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Abstract

objective—To build group-level classification models capable of recognizing affective states and 

mental workload of individuals with autism spectrum disorder (ASD) during driving skill training.

Methods—Twenty adolescents with ASD participated in a six-session virtual reality driving 

simulator based experiment, during which their electroencephalogram (EEG) data were recorded 

alongside driving events and a therapist’s rating of their affective states and mental workload. Five 

feature generation approaches including statistical features, fractal dimension features, higher 

order crossings (HOC)-based features, power features from frequency bands, and power features 

from bins (Δf = 2 Hz) were applied to extract relevant features. Individual differences were 

removed with a two-step feature calibration method. Finally, binary classification results based on 

the k-nearest neighbors algorithm and univariate feature selection method were evaluated by leave-

one-subject-out nested cross-validation to compare feature types and identify discriminative 

features.

Results—The best classification results were achieved using power features from bins for 

engagement (0.95) and boredom (0.78), and HOC-based features for enjoyment (0.90), frustration 

(0.88), and workload (0.86).
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Conclusion—Offline EEG-based group-level classification models are feasible for recognizing 

binary low and high intensity of affect and workload of individuals with ASD in the context of 

driving. However, while promising the applicability of the models in an online adaptive driving 

task requires further development.

Significance—The developed models provide a basis for an EEG-based passive brain computer 

interface system that has the potential to benefit individuals with ASD with an affect- and 

workload-based individualized driving skill training intervention.

Index Terms

Virtual reality-based driving simulator; affective computing; mental workload recognition; 
electroencephalogram

I. Introduction

AUTISM spectrum disorder (ASD) is a neurodevelopmental syndrome that affects an 

estimated 1 in 68 children in the US [1] and is the fastest-growing developmental disability. 

Primary symptoms of ASD include deficits in social interaction, language and 

communication skills, and restricted, repetitive behaviors [2]. In addition to these core 

deficit areas, recent evidence suggests that adolescents and young adults with ASD have 

difficulty in learning safe driving skills [3–5]. In particular, compared with their typically 

developed peers, individuals with ASD demonstrated unsafe gaze patterns and higher levels 

of anxiety when operating a driving simulator [6], [7], responded slower during steering, 

identified fewer social hazards, and showed problematic multi-tasking ability [8], [9]. In the 

US, driving plays a critical role in everyday life and is essential for achieving adult 

independence. Given the heterogeneity and developmental nature of ASD [10], effective 

driving interventions tailored to specific individuals are needed for this population.

While virtual reality (VR)-based intervention for teaching social skills to children with ASD 

has been investigated in recent years due to various advantages of VR [11], [12], exploration 

into VR-based driving skill training for adolescents with ASD is only beginning to emerge 

[7], [13]. VR provides a safe driving skill training environment that can be designed to 

optimally engage individuals with ASD. Studies of game-based learning environments have 

argued for the importance of combining game design with flow theory to achieve optimal 

experience and enhance learning [14], [15]. Flow theory asserts that optimal experience is 

gained when the challenge level matches the skill level of a player [16]. Hence, by 

measuring the affective states and the mental workload of individuals with ASD and 

purposefully adapting the VR-based driving intervention system to keep them in the flow, 

the VR-based driving intervention may be optimally impactful. As a first step to designing 

such an individualized intervention system, in this study, an electroencephalogram (EEG) 

sensory modality was integrated into a VR-based driving simulator to build models for 

recognizing several affective states and the mental workload of individuals with ASD when 

they performed driving tasks. The goal of this research is to demonstrate that EEG-based 

affect and mental workload recognition is feasible during driving in a VR-based simulator so 

that in the future such an ability can help individualize the training.
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In recent years, there has been an increasing interest in developing EEG-based passive brain 

computer interface (BCI) applications to enrich human-machine interaction. Kohlmorgen et 

al. trained an individualized mental workload detector using EEG in a real world driving 

scenario. The workload detector was then applied in real time to switch off the secondary 

task in the case of high workload [17]. Wang et al. proposed an online closed-loop lapse 

detection and mitigation system that continuously monitored a driver’s EEG signature of 

fatigue based on EEG spectra, and delivered warnings accordingly during an event-related 

lane-keeping task using a VR-based driving simulator [18]. Dijksterhuis et al. classified the 

mental workload of drivers with varying speed- and lane-keeping demand by applying 

common spatial pattern and a linear discriminant analysis algorithm, again with a driving 

simulator [19]. Compared with mental workload, affective states are less studied in driving 

because affective states are not directly related to the safety-critical aspect of driving. 

Instead, most studies focused on drivers’ states such as fatigue, drowsiness, stress, and 

alertness. Nonetheless, in learning and intelligent systems, EEG-based engagement indices 

and emotional states recognition have been evaluated and studied by many researchers [20–

24]. Various feature generation approaches as well as machine learning algorithms have 

been applied to improve the reliability of EEG-based affective states recognition [25], [26].

In addition to a paucity of research on EEG-based affective states recognition for driving, 

the research to date has tended to focus on healthy adults rather than on individuals with 

greater potential for unsafe driving. Differences in EEG activity between individuals with 

ASD and their typically developed peers have been well documented by researchers [27], 

[28]. Given that driving is a necessary skill for independent living in the US and that 

individuals with ASD demonstrate a pattern of unsafe driving habits, there is a need to 

understand how driving skill training can be imparted to these individuals in a safe and 

flexible environment such as in a VR-based simulator. We believe that such training will be 

more effective if the system can tailor individual learning experiences based on their 

affective states and mental workload to accommodate for individual differences inherent in 

this spectrum disorder.

The primary contributions of this paper are: a) an experimental design to generate EEG data 

from adolescents with ASD during realistic VR-based driving tasks; b) development of a 

two-step feature calibration method to allow group-level training. This will dramatically 

reduce the training sessions needed compared to individualized model training; c) systematic 

evaluation of feature generation approaches to demonstrate the possibility of group-level 

affect and workload recognition based on EEG data; and d) systematic evaluation of feature 

and electrode usage to identify discriminative features. Together they provide a proof of 

concept that such EEG-based recognition could be useful to individualize ASD intervention. 

Although existing feature generation methods were applied in the current work, the analyses 

on EEG data collected from real world tasks with ASD population were not reported in the 

literature. Such analysis is needed prior to designing an EEG-based BCI for individualized 

ASD intervention. This paper substantially extends our earlier short conference paper [29] 

by incorporating rigorous methodology, additional data, and extended results and discussion.

The paper is organized as follows. Section II describes the VR-based driving simulator and 

data acquisition modules. Section III presents the methodology used to systematically 
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analyze the EEG signals. Classification and feature selection results are reported in Section 

IV. In the remaining Sections, we discuss the results and summarize the major findings and 

significance of the work.

II. System Description and Data Acquisition

The VR-based driving system was comprised of a VR driving module and four data 

acquisition modules, which were used to record EEG, peripheral physiology, eye gaze, and 

observer rating data (Fig. 1). The VR driving module consisted of two components: a virtual 

driving environment rendered from the viewpoint of the driver’s perspective and a Logitech 

G27 driving controller for intuitive control of the virtual vehicle via a steering wheel and a 

pedal board.

A. Virtual Driving Environment

The virtual driving environment was created using CityEngine and Autodesk Maya 

modeling software. The model offered roughly 120 square miles of diverse terrain and 

provided foundation for enough unique roadways to design hours of driving tasks. Trees, 

houses, and skyscrapers populated the virtual world, and traffic lights, pedestrians, and 

various automobiles were used to simulate a bustling city. The roadways included one- and 

two-way streets as well as an eight lane highway encircling the entire city. Driving tasks, or 

trials, were designed to utilize each of these particular aspects of the city. Four categories of 

trials were implemented: turning, merging, speed-maintenance, and laws. Turning trials 

involved either a left or right turn at an intersection; merging trials included lane changes, 

overtaking vehicles, and exiting/entering highways; speed-maintenance simply dealt with 

adjusting speed as appropriate to the specific situation (e.g., highway or school zone speed 

changes); and laws trials included scenarios in which the driver must obey important road 

laws, for example, yielding to pedestrians and stopping at stop signs. In all, 144 trials were 

created.

Eight trials were grouped together in a sequence to create an assignment. Subjects attempted 

to complete an assignment with as few errors as possible. A sufficient number of errors 

meant the failure and termination of the assignment. Trial errors were monitored by the 

system for a wide variety of possible offenses. These included – to list only a few – running 

red lights or stop signs, wrong turns, excessive speed, vehicle collisions, driving in the 

wrong lane, and failing to move out of the way of emergency vehicles. Errors detected by 

the system resulted in the subject’s virtual vehicle being reset to the start of the unsuccessful 

trial. Resets were accompanied by matching audio and text feedback indicating what went 

wrong and how to avoid the error moving forward. During trials, the system’s built-in 

navigation system directed drivers – visually and with audio (e.g., “left turn ahead” and 

“turn left”) – towards their destinations. In addition to the navigation system, the subject’s 

perspective included a first-person view of the road, speedometer, turn signal indicators, 

steering wheel, side view mirrors, and a score shown as text to indicate progress.

In order to modulate the level of challenge faced by the subjects, a range of difficulty levels 

were introduced. Six different difficulty levels were designed. Several parameters were used 

to configure the level of difficulty presented by the system: number of vehicles on the road, 
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aggressiveness of other drivers, visibility, weather conditions, and responsiveness of the 

input device. The easiest level of difficulty was intended to be effortless for most drivers, 

whereas the hardest level of difficulty was intended to be overly challenging; the other 

difficulty levels were interpolations between these extremes. These difficulty levels were 

approved by trained ASD clinicians.

B. Data Acquisition

We used a 14-channel wireless Emotiv EPOC neuroheadset (www.emotiv.com) to record 

EEG signals from locations AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and 

AF4, defined by the 10–20 system of electrode placement [30]. The reference sensors were 

placed at locations P3 and P4. The bandwidth of the headset was 0.2–45 Hz and the 

sampling rate was 128 Hz. We modified an existing EEG data acquisition application to log 

EEG signals, sensor contact quality, and driving event messages received from the VR 

driving module. Driving event messages – assignment start/end messages in particular – 

were used to align EEG signals with driving tasks and observer rating data. Subjects’ eye 

gaze data and physiological data were collected using a Tobii X120 eye tracker 

(www.tobii.com) and a Biopac MP150 physiological data acquisition system 

(www.biopac.com), respectively.

We relied on an experienced therapist to report the ground truth of subjects’ affective states 

as well as mental workload during driving. The rating categories employed were 

engagement, enjoyment, frustration, boredom, and task difficulty. In the context of 

computer-based learning environments, affective states of engagement, enjoyment, 

frustration, and boredom have been identified to capture useful learning experience across 

different learning situations and learners [31]. Therefore, we chose to build a model of affect 

that was able to recognize these four affective states. The last rating category, task difficulty, 

was adopted to represent subjects’ mental workload. Mental workload characterizes the 

demands imposed on human’s working memory by tasks. It has three attributes, which are 

mental load, mental effort, and task performance [32], [33]. Task difficulty contributes to 

mental load. More difficult tasks impose higher demands on the limited mental resources for 

information processing. Several works have established correlation between perceived task 

difficulty and mental workload [23], [34]. Mental effort is related to the characteristics of 

subjects, such as their driving experience. Since the mental effort varies over time and is 

different among subjects, perceived task difficulty, as rated by an experienced therapist, was 

adopted as the ground truth for subjects’ mental workload. In the discussion section, we 

demonstrate a strong linear correlation between perceived task difficulty rating and task 

performance, which justified our method of acquiring subjects’ mental workload.

Observer rating data were logged based on a 0–9 continuous rating scale, where larger 

ratings indicated a higher intensity. At the end of an assignment, which usually took five 

minutes, the therapist was prompted to provide a summary rating for each of the categories 

on subjects’ overall states.
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C. Subjects

This study was conducted with the approval from the Vanderbilt University Institutional 

Review Board. Twenty subjects (19 males, 1 female, mean age: 15.29 years) with a clinical 

diagnosis of ASD took part in the study. One subject had a driver’s license and three subjects 

had driver’s permits. Their ASD assessment results and IQs are reported in Table I. Subjects 

attended six sessions on different days. During each visit, spanning approximately 60 

minutes, they completed three preselected assignments. We measured their EEG response 

before the session for a three minutes baseline period and during the session.

III. Methods

The continuous rating data were transformed into binary classes, low intensity class and high 

intensity class, for building models of affect and workload. As a first step we chose to 

develop binary classifiers. With more data and experience, multiclass classifiers will be 

developed in the future. The thresholds used for the transformation were chosen by the 

therapist before conducting the driving experiment. For each category, if the rating score was 

less than the threshold, the corresponding assignment was labeled as low intensity class, 

otherwise it was labeled as high intensity class. The thresholds for engagement, enjoyment, 

boredom, frustration, and difficulty were 6, 6, 2, 2, and 5, respectively.

A. Signal Preprocessing

Out of the 120 sessions (20 subjects × 6 visits), raw EEG data from 111 sessions were 

processed. Inevitable and unforeseen events, such as subjects selecting the wrong 

assignments, or the system being restarted due to eye tracker failure, led to the loss of some 

data. The spikes in EEG data were first removed by slew rate limiting. Then a 0.2–45 Hz 

bandpass filter was applied. Filtered data from baseline and each assignment were 

segmented into one-second epochs with 50% overlap. Corrupt epochs were identified and 

removed, and eye movement and muscular artifacts were corrected automatically. A detailed 

description of signal preprocessing procedure can be found in our previous paper [29].

For both baseline and assignment, EEG data that contained less than 60 artifact-free epochs 

were discarded. In the end, a total of 269 assignments were used for affect and workload 

recognition. The mean and standard deviation of the number of artifact-free epochs for those 

assignments were 296.42 and 150.40, respectively, whereas for the corresponding baseline 

EEG data, the number of useful epochs had a mean value of 170.12 and standard deviation 

of 52.61.

B. Feature Generation

A recent literature review on EEG features for emotion recognition quantitatively evaluated 

and compared different feature types [26]. The results showed that the first difference feature 

in statistical features, fractal dimension (FD) features, and higher order crossings (HOC)-

based features performed well and were frequently selected by feature selection methods. 

Other feature types, such as higher order spectra (HOS) bicoherence features and Hilbert-

Huang spectrum (HHS) features, contained valuable features as well. As a first step to 

explore EEG-based affect and workload recognition, statistical features, FD features, and 
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HOC-based features were selected because of reported strong performances in other studies 

[24], [26], [35] and relatively simple implementation and less computational demand 

compared to HOS bicoherence and HHS features. Power features are the most popular 

features in EEG studies and therefore were included in the analysis.

We calculated five sets of features for EEG signals recorded from each electrode, 

summarized in Table II. Time domain feature types captured the statistical measures 

(statistical features), signal complexity (FD features), and signal oscillation patterns (HOC-

based features), whereas the frequency domain feature types characterized the strength of 

EEG oscillations at a given frequency range (bands and bins). Features extracted from 

artifact-free epochs belonging to the same baseline/assignment were averaged to obtain the 

feature vector for the corresponding baseline/assignment.

C. Feature Calibration

In order to train group-level models using EEG data collected from different subjects and 

different visits, it is necessary to remove feature variations resulting from time and 

individual differences. We developed a two-step feature calibration method, baseline feature 

subtraction followed by individualized feature normalization, to prepare the EEG features 

for group-level affect and workload recognition. The normalization step, as shown in (1), 

rescaled the range of each subject’s features based on the means of his/her features that 

belong to the low and high intensity classes. This requires each subject to provide data from 

both classes, e.g., examples from low engagement and high engagement. As a consequence, 

after individualized feature normalization, the number of examples reduced to 82 (6 

subjects) for engagement, 184 (13 subjects) for enjoyment, 146 (10 subjects) for boredom, 

248 (18 subjects) for frustration, and 244 (18 subjects) for workload. The effect of feature 

calibration is illustrated in Fig. 2 using engagement examples. As can be seen, the examples 

are more separable after feature calibration.

(1)

D. Feature Selection and Classification

For the purpose of identifying discriminative features, we ranked the features based on 

univariate statistical tests. The one-way analysis of variance (ANOVA) test was used to rank 

features in descending order of the F-values. In other words, a larger F-value indicates the 

feature has greater discriminative power. Then, model training and evaluation was conducted 

on a subset of top-ranked discriminative features, where the number of features increased 

from 3 to 45 by iteratively adding 3 features based on F-value ranking. For FD features, the 

maximum number of features was 14.

The k-nearest neighbors (kNN) method was used for model training and evaluation because 

it performed the best in our preliminary study [29]. Three key hyper-parameters (16 

combinations) were tuned, including the number of nearest neighbors (1, 3, 9, or 27), 

distance metric (Manhattan or Euclidean), and weighting scheme (uniform-weighted or 

distance-weighted).
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Nested cross-validation (CV) was used for model selection. The outer loop was leave-one-

subject-out CV whereas the inner loop was stratified ten-fold CV with randomization. The 

inner CV compared the classification performance of kNN models using each of the 16 

combinations of hyper-parameters. The best performing model was then evaluated with the 

test set in the outer CV. The macro-averaged F1 score of two classes was used as the scoring 

function to compare hyper-parameters. For imbalanced datasets, the macro- and micro-

averaged methods are more suitable than classification accuracy for representation of the 

results. However, in the case of binary classification, the micro-averaged method is the same 

as accuracy measure. Therefore, we selected the macro-averaged method in this study. The 

classification result of the outer CV is the macro-averaged F1 score of the combined results 

of all the subjects. Since randomization was used in the inner CV, we performed 50 

repetitions of nested CV to acquire more robust classification results. Standardization was 

used to preprocess the features.

IV. RESULTS

A. Classification Results

Fig. 3 summarizes the classification results of affect and workload recognition with respect 

to feature types and the number of features. For engagement recognition, power features 

from bins performed the best with 18 selected features. The performances of statistical 

features, HOC-based features, and power features from bands were less accurate (about 

0.04). FD features scored significantly lower (by at least 0.2) than the other feature types. 

With only 3 features, power features from bands and bins reached a high macro-averaged F1 

score of 0.90. In the case of enjoyment recognition, HOC-based features outperformed the 

other feature types significantly with a score of 0.88. The second best feature type was 

power features from bins with a score of 0.79, closely followed by statistical features and 

power features from bands. FD features performed the worst in enjoyment recognition as 

well. Similarly, HOC-based features achieved a much higher score for recognizing 

frustration. In terms of boredom recognition, power features from bins and HOC-based 

features performed the best with power features from bins performed slightly better. As far 

as workload recognition is concerned, the performances of HOC-based features, power 

features from bands and bins were comparable to each other.

On average, except engagement recognition, HOC-based features were superior among the 

five feature types, especially in recognizing enjoyment and frustration. For engagement and 

boredom, power features from bins achieved the highest accuracy. The top feature types and 

the numbers of features selected by kNN were 18 power features from bins for engagement, 

30 HOC-based features for enjoyment, 24 power features from bins for boredom, 45 HOC-

based features for frustration, and 30 HOC-based features for workload. Given these feature 

types and the numbers of features, the most commonly selected hyper-parameters were 1 

nearest neighbor, uniform weight, and Euclidean distance metric for engagement; 27 nearest 

neighbors, distance weight, and Manhattan distance metric for enjoyment; 3 nearest 

neighbors, uniform weight, and Euclidean distance metric for boredom; and 27 nearest 

neighbors, uniform weight, and Manhattan distance metric for frustration and workload. The 

final classification results using the best features with the best performing hyper-parameters 
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are shown in Table III. We list the precision, recall, and F1 scores of the leave-one-subject-

out CV for both low and high intensity classes. High precision score, or positive predictive 

value, indicates that the classifier is returning accurate results. High recall score, or true 

positive rate, shows that the classifier is returning a majority of all positive results. These 

results imply that models based on EEG activation are able to detect with high accuracy 

subjects’ states of low engagement, low enjoyment, high frustration, and high workload. 

Boredom recognition had relatively low accuracy. Because the number of examples in the 

low intensity class was four times larger than that of the high intensity class for boredom, the 

performance of boredom recognition might improve with more examples of high intensity 

boredom.

B. Discriminative Features

To investigate which features and which electrodes provide the most information, we 

computed the relative frequency of each feature subtype and electrode. For each feature type 

and rating category, given the selected features that yield the best classification results, we 

counted the feature occurrence and electrode occurrence. Then, the occurrence counts were 

normalized by the total number of selected features and weighted by classification results. 

This step is important because it ensures that the relative frequencies accounted for the 

performances of the discriminative features, and it enables comparison of discriminative 

features across rating categories. The results are shown in Fig. 4. The feature usage is 

represented as histograms and the electrode usage is represented as topographies. The 

classification results, macro-averaged F1 scores, of the discriminative features are labeled as 

well.

Because backward models do not allow for a definitive physiologically-based interpretation 

[37], we did not attempt to link each of the identified features to the underlying neural 

sources. The discriminative features illustrated in Fig. 4 were chosen jointly by the 

univariate feature selection method and kNN method to minimize the effect of noise on 

feature weights. For engagement, the majority of the discriminative features were located in 

the left hemisphere for power features from bands and bins, however, it was the opposite for 

HOC-based features. Power features were mostly selected from electrodes F7, F3, and T7, 

whereas HOC-based features were mostly drawn upon from electrodes FC6, F8, T8, and O2 

with some features from electrodes F7, F3, and FC5. In terms of enjoyment, the important 

electrodes were AF3, FC5, FC6, F8, O2, and P8. In addition, electrodes F3 and O1 were 

frequently used by HOC-based features, and electrodes F7, AF4, and T7 were used often by 

statistical features. Power features from bands and bins were drawn upon from all the 

electrode locations. The discriminative features for boredom were mostly selected from 

electrodes FC5, F4, and O2. Additionally, electrode F7 was prominent for power features 

from bins and electrodes F8 and AF4 were important for HOC-based features. The 

prominent electrodes for frustration recognition were less clear. Locations O1, FC6, and F8 

were mostly selected for statistical features. For HOC-based features, electrodes AF3, F7, 

F3, F4, P7, and O1 were frequently used. Power features from bands preferred electrodes F4 

and F8, and power features from bins preferred electrodes T7, P8, and F4. In the case of 

workload recognition, for statistical features and power features the prominent electrodes 

were F7 and T8 with some importance given to F8 and P8. HOC-based features were mostly 
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selected from electrodes AF4, F4, FC5, and T7. In general, power features from bins and 

bands were similar in electrode usage. However, power features from bins performed better 

than power features from bands. According to the feature usage histogram of power features 

from bins, features related to β and γ bands seem more valuable in recognizing affect and 

workload.

V. Discussion

A. Validation of Therapist’s Measures of Mental States

The results presented in the previous section suggest that EEG-based affect and workload 

recognition is possible for adolescents with ASD and thus can be used to individualize 

driving training. However, the results need to be interpreted cautiously. It is unclear whether 

the overall rating data provided by a therapist can accurately capture subjects’ affective 

states and mental workload. While expert rating is a widely used method [31] that we have 

used in this work, obtaining the ground truth of implicit user states is still a hard problem 

[38]. To examine the validity of the overall rating data and the thresholding values, we 

related the overall rating data to the performance data. The results are illustrated in Fig. 5. 

The x axes are the performance data in terms of the number of errors that occurred in each 

assignment. The means and standard deviations of all the rating categories with respect to 

error count are shown as line plots. From the line plots, positive correlations between error 

count and three other variables: frustration, boredom, and difficulty, can be observed. We 

further evaluated the correlations based on the Pearson product-moment correlation 

coefficient. Strong positive correlations were found between frustration and error count (r = 

0.57, p < 0.001) and between difficulty and error count (r = 0.60, p < 0.001). Moderate 

positive correlation between boredom and error count (r = 0.31, p < 0.001) were found. In 

the cases of engagement (r = −0.29, p < 0.001) and enjoyment (r = −0.25, p < 0.001), weak 

negative correlations were found. Strong correlations between frustration and error count, 

and between difficulty and error count indicate that the overall rating data reflect the 

affective states and mental workload of individuals with ASD. Regarding the other three 

affective states, no conclusion could be drawn with respect to the validity of the overall 

rating data. In fact, their relationships with performance data are not entirely clear. In terms 

of the chosen thresholding values, it can be seen from the line plots in Fig. 5 that the 

predetermined thresholding values approximately separate data into two camps, before 3 

errors and after 4 errors. This observation is salient, especially for frustration and difficulty. 

In terms of boredom, the overall rating score decreased slightly when error count was 5 and 

6, whereas for engagement and enjoyment the scores increased slightly when error count 

was 5 and 6. Overall, the choices of the thresholding values are consistent with performance 

data.

Learning effect is one factor that would bias subjects’ performance, workload, and affective 

states. We designed the experiment so that the first session and the last session consisted of 

the same assignments, one assignment from difficulty level two and two assignments from 

difficulty level five. Fig. 6 shows the averaged error counts and therapist’s ratings for session 

one and session six. Subjects’ performance improved over the course of the six sessions due 

in part to the learning effect. For affect and workload recognition, we used the therapist’s 
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rating data as labels. This information is irrelevant to subjects’ driving skills. As can be seen 

in Fig. 6, subjects’ frustration and workload levels were lower in session six than that in 

session one. Therefore, the learning effect biased the performance, but it should not bias the 

affective states and workload recognition. The learning effect is also one reason why we did 

not use the designed difficulty levels as labels for mental workload. In addition, we list 

subjects’ error counts for all six levels of difficulty in Table IV. More difficult driving tasks 

did not necessarily indicate higher error rates. In fact, the correlation between levels of 

difficulty and error counts was r = −0.03 (N = 360). Because one attribute of mental 

workload, mental effort, varies due to learning effect and is different among subjects, it is 

not surprising that designed levels of difficulty does not correlate well with subjects’ 

performance data.

B. Comparison with Related Works

Direct comparisons of classification accuracies between studies are difficult due to different 

experimental designs, subjects’ characteristics, data preprocessing procedures, EEG 

recording devices, etc. The classification accuracies of a workload detector was more than 

70% for a subset of subjects in [17]. Dijksterhuis et al. reported averaged accuracies up to 

75–80% from lower EEG frequency ranges for workload classifications [19]. With respect to 

affective states recognition, [39] achieved an accuracy of 86.52% for distinguishing music 

likability. The best accuracy achieved in identifying emotional states was up to 77.78% over 

5 subjects and 56.1% over 15 subjects in [40]. In another study, emotion recognition 

accuracy reached up to 83.33% for distinguishing 6 emotions and 100% for distinguishing 

fewer emotions [24]. Lan et al. [41] combined features with high intra-class correlation and 

improved accuracy to 73.1% for detecting positive negative emotions. Similarly, with 

combination of features, Liu et al. [42] achieved 87.02% accuracy in recognizing 2 

emotions. Based on Table III, our classification results scored 0.95 over 6 subjects for 

engagement, 0.895 over 13 subjects for enjoyment, 0.78 over 10 subjects for boredom, 0.875 

over 18 subjects for frustration, and 0.855 over 18 subjects for workload. Overall, these 

results are comparable to the extant literature.

As far as the feature generation approaches are concerned, HOC-based features were shown 

to be superior in detecting emotional states. HOC-based features outperformed statistical 

features in [24] and power features from bands and bins in [26] for emotion recognition. 

Power features from bands and bins performed well for engagement and workload 

recognition. This is in line with other studies that used power features to monitor task 

engagement [20], [21], and analyzed correlations between power features and workload and 

engagement levels [23]. In addition, our results indicate that power features from bins are 

more valuable for engagement recognition compared to the rest of the feature types. Power 

features from bins outperformed power features from frequency bands in general. This trend 

is in accordance with [26].

The driving tasks were designed to resemble real world scenarios. The complexity of the 

task requires working memory and long-term memory, visuospatial processing, visual and 

auditory processing, attention and emotion regulation, and decision making. According to 

the electrode usage results, features derived from frontal electrodes were the most 
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discriminative for affect and workload recognition. Temporal electrodes were also frequently 

used for engagement and workload recognition. Additionally, occipital electrodes were 

selected often for engagement, enjoyment, boredom, and frustration recognition. The 

discriminative features for enjoyment and frustration were mostly drawn upon from parietal 

electrodes as well. In terms of feature usage, features related to β and γ bands seem more 

valuable. These results are consistent with previous studies. Dijksterhuis et al. found that 

driver’s workload classifications were most accurate when based on high frequencies and the 

frontal electrodes [19]. Frontal and parietal electrodes were found by Lin et al. [22] to be 

most informative for classifying emotional states. In [39], frontal, prefrontal, temporal, and 

occipital electrodes correlated significantly with ratings of music likability. Compared to 

other power features, features from β and γ bands were more discriminative in [39] and 

[26].

C. Limitations and Future Works

The main limitation of the current work comes from the small sample size. Unlike studies 

that could record large amount of samples per session, at most three samples were available 

per session in this study. Extracted EEG features were used to recognize the affective states 

and workload in each assignment. We did not attempt to detect the affective and workload 

changes based on epochs due to the requirement of human therapist’s ground truth rating. It 

is not feasible to ask a therapist to provide rating data every few seconds. A secondary 

reason is that the individualized adaptation should not occur so quickly. For performance-

based system adaptation, we do not reduce task difficulty whenever a driving error is 

detected. Similarly, for affect- and workload-based system adaptation, we will select the next 

driving task based on the overall states during the entire assignment instead of the states 

detected during the last few seconds of data.

There are several other limitations to address. First, a large portion of EEG data were 

removed in the process of artifact removal. It is worthwhile to explore how eye movements 

and muscular artifacts influence the classification results. They may improve the affective 

states and mental workload recognition [15], [19]. Second, different affective states may 

have an influence on mental workload recognition and vice versa. That is to say, in this 

study affective states are likely to co-vary with mental workload. Whether this confounding 

factor inflates the results, or could be harnessed to improve the classification accuracies, 

requires further study. Third, the current work is limited to offline analysis. The future 

system needs to close the loop between the VR-based simulator and subjects using EEG 

signals to achieve individualized intervention. In addition, different strategies for VR-based 

driving system adaptation will be explored and the results will be subjected to comparison 

with performance-based system adaptation. Majority voting is one method to combine affect 

and workload prediction results for adaptive automation.

VI. Conclusion

We integrated an EEG input modality into a novel VR-based driving simulator which was 

developed for ASD intervention. EEG data as well as a therapist’s overall rating data on five 

categories (engagement, enjoyment, boredom, frustration, and difficulty) were collected 
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from 20 subjects diagnosed with ASD over a total of 120 sessions. Models of affect and 

workload were trained to provide the basis for a future EEG-based passive BCI system, 

which has the potential to tailor the driving skill training for specific individuals with ASD 

based on their affective states and mental workload. We systematically evaluated and 

compared five feature generation approaches with univariate feature selection method and 

the kNN algorithm. The classification results imply that models based on EEG activations 

are able to detect with high accuracy the states of low engagement, low enjoyment, high 

frustration, and high workload for ASD population. Boredom recognition had relatively low 

accuracy. In the end, classification models were built using power features from bins for 

engagement and boredom, and using HOC-based features for the rest of the states. The most 

discriminative features for affect and workload recognition were extracted from frontal 

electrodes. The analyses on EEG data collected from real world tasks with ASD population 

demonstrated the feasibility of EEG-based ASD intervention individualization and provided 

insight on the performance of several different feature types in this context. However, 

despite all its promise the current work is limited to binary classification and offline analysis 

after extensive artifact rejection. Thus while the current work is the first step towards an 

adaptive driving simulator for ASD intervention, the true potential of the developed models 

to measure the flow states of individuals with ASD based on online predictions of their 

affective states and mental workload requires further exploration in the future.
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Figure 1. 
Framework overview.
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Figure 2. 
Comparison of 2D feature scatter plot for engagement (a) before feature calibration, (b) 

baseline feature distribution, (c) after baseline removal, and (d) after feature normalization.
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Figure 3. 
Classification results evaluated based on macro-averaged F1 score.
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Figure 4. 
Feature usage and electrode usage.
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Figure 5. 
Overall rating data as a function of participants’ performance.
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Figure 6. 
Learning effect.
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TABLE I

Subject Characteristics

Sample size Mean Standard deviation

Chronological age in years 20 15.29 1.65

ADOS total raw score 16 13.56 3.67

ADOS severity score 16 7.81 1.42

SRS-2 total raw score 20 97.85 26.97

SRS-2 T-score 20 75.45 9.70

SCQ lifetime total score 19 20.84 9.48

IQ 15 108.93 17.47

ADOS = autism diagnostic observation schedule, SRS-2 = social responsiveness scale, second edition, SCQ = social communication questionnaire. 
Sample size varies due to missing data.
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TABLE II

Extracted Features

Features Method/Parameter No.

Statistics mean μx, standard deviation σx, first difference δx, standardized first difference δ̃x, second difference γx, standardized 

second difference δx̃ [35]

84

FD Higuchi algorithm, kmax = 6 [36] 14

HOC backward difference operator, k = 1,2,…10 [24] 140

Bands Hanning tapering function, PSD (Welch’s method), δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), γ (30–44 Hz), 
normalization with log transformation

70

Bins Hanning tapering function, PSD (Welch’s method), 2–44 Hz (Δf = 2Hz), normalization with log transformation 294
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TABLE IV

Error Counts

Difficulty Mean STD N

level 1 2.62 1.79 58

level 2 2.84 1.94 43

level 3 2.47 1.64 60

level 4 2.05 1.57 60

level 5 2.39 1.60 79

level 6 2.70 1.67 60
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