial patterns arise via a common underlying principle: the

input correlations that drive the dynamics of the synaptic weights have the form of a Mexican-

hat kernel (Fig 3). What distinguishes the models among each other—and generates distinct

predictions—is the specific mechanism by which such Mexican-hat interactions are obtained.

In our model, a Mexican-hat kernel results from the intrinsic adaptation dynamics of the

output neuron, which controls the grid scale directly (Fig 7).

By contrast, in the models by Castro and Aguiar [63] and Stepanyuk [64], Mexican-hat cor-

relations arise from the learning rule itself, i.e., by assuming that synaptic plasticity switches

between LTP and LTD based on pre- and post-synaptic activities [143]. In this case, the grid

spatial scale shall be affected by interfering with the learning rule.

In a different model, Dordek et al. [65] obtain Mexican-hat correlations by constraining the

input activity to be effectively zero-mean. The authors discuss that such a zero-mean con-

straint could originate either from lateral inhibition or from a zero-mean temporal filter con-

trolling the output activity of the neuron. In the latter case, the model by Dordek et al. [65] is

analogous to the present one. We note, however, that effectively zero-mean inputs are neither

necessary nor sufficient for grid patterns to emerge. Instead, pattern formation depends on the

dynamics of the temporal filter and on the shape of the input tuning curves, but not on their

means. This can be easily understood by considering the system’s eigenvalue spectrum in Fou-

rier space (Eq 30), where the zero-frequency mode (k = 0) is not relevant for the emergence of

spatially-periodic patterns. Also note that the smallest grid scales in our model are obtained

with negative-mean temporal filters (Fig 4). Yet our results agree with the ones of Dordek et al.

[65] in that the non-linearity introduced by imposing non-negative synaptic weights is suffi-

cient for a triangular symmetry to emerge.

Alternatively, Mexican-hat correlations could emerge from phase-precessing feed-forward

inputs [66]. In this case, grid-cell activity shall be impaired when phase precession is disrupted.

Finally, Weber and Sprekeler [67] proposed a model where the interplay between spatially-

narrow feed-forward excitation and spatially-broad feed-forward inhibition generates a Mexi-

can-hat kernel. This model predicts that the grid scale shall be affected by manipulating inhibi-

tory inputs to the mEC.

Model predictions and conclusion

We presented a single-cell model for the origin of grid-cell activity based on Hebbian synaptic

plasticity and spike-rate adaptation. Our work builds upon the model by Kropff and Treves

[49] and improves its original formulation in several aspects: 1) grid-like patterns emerge form

a purely single-cell mechanism independently of any network-level interaction; 2) neuronal

activities are spike-based and stochastic; 3) the input synaptic weights are purely excitatory; 4)

the dynamics of the synaptic weights is studied analytically and linked to classical Turing-like

patterns.

The present model makes the following experimental predictions. First, grid-cell patterns

shall be affected by disrupting synaptic plasticity during ontogenetic development, which is

consistent with preliminary data from Dagslott et al. [144]. Second, adult grid-cell activity shall

be influenced by systematic behavioral or environmental biases in the first weeks of spatial

exploration, e.g., by rising animals in environments without boundaries or with non-zero sur-

face curvature [52, 145]. Third, the grid scale shall be affected by three factors: 1) the spatial

tuning-width of the feed-forward inputs; 2) the average speed of the rat during ontogenetic
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development; 3) the time constant of the recovery from spike-rate adaptation. Fourth, grids at

larger scales shall develop faster as compared to grids at smaller scales (Fig 4).

We believe that manipulations of the intrinsic adaptation properties of single cells are key

to distinguish our model from other feed-forward models based on Hebbian learning (Sec

Related models). To this end, further experimental work shall be devoted to pinpoint the bio-

physical mechanisms underlying adaptation in the mEC. Extensions of the present model

could also explain how the geometry of the enclosure affects grid-cell symmetry [99], and how

grid-like tuning emerges in non-spatial contexts [146, 147].

To conclude, our study contributes to a better understanding of the fundamental principles

governing grid-cell activity, and lays the groundwork for more biophysically-realistic grid-cell

models.

Materials and methods

Weight normalization

Here we derive the dynamics of the mean synaptic weight wav ¼ N � 1
PN

i¼1
�wi for a neuron

with N synapses and temporally-averaged weights �wi. We recall the weight dynamics in Eq 16

Z� 1
d
dt

�wi ¼
XN

j¼1

Cij �wj � a�wi þ b with �wi � 0 : ð34Þ

By taking the average over the index i at both sides of Eq 34 we obtain

Z� 1
d
dt

wav ¼ ðNCav � aÞwav þ b ð35Þ

where we defined the mean correlation Cav ≔N−2∑ij Cij. Note that we used the property ∑j Cij

= NCav for all i, which holds true for translation-invariant inputs. Therefore, for NCav < a, the

mean weight wav decays exponentially with time constant

tav ≔
1

Zða � NCavÞ
ð36Þ

to the normalization level

w1av ≔
b

a � NCav
: ð37Þ

Input correlation for general inputs

In this section we estimate the input correlation matrix

Cij �
ð20Þ

Wtot

Z 1

0

dt KðtÞrin
i ðtÞrin

j ðt � tÞ with i; j ¼ 1; . . . ;N ð38Þ

for general spatial tuning curves C
in
i and smooth movement trajectories of the virtual rat (Sec

Model of spatial exploration). We start by computing the temporal average rin
i ðtÞrin

j ðt � tÞof

the product between the input activities rin
i ðtÞ and the delayed input activities rin

j ðt � tÞ. We

assume that the stochastic process Xt controlling the virtual-rat trajectory (Eq 11) is ergodic
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with respect to the auto-covariance, i.e.,

1

T

Z T

0

dt xt xt� t ¼ hXt;Xt� ti for T !1 ð39Þ

where the angular brackets denote statistical expectation. By using this ergodicity property (Eq

39) and the spatial tuning of the inputs (Eq 7), we derive

rin
i ðtÞrin

j ðt � tÞ¼ C
in
i ðxtÞC

in
j ðxt� tÞ� hC

in
i ðXtÞC

in
j ðXt� tÞi : ð40Þ

Note that Eq 40 is only valid in an approximate sense because Eq 39 assumes T!1, but the

averaging time window has finite length T� τstr where τstr is structure-formation time con-

stant (Eq 29). From Eq 40 follows

rin
i ðtÞrin

j ðt � tÞ � hC
in
i ðXtÞC

in
j ðXt� tÞi ð41Þ

≔
Z Z

dx dx0 Cin
i ðxÞC

in
j ðx

0Þ pðx; t; x0; t � tÞ ð42Þ

¼

Z Z

dx dx0 Cin
i ðxÞC

in
j ðx

0Þ pðx0; t � tjx; tÞpðx; tÞ ð43Þ

¼
1

L2

Z Z

dx dx0 Cin
i ðxÞC

in
j ðx

0Þ pðx0; t � tjx; tÞ ð44Þ

where the integrals in Eqs 42–44 run over all positions in the environment (a square arena of

side-length L), and p(x, t, x0, t − τ) is the joint probability density of the virtual rat being at posi-

tion x at time t and at position x0 at time t − τ. From Eqs 43 to 44, we used the fact that, for

large times t, the virtual rat has equal probability of being in any position x, i.e., p(x, t) = 1/L2.

Eq 44 shows that the temporal average rin
i ðtÞrin

j ðt � tÞcan be estimated from the input tun-

ing curves C
in
i and C

in
j , and the conditional probability density p(x0, t − τ|x, t). This conditional

probability density has not yet been solved for correlated random walks in two dimensions

[148]. Nevertheless, an additional approximation is possible. Because the temporal average

rin
i ðtÞrin

j ðt � tÞis weighted by the adaptation adaptation kernel K(τ) (Eq 38), and K(τ) is negli-

gible for τ> τmax� 5τL (Eq 2), we are interested in the conditional probability p(x0, t − τ|x, t)
only at lags τ< τmax. In this case, for movement trajectories that are sufficiently smooth, we

can assume that in a time τ the virtual rat has moved to a position x at distance |x − x0| = τv
from the initial position x0, that is

pðx0; t � tjx; tÞ �
dðjx � x0j � tvÞ

2ptv
ð45Þ

where v is the speed of the virtual rat (Eq 11), and the denominator ensures that
R

dx0p(x0, t −
τ|x, t) = 1; see also Fig 2 for exemplary virtual-rat trajectories in this scenario. We now use Eq

45 in Eq 44, and let z ≔ x0 − x:

rin
i ðtÞrin

j ðt � tÞ �
1

L2

Z

dz
dðjzj � tvÞ

2ptv
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕
I

jzj¼tv
dz

Z

dx C
in
i ðxÞC

in
j ðx þ zÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ C
in
i ?C

in
j jz

: ð46Þ
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From Eq 46, the temporal average rin
i ðtÞrin

j ðt � tÞis approximated by the integral of the spatial

cross-correlation C
in
i ?C

in
j over a circle of radius τv. Finally, by using Eq 46 in Eq 20, we

obtain

Cij �
Wtot

L2

Z 1

0

dtKðtÞ
I

jzj¼tv
dz C

in
i ?C

in
j

�
�
�
�
z

: ð47Þ

Input correlation for spatially-regular inputs

In this section we compute the input correlation function C and its Fourier spectrum Ĉ in the

case of spatially-regular inputs (see Sec Weight dynamics for spatially-regular

inputs). First, we rewrite the input correlation matrix Cij in Eq 21 as a continuous function C
(r, r0) by labeling neurons according to their receptive-field centers r and r0:

Cðr; r0Þ �
Wtot

L2

Z 1

0

dtKðtÞ
I

jzj¼tv
dz C

in
r ?C

in
r0

�
�
�
�
z

ð48Þ

where C
in
r ðxÞ ≔ Gðjx � rjÞ is a Gaussian input tuning curve centered at position r (Eq 9).

Because the inputs are translation invariant, the correlation function C depends only on the

translation vector u ≔ r − r0:

Cðr; r0Þ ¼ Cðu;0Þ ¼ CðuÞ �
Wtot

L2

Z 1

0

dtKðtÞ
I

jzj¼tv
dz C

in
u ? C

in
0

�
�
�
�
z

ð49Þ

¼
Wtot

L2

Z 1

0

dtKðtÞ
I

jzj¼tv
dz C

in
0
? C

in
0

�
�
�
�
uþz

ð50Þ

where C
in
0
ðxÞ ≔ GðjxjÞ is the tuning curve centered at the origin 0 = (0, 0). Next, we substi-

tute in Eq 50 the definition of the integral operator in Eq 46:

CðuÞ �
Wtot

L2

Z 1

0

dtKðtÞ
Z

dz
dðjzj � tvÞ

2ptv
C

in
0
? C

in
0

�
�
�
�
uþz

: ð51Þ

It is easy to see that the auto-correlation of a Gaussian is still a Gaussian:

C
in
0
? C

in
0

�
�
�
�
u

¼
L4r2

av

4ps2
exp �

juj2

4s2

� �

ð52Þ

from which we derive

C
in
0
? C

in
0

�
�
�
�
uþz

¼
L4r2

av

4ps2
exp �

juj2 þ jzj2

4s2

� �

exp �
jujjzj cos ðφÞ

2s2

� �� �

ð53Þ

where φ is the angle between the vectors u and z. Finally, by expressing in polar coordinates

the vector z ≔ |z|[cos(φ), sin(φ)], from Eqs 51 and 53 we obtain

CðuÞ �
WtotL2r2

av

4ps2

Z 1

0

dtKðtÞ exp �
juj2 þ ðtvÞ2

4s2

� �

I0 �
jujtv
2s2

� �

ð54Þ

where I0ðxÞ ≔ 1=ð2pÞ
R 2p

0
dφ expðx cos ðφÞÞ is the zeroth-order modified Bessel function of

the first kind.
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Fourier spectrum of the input correlation function. Here we compute the Fourier spec-

trum of the correlation function C in Eq 51. First, we observe that the second integral in Eq 51

is a two-dimensional cross-correlation in the variable z between the functions δ(|z| − τv) and

C
in
0
? C

in
0
jz evaluated at point u. Therefore, by taking the two-dimensional Fourier transform

with respect to u at both sides of Eq 51 yields

ĈðkÞ �
Wtot

L2
jĈ in

0
ðkÞj2

Z 1

0

dtKðtÞ
Z

dz
dðjzj � tvÞ

2ptv
expð2pj z � kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ J0ðtvjkjÞ

ð55Þ

where we defined the Fourier transform pair:

ĈðkÞ ≔
Z

duCðuÞexpð� 2pj k � uÞ ; CðuÞ ¼
1

ð2pÞ
2

Z

dk ĈðkÞ expð2pjk � uÞ ð56Þ

with k � u = |k||u| cos(θ), and we used the definition of the zeroth-order Bessel function

J0ðkÞ ≔
1

2p

Z 2p

0

dy expð2pjk cos ðyÞÞ : ð57Þ

Because the tuning function C
in
0
ðxÞ ≔ GðjxjÞ is circularly symmetric, its two-dimensional

Fourier transform Ĉ in
0
ðkÞ is proportional to the zeroth-order Hankel transform of G:

Ĉ in
0
ðkÞ ¼ 2p ~GðkÞ with k ≔ jkj ; ð58Þ

where we defined the zeroth-order Hankel transform pair:

~GðkÞ ≔
Z 1

0

dr r GðrÞJ0ðkrÞ and GðrÞ ¼
Z 1

0

dk k ~GðkÞJ0ðkrÞ : ð59Þ

By using Eq 58 in Eq 55 we obtain

ĈðkÞ ¼Wtot
4p2

L2
~G 2ðkÞ

Z 1

0

dtKðtÞ J0ðtvkÞ ð60Þ

and by defining the equivalent adaptation kernel in space

KspðrÞ ≔
1

rv
K

r
v

� �
ð61Þ

we find

ĈðkÞ ¼Wtot
4p2

L2
~G 2ðkÞ~K spðkÞ : ð62Þ

Finally, the zeroth-order Hankel transforms of the Gaussian tuning curve G (Eq 9) and of the

adaptation kernel in space Ksp (Eqs 61 and 2) read

~GðkÞ ¼
L2rav

2p
exp �

k2s2

2

� �

ð63Þ

~K spðkÞ ¼
1

tSv
½k2 þ ðtSvÞ

� 2
�
� 0:5
�

m

tLv
½k2 þ ðtLvÞ

� 2
�
� 0:5
: ð64Þ
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Eigenvalue spectrum for spatially-irregular inputs

In this section we estimate the expected eigenvalue spectrum hλirr(k)i for spatially-irregular

inputs (Secs Spatially-irregular inputs and Pattern formation with spatially-irregular inputs).

We recall that, for spatially-regular inputs, in Sec Mathematical results on grid-pattern forma-

tion we obtained (Eq 32):

lðkÞ � r
Wtot

L2
4p2 ~G2ðkÞ
|fflfflfflfflffl{zfflfflfflfflffl}

¼
ð58Þ
jĈ in

0
ðkÞj2

~K spðkÞ � a with k ≔ jkj 6¼ 0

ð65Þ

where ~G and ~K sp are the zeroth-order Hankel transforms of the input tuning curve G (Eq 9)

and of the equivalent adaptation kernel in space Ksp (Eqs 31 and 61). Note that the parameters

ρ, L, Wtot, and a do not depend on k. From Eq 65, the eigenvalue spectrum λ(k) is linearly-

related to the input power spectrum jĈ in
0
ðkÞj2 where C

in
0
ðxÞ ≔ GðjxjÞ is an input tuning

curve centered at the origin 0 ≔ (0, 0) (Sec Input correlation for spatially-regular inputs).

Here, in analogy to Eq 65, we assume that the expected eigenvalue spectrum hλirr(k)i for

spatially-irregular inputs is linearly-related to the expected input power hjĈ in
p ðkÞj

2
i, that is,

hlirrðkÞi � r
Wtot

L2
hjĈ in

p ðkÞj
2
i~K spðkÞ � a with k 6¼ 0 ð66Þ

where Ĉ in
p ðkÞ is the two-dimensional Fourier transform of the spatially-irregular tuning curve

C
in
p ðxÞ, and the angular brackets denote statistical expectation across input realizations (see Eq

56 for a definition of the two-dimensional Fourier transform). The validity of this assumption

is confirmed numerically at the end of this section.

Let us compute the expected input power spectrum hjĈ in
p ðkÞj

2
i. We recall that the input

maps C
in
p ðxÞ are obtained by the superimposing M Gaussian receptive fields (Eq 10)

C
in
p ðxÞ ≔

1

bp

XM

m¼1

Apm Gðjx � rpmjÞ for p ¼ 1; 2; . . . ;N ð67Þ

with

GðrÞ ¼ð9Þ
L2rav

2ps2
exp �

r2

2s2

� �

and bp ≔
XM

m¼1

Apm : ð68Þ

The field amplitudes Apm� 0 are uniformly distributed in the range (0, 1), and the receptive

field centers rpm are uniformly distributed in the environment (see Fig 9A for examples). From

Eq 67 we derive

jĈ in
p ðkÞj ¼

2p

bp

~GðkÞ
�
�
�
�

XM

m¼1

Apm expð� 2pj rpm � kÞ

�
�
�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼: ap

ð69Þ

where ~GðkÞ is the zeroth-order Hankel transform of the Gaussian function GðrÞ. In deriving

Eq 69, we used the shift property of the Fourier transform and the equivalence between the

Fourier and the zeroth-order Hankel transforms for circularly-symmetric functions (Eq 58).
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Finally, from Eq 69 we obtain

hjĈ in
p ðkÞj

2
i ¼ 4p2 ~G 2ðkÞF with F ≔

�
a2
p

b
2

p

�

: ð70Þ

Therefore, for spatially-irregular inputs, the expected power spectrum hjĈ in
p ðkÞj

2
i is propor-

tional to the power spectrum 4p2 ~G 2ðkÞ of a single Gaussian G with scale factor F� 0. Note

that for |k| = 0 we obtain F = 1 (Eqs 69 and 70), which means that the average rate rav is inde-

pendent of the number M of input receptive fields and their specific spatial arrangement.

Using Eq 70 in Eq 66 yields

hlirrðkÞi � r
Wtot

L2
4p2 ~G2ðkÞ~K spðkÞF � a with k 6¼ 0 : ð71Þ

Finally, from Eqs 65 and 71 we find (Eq 33)

hlirrðkÞi � FlðkÞ þ að1 � FÞ : ð72Þ

In the next section we estimate the scale factor F for |k| > 0.

Approximation of the scale factor F. The scale factor

F ≔
ð70Þ

�
a2
p

b
2

p

�

ð73Þ

is the second moment of the ratio of the random variables

ap ≔
ð69Þ

�
�
�
�

XM

m¼1

Apm expð� 2pj rpm � kÞ
�
�
�
� and bp ≔

ð68Þ XM

m¼1

Apm ð74Þ

where the field amplitudes Apm� 0 are independently and uniformly distributed in the range

(0, 1) and the field centers rpm are independently and uniformly distributed in a square of side-

length L.

In general, for two random variables x and y, the first order Taylor expansion of the ratio

f(z) = x/y around the expected value μ≔ (hxi, hyi) is

f ðzÞ ¼ f ðμÞ þ fxðμÞDx þ fyðμÞDy þ oðD2

xÞ þ oðD2

yÞ þ oðDxDyÞ ð75Þ

where z ≔(x, y), Δx≔ x − hxi, Δy≔ y − hyi, and fx and fy are the derivatives of f with respect to

x and y. Therefore

Var
x
y

� �

¼ h½f ðzÞ � f ðμÞ�2i ¼ f 2
x ðμÞVar ðxÞ þ f 2

y ðμÞVar ðyÞþ

2fxðμÞfyðμÞCov ðx; yÞ þ
X4

k¼0

oðhDk
xD

4� k
y iÞ :

ð76Þ

By neglecting the higher-order joint moments
P4

k¼0
oðhDk

xD
4� k
y iÞ and substituting fx(μ) = 1/hyi

and fy(μ) = −hxi/hyi2 we obtain

Var
x
y

� �

�
hxi2

hyi2
Var ðxÞ
hxi2

þ
Var ðyÞ
hyi2

� 2
Cov ðx; yÞ
hxihyi

" #

ð77Þ
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and

�
x2

y2

�

�
hxi2

hyi2
hx2i

hxi2
þ
hy2i

hyi2
� 2

Cov ðx; yÞ
hxihyi

� 1

" #

: ð78Þ

In the following, we use Eq 78 to approximate the scale factor F (Eq 73).

We start by giving an intuitive interpretation of the random variables αp and βp. Consider a

M-steps random walk on the complex plane with random directions rpm � k and random step

sizes Apm. The coefficients αp measure the total distance traveled by the random walker, and

the coefficients βp measure the total length of the path (Eq 74). Note that the larger the number

of steps M, the smaller is the correlation between the distance traveled αp and the total path

length βp, i.e., |Cov(αp, βp)|� 1 for M� 1. In this case we can neglect the covariance term in

Eq 78, and the factor F is approximated by knowing only the first two moments of the distri-

butions of αp and βp.
For |k| > 1/L, the random directions rpm � k (mod 1) are approximately uniformly distrib-

uted in the range (0, 1). In this case, the traveled distance αp follows a Rayleigh distribution

with density [149]

f ðapÞ ¼
2ap

MhA2
pmi

exp �
a2
p

MhA2
pmi

 !

ð79Þ

where hA2
pmi ¼ 1=3 for Apm uniformly distributed in interval (0, 1). Therefore, the first two

moments of αp read

hapi ¼

ffiffiffiffiffiffiffiffi
Mp

12

r

and ha2
pi ¼

M
3
: ð80Þ

The total path length βp is the sum of M random variables uniformly distributed in (0, 1),

which follows an Irwin-Hall distribution. Therefore, the first two moments of βp are

hbpi ¼
M
2

and hb
2

pi ¼
M þ 3M2

12
: ð81Þ

Finally, by using Eqs 80 and 81 in Eq 73 we obtain

FðMÞ �
p

3M
4

p
þ

1

3M

� �

for M > 1 and jkj > 1=L ð82Þ

�
4

3M
for M > 3 and jkj > 1=L : ð83Þ

Fig 10A shows the scale factor F as a function of the number M of superimposed Gaussian

fields (Eq 82). Note that the approximation is more accurate for large values of M, which corre-

spond to lower values of |Cov(αp, βp)|. Fig 10B shows the largest eigenvalue in the system as a

function of M. The good match between the theoretical curve and the numerical estimations

supports the validity of Eq 66. Additionally, Eq 66 predicts that, irrespectively of the value of

M, the largest eigenvalue λmax = λ(kmax) is always at the critical frequency of kmax = 3 m−1 for σ
= 6.25 cm and τL = 0.16 s, which matches the numerical results in Fig 9.

Pattern formation with after-spike potentials

Here we study whether grid-like patterns could emerge by means of after-spike hyperpolariz-

ing potentials (see discussion in Sec Spike-rate adaptation). To this end, we consider a model
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of the output neural activity that is alternative to the one presented in the main text (Sec

Model of neural activity, Eq 1). We model input post-synaptic potentials (PSPs) with a kernel

Kin applied to the input spike trains Sin
j , and we model output after-spike hyperpolarizing

potentials (AHPs) with a kernel Kout applied to the output spike train Sout:

routðtÞ ≔ r0 þ

Z 1

0

ds KoutðsÞSoutðt � sÞ þ
Z 1

0

dtK inðtÞ
XN

j¼1

; wjS
in
j ðt � tÞ ð84Þ

where r0� 0 is a baseline firing rate.

First, we show that the average dynamics of Eq 84 can be rewritten in terms of an equivalent

kernel Keq applied to the input spikes only. We average Eq 84 across input and output spike

train realizations:

hroutðtÞi ¼ r0 þ

Z 1

0

ds KoutðsÞhroutðt � sÞi þ
Z 1

0

dtK inðtÞ
XN

j¼1

wjr
in
j ðt � tÞ : ð85Þ

And by taking the Fourier transform

f̂ ðoÞ ≔
Z

dt f ðtÞ expð� jotÞ ; f ðtÞ ¼
1

2p

Z

do f̂ ðoÞ expðjotÞ ð86Þ

at both sides of Eq 85 we obtain

hr̂outðoÞi ¼ r0dðoÞ þ
K̂ inðoÞ

1 � K̂ outðoÞ

XN

j¼1

wjr̂
in
j ðoÞ : ð87Þ

From Eqs 85 to 87 we assumed that the input and the output kernels are causal, i.e., Kin,out(t) =

0 for t< 0, and that the output kernel has integral different from 1, i.e.,

Fig 10. Scale factorΦ and largest eigenvalue λmax for spatially-irregular inputs. (A) The scale factorΦ for M > 1

superimposed fields (Eq 70). The black dots are obtained by estimating the power spectrum at frequency |k| = 1 m−1 for 3600 input

realizations. The red line is the theoretical curve in Eq 82. (B) The largest eigenvalue λmax as a function of the number of

superimposed fields M. The black dots are obtained by computing the eigenvalues of the correlation matrix Cij − aδij for N = 3600

inputs, where δij is the Kronecker delta (Eq 21). The red line is obtained from Eqs 71 and 82. Note that, according to Eq 71, the

largest eigenvalue is always at the critical frequency kmax = 3 m−1 for any value of M. Parameter values as in Fig 9 (see Sec

Numerical simulations).

https://doi.org/10.1371/journal.pcbi.1005782.g010

A single-cell spiking model for the origin of grid-cell patterns

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005782 October 2, 2017 29 / 41

https://doi.org/10.1371/journal.pcbi.1005782.g010
https://doi.org/10.1371/journal.pcbi.1005782


K̂ outð0Þ ¼
R1

0
dt KoutðtÞ 6¼ 1. Finally, by defining the equivalent filter

K̂ eqðoÞ ≔
K̂ inðoÞ

1 � K̂ outðoÞ
; ð88Þ

the inverse Fourier transform of Eq 87 reads

hroutðtÞi ¼ r0 þ

Z 1

0

dtKeqðtÞ
XN

j¼1

wjr
in
j ðt � tÞ ; ð89Þ

which is equivalent to Eq 15 with Keq = K.

Next, we compute the equivalent filter Keq for a simple choice of the input and output ker-

nels

K inðtÞ ≔
1

tin
exp �

t
tin

� �

for t � 0

0 for t < 0

8
><

>:
ð90Þ

and

KoutðtÞ ≔
�

mout

tout
exp �

t
tout

� �

for t � 0

0 for t < 0

8
><

>:
ð91Þ

where τin, τout > 0 are decay time constants, and the parameter μout > 0 scales the integral of

the output kernel
R1

0
dt KoutðtÞ ¼ � mout. We assume that the input kernel Kin (modeling an

incoming PSP) decays faster than the output kernel Kout (modeling an output AHP), i.e.,

τin < τout. From the definition of the filter Keq in Eq 88 we obtain

K̂ eqðoÞ ¼
1=tin

1=tin � ð1þ moutÞ=tout

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ H

1=tin � 1=tout

1=tin þ jo
�

mout=tout

ð1þ moutÞ=tout þ jo

� �

ð92Þ

where we used

K̂ inðoÞ ¼
1=tin

1=tin þ jo
and K̂ outðoÞ ¼ �

mout=tout

1=tout þ jo
: ð93Þ

Finally, the inverse Fourier transform of Eq 92 reads

KeqðtÞ ¼ H �
1

tin
�

1

tout

� �

exp �
t

tin

� �

�
mout

tout
exp �

t
tout=ð1þ moutÞ

� �� �

ð94Þ

for t� 0 and Keq(t) = 0 for t< 0. Eq 94 shows that the equivalent filter Keq is a difference of

two exponentials, similarly to the kernel K in Eq 2. Note however that the two exponentials are

scaled differently as compared to the original filter K. Additionally, if the integral of the output

kernel is negative, the integral of the equivalent filter is always positive (Eq 88 with ω = 0).

To test whether spatially-periodic patterns could still emerge in this scenario, we compute

the eigenvalue spectrum λ(k) and the critical spatial frequency kmax by using Eqs 31 and 32

with K = Keq. Surprisingly, we find that typical grid scales (e.g., kmax > 2 m−1) are obtained for

output-kernel time constants of the order of seconds, which seem biologically unrealistic (Fig

11). Therefore, we conclude that AHPs alone are not sufficient to generate grid-like patterns.
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Nevertheless, AHPs could still support structure formation by amplifying the effects of a band-

pass filter that is already present at the input.

Numerical simulations

Model parameters and derived quantities are summarized in Tables 1 and 2.

Simulation of the detailed spiking model. The detailed spiking model (Figs 5 and 6) is

simulated using the Brian2 simulation software [150]. Neural and synaptic variables are inte-

grated with a time step of 1 ms. The random walk of the virtual rat that is updated every 10 ms.

The physical space explored by the virtual rat is discretized in 2002 square bins.

Simulation of the averaged weight dynamics. The average weight dynamics (Eq 16) is

integrated by using the forward Euler method with integration time step of 50 s (Figs 7–9).

The input correlation matrix C is computed using Eq 54 for spatially-regular inputs, and using

Eq 21 for spatially-irregular inputs.

Initialization of the synaptic weights. At the initial condition the synaptic weights are

normally distributed around the target normalization level w1av ¼ 5 � 10� 3. The standard devia-

tion is 10−4 for the spiking simulations and 10−3 for the average weight dynamics.

Data analysis

Grid properties. We compute the grid spatial scale from the two-dimensional Fourier

amplitude of the grid pattern. We estimate the radial amplitude profile by averaging over the

angular dimension. We then define the grid scale as the frequency where the amplitude profile

has a global maximum.

The grid orientation is estimated from the spatial auto-correlogram of the grid pattern. We

detect the peak closest to the center in the first quadrant of the auto-correlogram. We then

define the grid orientation as the angle between the detected peak and the horizontal axis.

Fig 11. Grid scale with after-spike hyperpolarizing potentials. The critical spatial frequency kmax is plotted

as a function of the output-kernel integral −μout and the output-kernel time constant τout (Eqs 31 and 32 with K

= Keq). The black lines are iso-levels (see annotated values). Regions enclosed by two adjacent iso-lines are

colored uniformly (darker colors denote larger values). The input-kernel time constant is τin = 5 ms. Similar

results are obtained with different values of τin < τout. Parameter values: σ = 6.25 cm, v = 0.25 m/s, L = 1 m. rav

= 0.4 s−1.

https://doi.org/10.1371/journal.pcbi.1005782.g011
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We define the grid spatial phase as the position of the closest peak to the center in the cross-

correlation between the grid pattern and a reference grid at the same scale.

Gridness score. We estimate the gridness score similarly to Langston et al. [135]. First, we

compute the spatial auto-correlogram of the weight (or firing-rate) pattern and we retain only

points within a ring of outer radius Ri and inner radius Ri/2. We then compute the gridness

score gi as

gi ≔
1

2
rið60Þ þ rið120Þ½ � �

1

3
rið30Þ þ rið90Þ þ rið150Þ½ � ð95Þ

where ρi(φ) is the Pearson’s correlation coefficient between the original ring (of outer radius

Ri) and the same ring rotated by φ degrees. The final gridness score is defined as the maximum

gi by varying the outer radius Ri between 0.7/kmax and 2.5/kmax where kmax is the spatial fre-

quency of the pattern.

Estimation of output firing-rate maps. The output firing-rate maps Cout in Fig 9B are

computed as follows:

C
out
ðxÞ ¼ r0 þ

Z

dyKspðjyjÞ
XN

i¼1

wiC
in
i ðx � yÞ ð96Þ

where r0 is the baseline firing rate, wi are the synaptic weights at the end of the simulation, C
in
i

Table 1. Model parameters.

Neural activity

N Number of synaptic inputs

r0 [s−1] Baseline rate of the output neuron

τS [s] Adaptation kernel short time constant

τL [s] Adaptation kernel long time constant

μ Adaptation kernel scaling parameter

Spatial exploration

L [m] Side-length of the arena

v [m/s] Running speed of the virtual rat

σθ Standard deviation of running directions

Input spatial tuning

rav [s−1] Average input rate in the arena

σ [m] Width of the input receptive fields

M Number of receptive fields per neuron (spatially-irregular inputs)

Synaptic plasticity

η Learning rate

τW [s] Decay time constant of the learning window W

Wtot [s] Integral of the learning window W

α Multiplicative weight-normalization constant

β Additive weight-normalization constant

Derived quantities

a [s−1] Multiplicative weight-normalization rate

b [s−1] Additive weight-normalization rate

λmax [s−1] Maximal eigenvalue

w1av Average synaptic weight

τav [s] Weight normalization time scale

τstr [s] Structure formation time scale

https://doi.org/10.1371/journal.pcbi.1005782.t001
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are the input spatial maps, and Ksp is the equivalent adaptation kernel in space (Eq 31). The

convolution with the filter Ksp accounts for the average effect of the temporal kernel K on the

output firing rate.
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83. Mizuseki K., Royer S., Diba K., and Buzsáki G. Activity dynamics and behavioral correlates of CA3

and CA1 hippocampal pyramidal neurons. Hippocampus, 22(8):1659–1680, 2012. https://doi.org/10.

1002/hipo.22002 PMID: 22367959

A single-cell spiking model for the origin of grid-cell patterns

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005782 October 2, 2017 37 / 41

https://doi.org/10.1152/jn.00453.2006
https://doi.org/10.1007/s00422-013-0581-3
https://doi.org/10.1007/s00422-013-0581-3
http://www.ncbi.nlm.nih.gov/pubmed/24577877
https://doi.org/10.7554/eLife.10094
https://doi.org/10.7554/eLife.10094
http://www.ncbi.nlm.nih.gov/pubmed/26952211
https://doi.org/10.1103/PhysRevLett.119.038101
http://www.ncbi.nlm.nih.gov/pubmed/28777606
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1046/j.1460-9568.1998.00162.x
http://www.ncbi.nlm.nih.gov/pubmed/9749802
https://doi.org/10.1371/journal.pone.0073904
http://www.ncbi.nlm.nih.gov/pubmed/24069244
https://doi.org/10.1038/383076a0
http://www.ncbi.nlm.nih.gov/pubmed/8779718
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.275.5297.213
http://www.ncbi.nlm.nih.gov/pubmed/8985014
https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.1038/78829
http://www.ncbi.nlm.nih.gov/pubmed/10966623
https://doi.org/10.1073/pnas.0509856103
https://doi.org/10.1016/S0896-6273(00)80624-8
http://www.ncbi.nlm.nih.gov/pubmed/9856462
https://doi.org/10.1038/32176
http://www.ncbi.nlm.nih.gov/pubmed/9510251
https://doi.org/10.1038/36103
https://doi.org/10.1038/36103
http://www.ncbi.nlm.nih.gov/pubmed/9495341
https://doi.org/10.1038/nrn1327
http://www.ncbi.nlm.nih.gov/pubmed/14735113
https://doi.org/10.1038/381425a0
https://doi.org/10.1002/hipo.22002
https://doi.org/10.1002/hipo.22002
http://www.ncbi.nlm.nih.gov/pubmed/22367959
https://doi.org/10.1371/journal.pcbi.1005782


84. Solstad T., Boccara C. N., Kropff E., Moser M.-B., and Moser E. I. Representation of geometric bor-

ders in the entorhinal cortex. Science, 322(5909):1865–1868, 2008. https://doi.org/10.1126/science.

1166466 PMID: 19095945

85. Lever C., Burton S., Jeewajee A., O’Keefe J., and Burgess N. Boundary vector cells in the subiculum

of the hippocampal formation. J. Neurosci., 29(31):9771–9777, 2009. https://doi.org/10.1523/

JNEUROSCI.1319-09.2009 PMID: 19657030

86. Reifenstein E., Stemmler M., Herz A. V., Kempter R., and Schreiber S. Movement dependence and

layer specificity of entorhinal phase precession in two-dimensional environments. PloS One, 9(6):

e100638, 2014b. https://doi.org/10.1371/journal.pone.0100638

87. Murray J. D. Mathematical Biology I: an introduction, Vol. 17 of Interdisciplinary Applied Mathematics.

Springer, New York, NY, USA, 2002.

88. D’Albis T., Jaramillo J., and Kempter R. Inheritance of place fields in the hippocampus through Heb-

bian learning. Neural Comput., 27:1624–1672, 2015. https://doi.org/10.1162/NECO_a_00752 PMID:

26079752

89. Ermentrout G. B. and Cowan J. D. A mathematical theory of visual hallucination patterns. Biol.

Cybern., 34(3):137–150, 1979. https://doi.org/10.1007/BF00336965 PMID: 486593

90. Jung M. W., Wiener S. I., and McNaughton B. L. Comparison of spatial firing characteristics of units in

dorsal and ventral hippocampus of the rat. J. Neurosci., 14(12):7347–7356, 1994. PMID: 7996180

91. Fyhn M., Molden S., Witter M. P., Moser E. I., and Moser M.-B. Spatial representation in the entorhinal

cortex. Science, 305(5688):1258–1264, 2004. https://doi.org/10.1126/science.1099901 PMID:

15333832

92. Kjelstrup K. B., Solstad T., Brun V. H., Hafting T., Leutgeb S., Witter M. P., Moser E. I., and Moser M.-

B. Finite scale of spatial representation in the hippocampus. Science, 321(5885):140–143, 2008.

https://doi.org/10.1126/science.1157086 PMID: 18599792

93. Stensola H., Stensola T., Solstad T., Frøland K., Moser M.-B., and Moser E. I. The entorhinal grid map

is discretized. Nature, 492(7427):72–78, 2012. https://doi.org/10.1038/nature11649 PMID: 23222610

94. Giocomo L. M., Zilli E. A., Fransén E., and Hasselmo M. E. Temporal frequency of subthreshold oscil-

lations scales with entorhinal grid cell field spacing. Science, 315(5819):1719–1722, 2007. https://doi.

org/10.1126/science.1139207 PMID: 17379810

95. Giocomo L. M. and Hasselmo M. E. Time constants of h current in layer II stellate cells differ along the

dorsal to ventral axis of medial entorhinal cortex. J. Neurosci., 28(38):9414–9425, 2008. https://doi.

org/10.1523/JNEUROSCI.3196-08.2008 PMID: 18799674

96. Garden D. L., Dodson P. D., O’Donnell C., White M. D., and Nolan M. F. Tuning of synaptic integration

in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron, 60(5):875–889,

2008. https://doi.org/10.1016/j.neuron.2008.10.044 PMID: 19081381

97. Pastoll H., Ramsden H., and Nolan M. F. Intrinsic electrophysiological properties of entorhinal cortex

stellate cells and their contribution to grid cell firing fields. Front. Neural Circuits, 6:17, 2012. https://

doi.org/10.3389/fncir.2012.00017 PMID: 22536175

98. Heys J. G., Rangarajan K. V., and Dombeck D. A. The functional micro-organization of grid cells

revealed by cellular-resolution imaging. Neuron, 84(5):1079–1090, 2014. https://doi.org/10.1016/j.

neuron.2014.10.048 PMID: 25467986

99. Krupic J., Bauza M., Burton S., Barry C., and O’Keefe J. Grid cell symmetry is shaped by environmen-

tal geometry. Nature, 518(7538):232, 2015. https://doi.org/10.1038/nature14153 PMID: 25673417

100. Stensola T., Stensola H., Moser M.-B., and Moser E. I. Shearing-induced asymmetry in entorhinal grid

cells. Nature, 518(7538):207–212, 2015. https://doi.org/10.1038/nature14151 PMID: 25673414

101. Urdapilleta E., Si B., and Treves A. Self-organization of modular activity of grid cells. Hippocampus,

pages n/a–n/a, 2017.

102. Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J. L., Roudi Y., Moser E. I., and

Moser M.-B. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci., 16(3):309–317,

2013. https://doi.org/10.1038/nn.3311 PMID: 23334581

103. Tamamaki N. and Nojyo Y. Preservation of topography in the connections between the subiculum,

field CA1, and the entorhinal cortex in rats. J. Comp. Neurol., 353(3):379–390, 1995. https://doi.org/

10.1002/cne.903530306 PMID: 7538515
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