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Abstract

Computational models have earned broad acceptance for assessing chemical toxicity during early 

stages of drug discovery or environmental safety assessment. The majority of publicly available 

QSAR toxicity models have been developed for datasets including mostly drugs or drug-like 

compounds. We have evaluated and compared chemical spaces occupied by cosmetics, drugs, and 

pesticides, and explored whether current computational models of toxicity endpoints can be 

universally applied to all these chemicals. Our analysis of the chemical space overlap and 

applicability domain (AD) of models built previously for twenty different toxicity endpoints 

showed that most of these models afforded high coverage (>90%) for all three classes of 

compounds analyzed herein. Only T. pyriformis models demonstrated lower coverage for drugs 

and pesticides (38% and 54%, respectively). These results show that, for the most part, historical 

QSAR models built with data available for different toxicity endpoints can be used for toxicity 

assessment of novel chemicals irrespective of the intended commercial use; however, the AD 

*Address for correspondence: 100K Beard Hall, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 
27599, USA; Telephone: (919) 966-2955; FAX: (919) 966-0204; alex_tropsha@unc.edu. 

Supplementary material
Supplementary materials are available online; these include curated chemical datasets for cosmetics, drugs, and pesticides, predictions 
along with AD estimation, and chemical clusters.

Conflict of interests
The authors declare no actual or potential conflict of interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Food Chem Toxicol. Author manuscript; available in PMC 2019 February 01.

Published in final edited form as:
Food Chem Toxicol. 2018 February ; 112: 526–534. doi:10.1016/j.fct.2017.04.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



restriction is necessary to assure the expected prediction accuracy. Local models may need to be 

developed to capture chemicals that appear as outliers with respect to global models.
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Distribution of cosmetics, drugs, and pesticides in the chemical space.
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1 Introduction

Chemical toxicity assessment is a critical point in regulatory decision making concerning the 

release of drugs or industrial chemicals into production, which enables their human or 

environmental exposure (Parasuraman, 2011). There exists also a variety of natural and 

synthetic substances that are exposed to humans and/or the environment that have never 

been evaluated in any toxicity testing protocol (Chuprina et al., 2010; Egeghy et al., 2012). 

Over the years, the society has tolerated the use of animals in laboratory toxicity testing. 

However, in recent years, there has been an increased pressure on scientists and regulatory 

agencies to replace potentially hazardous chemicals by safer alternatives (Collins, 2003; 

Schulte et al., 2013). In addition, there has been a strong push on the part of both regulatory 

agencies such as FDA and EPA in the United States and their counterparts around the world 

to avoid animal testing of every chemical as such testing has become increasingly 

unsustainable in terms of both cost and time needed to conduct animal trials (Burden et al., 

2015).

The development of the alternative in vitro and in silico approaches has been encouraged 

and supported by both NIH and EPA through large-scale programs such as ToxCast project 

(Dix et al., 2007) and the Tox21 consortium (Tice et al., 2013). Similar programs such as 

Endocrine Disruptors Prioritization List (http://ec.europa.eu/environment/chemicals/

endocrine/index_en.htm) and the priority substances for water safety (European Union, 

2013) have been funded by the European Union. Since the acceptance of Registration, 

Evaluation, Authorization, and Restriction of Chemicals (REACH) legislation in 2006 by the 

European Union (European Union, 2007; Nicolotti et al., 2014), the use of structural alerts 

and statistical QSAR models (often collectively referred to as (Q)SAR) have become a 

major computational approach to chemical safety assessment and regulatory decision 

support.
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The majority of publicly available models for toxicity prediction have been built for drugs or 

drug candidates (Benfenati et al., 2009; Melnikov et al., 2016) or environmental chemicals 

(Naven and Louise-May, 2015). In contrast, computational toxicity models for another large 

group of industrial chemicals, namely cosmetics products have been developed to a much 

lesser extent as the animal testing has been used as a preferred approach. However, with 

recent regulations banning the use of animals for testing of the cosmetics products 

(European Commission, 2013), there has been a resurgence of interest in employing 

computational models for their toxicity assessment (Bois et al., 2016; Cronin et al., 2012).

Naturally, a question can be posed as to whether toxicity prediction models built for 

environmental chemicals or drug molecules could be employed for the cosmetics products. 

The answer to this question depends on the overlap of the chemical spaces occupied by 

cosmetics, drugs, and environmental chemicals and the size of the applicability domain 

(AD) of the respective models. AD is commonly defined as the threshold of similarity 

between a new chemical and molecules in the training set used to develop the respective 

QSAR model (Netzeva et al., 2005; Tropsha, 2010; Tropsha and Golbraikh, 2007); only 

predictions for new molecules within the AD of QSAR models, i.e., relatively similar to the 

modeling set are considered reliable. Importantly, the size of the AD is fully defined by the 

size and diversity of the modeling set and the computational method used to develop QSAR 

models. For instance, it is known that the chemical space of drugs has been changing over 

the past few decades (Deng et al., 2013) creating a challenge for “old” models’ ability to 

evaluate new compounds. The applicability of current models to many new compounds was 

also questioned due to limited size and diversity of data available publicly for model 

building (Kulkarni et al., 2016).

The considerations above capture both significant advantages and challenges associated with 

the idea of using models developed with one group of industrial chemicals to evaluate 

toxicity of another group. Obvious advantages deal with significant savings in time and 

effort afforded by the opportunity to use previously developed models of multiple toxicity 

endpoints relevant to drugs and/or environmental chemicals (e.g., pesticides) to evaluate 

toxicity of cosmetic products. However, since chemicals used in different areas of commerce 

such as drug, chemical, or cosmetic industries are developed with very different applications 

in mind, there is no a priori reason to expect that their respective chemical spaces overlap. 

Taking the issue of the AD into account, investigations into studying the degree of such 

overlap and the applicability of models developed for one group of chemicals to predict 

toxicity of another group are potentially highly impactful for the respective industries, 

especially, cosmetics. To the best of our knowledge, such investigations have not been 

conducted in the public domain with large groups of industrial chemicals.

Herein, we have aimed to compare chemical spaces occupied by cosmetics, drugs, and 

pesticides, and analyze whether current computational models of different toxicity endpoints 

can be universally applied to all chemicals. To achieve these aims, we have (i) compiled, 

curated, and integrated chemical structures of known cosmetics, drugs, and pesticides; (ii) 

analyzed the distribution of these compounds in chemical space and estimated the structural 

similarity between the datasets; (iii) performed cluster analysis followed by toxicity 

annotation comparison for structurally similar compounds in the same clusters; (iv) 
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predicted toxicities of investigated compounds with QSAR models for endpoints developed 

by us earlier; (v) and analyzed the coverage of these models separately for drugs, cosmetics, 

and pesticides. We observed that, with some exceptions, the majority of compounds in all 

three groups of industrial chemicals were found within the AD of QSAR models built 

previously for twenty different toxicity endpoints. These findings open the door for the 

development and employment of global toxicity models applicable to the majority of 

chemicals in commerce while suggesting the need to develop local models that could 

capture AD outliers of the global models.

2 Materials and methods

2.1 Datasets

2.1.1 Cosmetic ingredients (Dataset A)—The cosmetics ingredients were retrieved 

from the CosIng, European Commission database for information on cosmetic substances 

and ingredients (https://ec.europa.eu/growth/sectors/cosmetics/cosing_en). This dataset 

included 5,166 chemical records with a defined chemical structure. After curation (vide 
infra), 3,930 unique chemical substances were kept for this study.

2.1.2 Drugs (Dataset B)—We retrieved 7,000 chemical records from the 2014 Leadscope 

Marketed Drugs (http://www.leadscope.com/marketed_drugs_database/). After curation, 

4,671 unique chemical substances were kept for this study.

2.1.3 Pesticides (Dataset C)—We retrieved 3,001 chemical records from the EPA’s 

Pesticide Product Information System Database (https://www.epa.gov/ingredients-used-

pesticide-products/ppis-download-product-information-data). After curation, 2,044 unique 

chemical substances were kept for this study.

2.2 Data curation

The datasets were thoroughly curated using the workflows proposed by our group earlier 

(Fourches et al., 2016, 2015, 2010). Briefly, specific chemotypes such as aromatic and nitro 

groups as well as double bonds were normalized, and absolute stereo configurations 

removed using the ChemAxon Standardizer (v.16.10.24.0, ChemAxon, Budapest, Hungary, 

http://www.chemaxon.com). Polymers, substances with undefined chemical substructure, 

and substances with molecular weight above 1,000 DA were removed. Counterions, 

inorganic salts, organometallic compounds, and mixtures were removed. After structural 

standardization, the duplicates were identified with HiT QSAR software (Kuz’min et al., 

2008) and carefully analyzed. Within the same dataset, only one record was kept and all 

duplicates were eliminated. The entire collection (datasets A, B, and C) comprised 9,785 

unique chemical compounds. As one can see in Figure 1, 99 compounds were 

simultaneously labeled as cosmetics, drug, and pesticide; 220 were labeled as cosmetics and 

drugs; 270 were labeled as cosmetics and pesticides; 172 were labeled as drugs and 

pesticides; 3,341 compounds were labeled only as cosmetics; 4,180 were labeled only as 

drugs; and 1,503 were labeled only as pesticides.
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2.3 Molecular descriptors

We have calculated the same molecular descriptors as in our previously built QSAR models 

of toxicity endpoints used in this study (see Table 1 for more detailed information about 

descriptors, models, and respective references). Majority of the models were built using 

DRAGON descriptors (Talete SRL, 2007). hERG models were built using Morgan 

fingerprints and human skin sensitization models were developed with whole-molecule 

descriptors and QNA (quantitative neighborhoods of atoms) descriptors calculated in 

GUSAR software (Filimonov et al., 2009). Daphnia magna and fathead minnow models 

were built using whole-molecule, QNA, and “biological” descriptors, which represent 

multiple bioactivity predictions by the PASS (prediction of activity spectra of substances) 

software (Lagunin et al., 2009). Occasionally, several models based on different types of 

descriptors were built in the same study. We decided to use limited number of descriptor’s 

types per dataset for simplicity.

2.4 Chemical space of cosmetics, drugs, and pesticides

Chemical space formed by Datasets A, B, and C was analyzed by plotting the barycentric 

coordinates of all the 9,785 structures, which were defined by the DRAGON descriptors. 

Barycentric coordinates correspond to the location of the points of a simplex (a triangle, 

tetrahedron, etc.) in the space, defined by the vertices (Vityuk et al., 1999). In this case, a 

simplex is defined by all the DRAGON descriptors of a particular chemical substance. 

Barycentric coordinates were determined using Methods of Data Analysis module of HiT 

QSAR software (Kuz’min et al., 2008). In addition, a similarity map was generated using 

OSIRIS DataWarrior software (Sander et al., 2015).

2.5 How well does the applicability domain of toxicity QSAR models cover cosmetics, 
drugs, and pesticides?

We have assessed if Datasets A, B, and C were inside the AD of QSAR models built 

previously. The ADs were calculated as Dcutoff=<D>+Zs, where Z is a similarity threshold 

parameter defined by a user (0.5 in this study), and <D> and s are the average and standard 

deviation, respectively, of all Euclidian distances in the multidimensional descriptor space 

between each compound and its nearest neighbors for all compounds in the training set 

(Golbraikh et al., 2003; Tropsha and Golbraikh, 2007). This analysis involved datasets used 

to build models for Ames mutagenicity (Sushko et al., 2010), aquatic toxicity (Daphnia 
magna, fathead minnow (Zakharov et al., 2014), and Tetrahymena pyriformis (Zhu et al., 

2008)), hepatotoxicity (Low et al., 2011), hERG (Braga et al., 2015), and human (Alves et 

al., 2016) and murine (Alves et al., 2015a) skin sensitization. In addition, twelve stress 

response and nuclear receptor signaling pathways toxicity datasets used to generate QSAR 

models published by our group as part of the 2014 Tox21 Challenge (Capuzzi et al., 2016) 

were used as well. These respective endpoints included androgen receptor (AR), androgen 

receptor-ligand binding domain (AR_LBD), aromatase, aryl hydrocarbon receptor (AhR), 

ATPase family AAA Domain-containing 5 (ATAD5); estrogen receptor alpha-full (ER), 

estrogen receptor alpha-ligand binding domain (ER_LBD), peroxisome proliferator-

activated receptor gamma (PPAR-gamma), nuclear factor (erythroid-derived 2)-like 2/
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antioxidant responsive element (ARE), heat shock factor response element (HSE), 

mitochondrial membrane potential (MMP), and tumor suppressor p53.

2.6 Cluster analysis

Chemical clusters were generated by the Sequential Agglomerative Hierarchical Non-

overlapping method implemented in the ISIDA/Cluster software (Varnek et al., 2008). 

Briefly, the software generates a dendrogram of the parent-child relationships between 

clusters and a heat map of the proximity matrix colored according to the pairwise chemical 

similarity between compounds. To better visualize the clusters, the distance matrix of the 

9,785 compounds from datasets A, B, and C was calculated and the compounds were 

clustered into 100 clusters. A stratified sample containing 500 compounds representative of 

all clusters was taken, with similar proportion of cosmetics, drugs, and pesticides. Then, 500 

compounds from the training sets of QSAR models analyzed in this study were randomly 

selected. The total clustering set was composed of 1000 compounds. This method was 

applied to check the structural diversity of compounds in cosmetics, drugs and pesticides 

and whether compounds from training sets of QSAR models, not overlapping with the 

datasets A, B, and C, would cluster with them.

3 Results

3.1 Analysis of chemical space of cosmetics, drugs, and pesticides

A plot of calculated logP (ClogP) vs. molecular weight (MW) is shown in Figure 2. As one 

can see, there is a big overlap between all the industrial classes of compounds, as well as 

with compounds from datasets used to develop historical QSAR models. At higher MW, 

drugs and cosmetics separate from pesticides. Drugs present the same range of ClogP, even 

at higher MW, while cosmetics tend to have higher ClogP, i.e., include compounds with low 

solubility. In Figure 2B, the difference between drugs and pesticides almost disappear albeit 

pesticides are spread more. Most of drugs, cosmetics, and pesticides occupy the space from 

the bottom left to the center. In the top right part of the plot, there is a region of the chemical 

space that is covered mostly by drugs and cosmetics; the number of pesticides is very 

limited there. Apparently, QSAR models based on drugs and cosmetics could also be used to 

predict pesticides, but the opposite may not work for a fraction of drugs and pesticides 

dissimilar from pesticides.

The overlap between QSAR datasets and cosmetics, drug, and pesticides (See Table 2) has 

shown that drugs are well represented in almost all cases, except for aquatic toxicity (D. 
magna, fathead minnow, and T. pyriformis) and skin sensitization (both human and murine) 

datasets. D. magna and fathead minnow predominantly include pesticides, while T. 
pyriformis and skin sensitization predominantly include cosmetics. Hepatotoxicity and 

hERG datasets mainly include drugs and drug-like compounds. Nine out of twenty datasets 

(D. magna, fathead minnow, hepatotoxicity, hERG, AhR, AR_LBD, Aromatase, HSE, and 

MMP) included higher number of pesticides than cosmetics. The other eleven datasets had 

higher number of cosmetics than pesticides.
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The estimation of AD showed that most of the models used in this study provided high 

coverage (>90%) for all three classes of compounds analyzed in this study (see Table 3). 

Only the model for T. pyriformis (Zhu et al., 2008) has shown a big difference between 

cosmetics and drugs and pesticides. In this case, the coverage for cosmetics was 90%, while 

the coverage of drugs and pesticides was significantly smaller (38% and 54%, respectively). 

The fathead minnow model (Zakharov et al., 2014) presented a slightly lower coverage (by 

~9%) for drugs (86.7%), when compared to cosmetics (95%) and pesticides (95.9%). 

Chemical structures of all compounds and toxicity predictions made by all twenty models 

(considering AD restriction) are available in the Supplementary Materials.

The cluster analysis made with 500 representatives of cosmetics, drugs, and pesticides and 

500 compounds from training sets of QSAR models showed high structural diversity (Figure 

3). This analysis was made using a sample containing 500 compounds from the 100 clusters 

produced from the initial dataset containing 9,785 compounds and 500 compounds from 

training sets of QSAR models not overlapping with dataset A, B, and C. The 500 

compounds from training sets spread across all the 27 smaller clusters, revealing an overlap 

of the chemical space (see Supplementary Materials).

4 Discussion

4.1 Compounds simultaneously used as cosmetics, drugs, or pesticides

We shall note that compounds labeled as cosmetics, drugs, and pesticides may not be the 

active ingredients, but rather excipients used in the formulations of final products, e.g., 
mannitol or stearic acid. This explains the big overlap between these three categories. In 

addition, we fully realize that defining these labels as “categories” is an oversimplification, 

since these terms do not reflect chemical classes, but rather their final use. For instance, 

several compounds such as methane, trichloromethane, benzene, urea, formaldehyde, formic 

acid, etc., are related to multiple industrial chemical processes, which may be the reason of 

their multi-labelling. On other hand, there were a few drugs related to pesticides as well. For 

instance, diazepam is used in the treatment of intoxication of organophosphorus ester 

pesticide poisoning (Marrs, 2003). Phenobarbital is indicated to cause insecticide resistance 

in house flies (Hayaoka and Dauterman, 1982) and Aedes aegypti (Sousa-Polezzi and 

Bicudo, 2004). Conversely, difenacoum is labelled as both drug and pesticide. This 

compound is a warfarin analog used as a rodenticide (Feinstein et al., 2016). Apparently, the 

EPA’s Pesticide Product Information System Database includes any chemical associated 

with pesticides. Leadscope Marketed Drugs database comprises the historically marketed 

drug records from FDA and parent compounds of the active ingredients, which explains why 

a few compounds overlapped.

4.2 Overlap between QSAR datasets and cosmetics, drug, and pesticides

Despite the low number of QSAR studies totally focused on cosmetics, our results presented 

on Figure 1 and Table 2 demonstrate that existing QSAR models, in general, could predict 

cosmetic products well. Drugs and drug-like are well-represented in the majority of studied 

models, except for aquatic toxicity and skin sensitization. D. magna and fathead minnow 
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predominantly contain pesticides, while T. pyriformis and both skin sensitization datasets 

mostly contain cosmetics.

It is understandable that D. magna and fathead minnow contain mostly pesticides, since both 

endpoints are related to aquatic toxicity and represent important ecotoxicity assays (EPA, 

2002). On the other hand, it is surprising that most of the compounds for T. pyriformis are 

composed of cosmetics and not of pesticides (see the next section for additional discussion). 

Although our findings show that current QSAR models contains a significant number of 

cosmetics, there is still a lack of QSAR studies focused on this industrial chemical class. 

Recently, our group has extensively studied skin sensitization (Alves et al., 2016, 2015a, 

2015b). Skin sensitization is an autoimmune inflammatory reaction, which is caused by 

topical exposure to chemical allergens (Hennino et al., 2005), therefore, this endpoint has 

high importance to cosmetic industry (Vandebriel and van Loveren, 2010). In addition, the 

animal testing has been completely banned for cosmetics in Europe (European Commission, 

2013), which explains the high number of cosmetics in this dataset.

Surprisingly, despite the fact that drugs are the most common industrial class present in the 

hERG dataset, this analysis showed that the number of drugs with public hERG data was 

very low. The hERG channels have a key hole in the mediating the repolarization of cardiac 

action potential. Its blockage is related to heart arrhythmia and death (Picard et al., 2011). 

This is one of the most important anti-targets to be considered in the early stages of the drug 

development process due to its high ligand promiscuity, mainly due to its large hydrophobic 

intracellular binding pocket and its multiple states (open, inactive, and closed) (Mitcheson et 

al., 2000). As hERG safety testing is a mandatory FDA-required procedure (FDA, 2005a, 

2005b), scientific community would benefit from models developed based on marketed 

drugs.

4.3 Analysis of chemical space of cosmetics, drugs, and pesticides

The analysis of chemical space characterized by all descriptors revealed a huge overlap 

between cosmetics, drugs, and pesticides (Figure 2A–C). The overlap shown in both figures 

indicates that distinguishing these compounds by simple analysis, such as using ClogP and 

MW is impossible, reinforcing the importance of using QSAR models instead. Although 

some regions of chemical space are not covered by pesticides, current global QSAR models 

for toxicity could be used to predict cosmetics, drugs, and pesticides, since most of these 

models were build using drugs or compounds designed to be drugs. Cluster analysis revealed 

high structural diversity and the distribution of the 500 query compounds from training sets 

through all the 27 clusters (see Supplementary Materials).

The low coverage of drugs for T. pyriformis is probably due to the high similarity of 

compounds used to generate this model. Our analysis reveals that T. pyriformis dataset of 

644 compounds contains 161 cosmetics, 9 drugs, 25 pesticides, 5 cosmetics and drugs, 50 

cosmetics and pesticides, 5 drugs and pesticides, and 14 cosmetics, drugs, and pesticides. As 

shown on Figure 4A, compounds in T. pyriformis dataset could be easily clustered. The most 

representative clusters are shown on Figure 4A and C. Cluster 1 contains primary alcohols 

and other mid and long chain compounds; cluster 2 – fatty acids and aldehydes; cluster 3 – 

nitro aromatics; and cluster 4 – halogenated aromatics. Compounds in clusters 1 and 2 are 
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mostly cosmetic products, which is confirmed by the higher similarity with cosmetics that is 

shown on Figure 4B. Cluster 3 and 4 presents high dissimilarity with most compounds 

outside its cluster. The representatives of Clusters 1–4: hexanol (cosmetic), octanoic acid 

(cosmetic), 1,3-dinitrobenzene (explosive), and 2,4-dichloroaniline (pesticide) are shown on 

Figure 4C. As could be seen from there, in general cosmetics, unlike drugs and pesticides, 

are structurally similar to compounds from T. pyriformis dataset, which explains the high 

coverage for cosmetics and low coverage for compounds from two other industrial classes.

Earlier, our group (Golbraikh et al., 2003; Muratov et al., 2010; Tropsha and Golbraikh, 

2007) and others (Gadaleta et al., 2016; Mathea et al., 2016) have demonstrated the 

importance of AD in QSAR modeling. In most of QSAR models used in this study, the use 

of AD resulted in increase of prediction accuracy at the expense of coverage, except skin 

sensitization and hERG models (Alves et al., 2015b; Braga et al., 2015, 2014), where 

significant reduction in coverage was not accompanied by an improvement in the 

predictivity. Thus, we decided to use the model’s coverage of our collection as a measure of 

model’s capability to predict a specific class of industrial chemicals. Our results demonstrate 

(see Table 3) that majority of models provided high (>90%) coverage for all three classes of 

industrial compounds, except for the model for fathead minnow (Zakharov et al., 2014) and 

T. pyriformis (Zhu et al., 2008). Fathead minnow showed a slightly lower coverage for drugs 

(86.7%) than for cosmetics and pesticides (95% and 95.6%, respectively). This dataset 

includes smaller number of drugs (cf. Table 2), which explains the slight reduction in 

coverage. The T. pyriformis model had better coverage for cosmetics (90%) than for drugs 

and pesticides (38% and 54%, respectively). These results allowed us to draw a conclusion 

that most of existing publicly available QSAR models could predict chemical toxicity of 

drugs, pesticides, and cosmetics with similar success.

5 Conclusions

Vast majority of current QSAR models of various toxicity endpoints have been developed to 

predict toxicity of drugs, drug-like compounds, and, less frequently, pesticides, or other 

environmental chemicals. The ability of these models to predict toxicity for another big class 

of industrial chemicals – cosmetics, was not examined previously. The analysis of chemical 

space revealed a huge overlap between cosmetics, drugs, and pesticides. Our results also 

show that drugs and cosmetics are more structurally dissimilar than pesticides. In addition, 

we found that the datasets used for building existing toxicity models contain many drugs, 

while cosmetics and pesticides are less represented. However, the similarity of cosmetics, 

drugs, and pesticides to compounds in QSAR datasets is reasonably high. This is reflected in 

high (>90%) coverage of all three classes of chemicals by all the studied models except T. 
pyriformis. These results allow us to conclude that, because of high structural similarity 

between cosmetics; drugs; and pesticides, publicly available QSAR models of various 

toxicity endpoints (typically built either for drugs or for pesticides) could be successfully 

used to predict respective toxicities for all three classes of industrial chemicals. We posit that 

this conclusion is especially valuable for the cosmetic industry where toxicity modeling has 

been limited in the past but where the demand for alternative, non-animal toxicity testing is 

very high. Thus, our findings provide critical support for reusing existing toxicity models, 

Alves et al. Page 9

Food Chem Toxicol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



irrespective of the classes of compounds they have been developed for, to predict cosmetics’ 

toxicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AD applicability domain

AhR aryl hydrocarbon receptor

AR androgen receptor

ARE nuclear factor (erythroid-derived 2)-like 2/antioxidant 

responsive element

AR_LBD androgen receptor—ligand binding domain

ATAD5 ATPase family AAA Domain containing 5

ClogP calculated logP

ER estrogen receptor alpha—full

ER_LBD estrogen receptor alpha—ligand binding domain

HSE heat shock factor response element

MMP mitochondrial membrane potential

MW molecular weight

PASS prediction of activity spectra of substances

p53 tumor suppressor p53

PPAR-gamma peroxisome proliferator-activated receptor gamma

QNA quantitative neighborhoods of atoms

QSAR quantitative structure-activity relationship
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• The majority of publicly available QSAR models for toxicity endpoints were 

built on datasets consisted mostly of drugs, drug-like compounds, and 

pesticides;

• There is a lack of data for cosmetics and the question we would like to 

address whether current models could be applied for predicting toxicity of 

cosmetics;

• The analysis of chemical space revealed a huge overlap between cosmetics, 

drugs, and pesticides;

• Our results indicate that current QSAR models could be used to predict 

chemical toxicity for cosmetics, drugs, and pesticides.
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Figure 1. 
Distribution of investigated compounds on cosmetics, drugs, and pesticides.
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Figure 2. 
A) Chemical space of investigated compounds defined by ClogP and MW. B) Chemical 

space of investigated compounds in barycentric coordinates obtained from 2D DRAGON 

descriptors. Shadowed area represent the chemical space occupied by compounds from 

datasets used to generate current toxicity QSAR models. Two outliers (coordinates 1631, 

160 and 960, −794) from the training sets of QSAR models are not shown.
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Figure 3. 
Results of cluster analysis of 1,000 compounds including cosmetics, drugs, and pesticides. 

Heatmap and dendrogram of the distance matrix are both colored according to structural 

similarity (blue/violet = similar; yellow/red = dissimilar).
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Figure 4. 
A) Distribution of cosmetics, drugs, pesticides, and T. pyriformis dataset (644 compounds) 

in chemical space. Four clusters of highly similar compounds are highlighted by black 

circles and numbered. B) Distribution of Tanimoto coefficients between industrial 

compounds and their nearest neighbor in the T. pyriformis dataset. C) Representative 

compounds for clusters 1–4.
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Table 1

List of datasets and respective molecular descriptors used in this study to compare the chemical space of 

cosmetics, drugs, and pesticides.

Endpoint Molecular descriptor QSAR modeling reference

Ames mutagenicity DRAGON (Sushko et al., 2010)

Aquatic toxicity

 Daphnia magna Whole-molecule, QNA, and PASS (Zakharov et al., 2014)

 Fathead minnow Whole-molecule, QNA, and PASS (Zakharov et al., 2014)

 Tetrahymena pyriformis DRAGON (Zhu et al., 2008)

Hepatotoxicity DRAGON (Low et al., 2011)

hERG Morgan (Braga et al., 2015)

Skin sensitization (human data) Whole-molecule and QNA (Alves et al., 2016)

Skin sensitization (murine data) DRAGON (Alves et al., 2015a)

AhR, AR, ARE, AR_LBD, aromatase, ATAD5, ER, ER_LBD, HSE, MMP, 
p53, PPAR-gamma

DRAGON (Capuzzi et al., 2016)
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