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Mouse retinal ganglion cell signalling is dynamically
modulated through parallel anterograde activation
of cannabinoid and vanilloid pathways

Andrew O. Jo1,∗, Jennifer M. Noel2,∗, Monika Lakk1,∗, Oleg Yarishkin1,∗ , Daniel A. Ryskamp1,3,
Koji Shibasaki4, Maureen A. McCall2,5 and David Križaj1,3,6,7
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Key points

� Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked
signals with ambient mechanical, chemical and temperature information.

� Localization and function of the polymodal non-selective cation channel TRPV1 (transient
receptor potential vanilloid isoform 1) remains elusive.

� TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in
the mid-peripheral retina.

� Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors
(CB1Rs) and cAMP pathways.

� Activity-dependent endocannabinoid release may modulate signal gain in RGCs through
simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R.

Abstract How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling
stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1
(transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet
the proportion of RGCs that express it remains unclear. Furthermore, TRPV1’s response to
endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the
potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs
in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including
capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+]i in
30–40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and
BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide),
and lacking in Trpv1−/− cells. The cannabinoid receptor type 1 (CB1R) colocalized with
TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122
inhibited CAP-induced [Ca2+]i signals in adult, but not early postnatal, RGCs. The suppressive
effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A
(PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin,
and absent in Cnr1−/− RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in
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a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde
eCB-mediated modulation of RGC signalling involves a dynamic push–pull between direct TRPV1
activation and PKA-dependent regulation of channel inactivation, with potential functions in
setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and
neuroprotection.
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Introduction

Transient receptor potential vanilloid isoform 1
(TRPV1) is a polymodal non-selective cation channel
(PCa/PNa � 10) that is activated by the vanilloid capsaicin
(CAP), endocannabinoids (eCBs), protons and noxious
temperature (Caterina et al. 1997; Szallasi et al. 2007). It is
widely expressed across the CNS/PNS and its activation
is implicated in the transduction of neuropathic pain,
osmotic stress, noxious temperature and synaptic trans-
mission (Tominaga et al. 1998; Sudbury et al. 2010; Mori
et al. 2012). In the brain, including the retina, TRPV1
has been linked to dynamic modulation of presynaptic
[Ca2+]i and neuronal plasticity in response to retrograde
eCB release (Marinelli et al. 2007; Gibson et al. 2008;
Middleton & Protti, 2011). Recent studies also suggest
that TRPV1 channels may regulate postsynaptic function
through Ca2+-calcineurin-dependent internalization of
AMPA receptors (Chávez et al. 2014).

The expression of TRPV1 in vertebrate retinas had been
documented using a variety of transcriptional analyses
(Sappington et al. 2015), immunohistochemistry (Yazulla,
2008; Leonelli et al. 2009; Weitlauf et al. 2014), Western
blots (Nucci et al. 2007), pharmacology and calcium
imaging (Sappington et al. 2009). The conclusions of
these studies are quite divergent and therefore we have
no consistent picture of the cell types that express TRPV1
or its function in visual signalling and disease (reviewed by
Ryskamp et al. 2014a). Some of the inconsistency may arise
from the use of antibodies ‘untested’ in knockout (KO)
animals (Gilliam & Wensel, 2011; Molnar et al. 2016) and
because these studies used a variety of species (Zimov &
Yazulla, 2004; Leonelli et al. 2009; Sappington et al. 2015).
Controversy arises regarding the functional roles of retinal
TRPV1 in disease because activating the channel with its
agonist, CAP, induces massive apoptosis of retinal ganglion
cells (RGCs) (Sappington et al. 2009), whereas elimination

of TRPV1 expression facilitates the proapoptotic effects of
excitotoxicity and ocular hypertension (Sakamoto et al.
2014; Ward et al. 2014). A further complication is that
CAP administration also will stimulate bipolar TRPM1
channels (Shen et al. 2009).

Another knowledge gap related to retinal TRPV1
channels is the identity and role of endogenous
activators. Potential candidates are eCBs, amphiphilic
small molecules composed of an unsaturated fatty acyl
chain that is conjugated to a polar molecule via an amide,
ester or ether bonds. eCBs control neurogenesis and
synapse formation, modulate synaptic transmission and
regulate many aspects of sleep, memory, vision, addiction
and brain trauma (Castillo et al. 2012; Rubino et al.
2015; Bouchard et al. 2016). All studied vertebrate retinas
synthesize eCBs such as N-arachidonoylethanolamine
(AEA, anandamide), N-arachidonoyl dopamine (NADA)
and 2-arachidonoylglycerol (2-AG), together with their
degradation lipases and effectors that include cannabinoid
receptors (CBRs) and TRPV1 channels (Yazulla, 2008;
Ryskamp et al. 2014a; Bouchard et al. 2016). The dominant
retinal cannabinoid receptor, type 1 (CB1R), has been
localized to retinal neurons and glia, and was implicated in
multifaceted modulation of RGC output and pathological
signalling (Nucci et al. 2007; Cécyre et al. 2013; Miraucourt
et al. 2016).

Here we designed new experiments to define the
distribution of TRPV1 retinal expression, characterize its
responses to endogenous activators and investigate the
functional features of TRPV1 signals in RGCs. We show
that TRPV1 and CB1Rs are co-expressed and inter-
act non-retrogradely in TRPV1+ RGCs. First, we used
a transgenic approach to determine the fraction of
TRPV1-expressing RGCs across the mouse retina and
characterize their regional distribution. We then used
optical imaging to quantify the time-dependent features
of TRPV1-dependent Ca2+ signalling and functional
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interactions between TRPV1, eCBs and CB1R. We found
that TRPV1 is expressed in a limited subset of RGCs
and present evidence consistent with the hypothesis that
AEA, NADA and 2-AG modulate RGC Ca2+ homeo-
stasis through TRPV1 and CB1R signalling. Interestingly,
parallel activation of CB1Rs suppressed TRPV1 activation
via the cAMP signalling pathway. Together, these results
demonstrate non-uniform TRPV1 expression across the
mouse retina and provide evidence for dynamic, parallel,
non-retrograde, eCB-dependent interactions between
TRPV1 channels and CB1 receptors.

Methods

Ethical approval

We acknowledge the ethical principles of The Journal of
Physiology, and confirm that all of our animal procedures
were performed within these principles as well as in
accordance with the NIH Guide for the Care and Use
of Laboratory Animals, the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research and
the Institutional Animal Care and Use Committees at the
University of Utah and the University of Louisville. The
Cnr1−/− mice were developed by and used with permission
from Dr Beat Lutz (University of Mainz) and generously
provided by Drs. Christian Casanova and Jean-Francois
Bouchard (University of Montreal). We assessed TRPV1
retinal expression using a knock-in mouse in which Cre
was inserted into Exon 15 of TrpV1 (TRPV1Cre; Jackson
Laboratory 017769; Bar Harbor, ME, USA). This line
was crossed to B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J
(Ai9; 007909) in which the LoxP-STOP-LoxP TdTomato
construct is knocked in at the Gt(ROSA)26Sor locus
(Madisen et al. 2010). These mice have been used pre-
viously to define TRPV1 expression in brain, dorsal root
ganglia and spinal cord (Cavanaugh et al. 2011). Other
animals that were used in these experiments and their
accession numbers at Jackson Laboratory are: C57BL/6J
(WT: 000664), Thy1:CFP [B6.Cg-Tg(Thy1-CFP)23Jrs/J;
003710], Thy1:YFP [B6.Cg-Tg(Thy1-YFP)16Jrs/J; 03709]
and B6.129x1-Trpv1<tm1Jul> (Trpv1−/−; 003770) mice,
which were reared in pathogen-free facilities (University of
Utah and University of Louisville) with a 12-h light/dark
cycle and ad libitum access to food and water. An abstract
containing a portion of this work was published previously
(Jo et al. 2014).

Reagents

CAP (8-methyl-N-vanillyl-6-nonenamide), AEA (N-
arachidonoylethanolamine), NADA, 2-AG, the
TRPV1 antagonist capsazepine (CPZ; N-[2-(4-chloro
phenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-
benzazepine-2-carbothioamide), the inverse CB1R

antagonist SR141716A (rimonabant) and BCTC (4-(3-
chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-
piperazinecarboxamide) were obtained from Cayman
Chemicals (Ann Harbor, MI, USA). The TRPV4
antagonist HC067047 and pertussis toxin (PTX) were
purchased from Calbiochem (Billerica, MA, USA) or
Sigma (St Louis, MO, USA). Brain-derived neurotrophic
factor (BDNF) and ciliary neurotrophic factor (CNTF)
were obtained from GenWay Biotech (San Diego, CA,
USA). Other salts and reagents were purchased from
Sigma or VWR (Radnor, PA, USA). Drugs were diluted in
extracellular saline and added to reservoirs of gravity-fed
perfusion systems.

Acute dissociation and plating of retinal cells

The animals were killed by isoflurane inhalation, cervical
dislocation (adult mice) or decapitation (P6–P7 mice),
after which eyes were enucleated and retinas were isolated
by dissection in ice-cold L15 medium containing 11 mg/ml
L15 powder, with (in mM) 20 D-glucose, 10 Na-Hepes, 2
sodium pyruvate, 0.3 sodium ascorbate and 1 glutathione.
Retinas were incubated at room temperature in L15
containing papain (7 U/ml; Worthington Biochemical
Corp., Lakewood, NJ, USA) to digest the extracellular
matrix, and rinsed with cold L15. One or two � 500 μm
pieces of retina were mechanically dissociated and the cells
were plated on coverslips pretreated with concanavalin
A (1 mg/ml, Alfa Aesar, Haverhill, MA, USA). RGC
identity was confirmed by expression of Thy1:CFP or
Thy1:YFP fluorescence and, in a subset of cells, by
post-imaging immunocytochemistry (mouse anti-Brn3a
and anti-RBPMS). RGC Ca2+ homeostasis, morphology
and stimulus responsiveness are maintained for several
hours under these experimental conditions (Mizuno et al.
2010; Ryskamp et al. 2011, 2014b).

Hypertonic stimulation assay

Volume regulation was investigated using previously
published protocols (Jo et al. 2015, 2016). Briefly, saline
solutions were delivered through a manifold tube inserted
into the experimental chamber. Anisosmotic solutions
were prepared by addition of mannitol, with NaCl
concentration kept constant. Osmolarity was validated
thermometrically using a vapour pressure osmometer
(Wescor, Logan, UT, USA). Cell volume was determined
by taking advantage of the proportional relationship
between cell volume and intracellular fluorescence (Jo
et al. 2015). Fluorescence emissions were normalized to
baseline fluorescence and 340 and 380 nm signals were
summed (Fvol = F340 + F380/x, where x = 1–3, a value that
was empirically derived for each preparation to equalize
the magnitude of the Ca2+-dependent and opposing
changes in F340 and F380) (Chiavaroli et al. 1994; Ryskamp
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Table 1. Commercial anti-TRPV1 antibodies use in this study

Host species Concentration Company

Guinea pig, TRPV1 1:1000 AB55566; EMD Millipore, Darmstadt, Germany
Guinea pig, TRPV1 1:500 Gift from David Julius, UCSF
Rabbit, TRPV1 1:5000 ACC-030; Alomone Labs, Jerusalem, Israel
Rabbit, TRPV1 1:50 and 1:500 GT15129; Neuromics, Edina, MN, USA
Goat, TRPV1 1:500 P-19; Santa Cruz Biotechnology, Dallas, TX, USA
Goat, ChAT 1:1000 AB144; EMD Millipore, Darmstadt, Germany
Rabbit, RBPMS 1:250 AB194213, Abcam, Cambridge, MA, USA

1:500 1830, PhosphoSolutions, Aurora, CO, USA
Rabbit, CNR1 1:50 10006590, Cayman Chemical, Ann Arbor, MI
Mouse, Brn3a 1:100 SC-8429, Santa Cruz Biotechnology, Dallas, TX

et al. 2014b). As a result, the intensity of the summed
fluorescence was calcium insensitive at the appropriate
x value. The relative decrease in cell volume estimated
from fluorescence summation is plotted in Fig. 4 as ‘%
shrinking’.

Immunohistochemistry and fluorescence labelling
of mouse retinas

Vertical sections and/or wholemounts of mouse retinas or
dorsal root ganglia were prepared as described previously
(Huang et al. 2011; Zhang et al. 2014; Jo et al. 2015). Retinas
were fixed for 1 h in 4% paraformaldehyde, rinsed in PBS,
dehydrated and embedded in OCT. Cryosections, 12 μm
thick, were blocked in PBS, 5% fetal bovine serum and
0.3% Triton-X and incubated in the primary antibody
buffer (PBS, 2% BSA and 0.2% Triton-X) overnight at
4°C, followed by incubation with secondary antibodies
conjugated to Alexa 405/488/594 (Invitrogen, Carlsbad,
CA, USA) for 1 h at room temperature. Images (at least 3–5
slides per retina) were acquired on an Olympus CV1200
confocal microscope.

Five different commercial anti-TRPV1 antibodies were
screened in WT and Trpv1−/− mice in conjunction
with a choline acetyltransferase (ChAT) antibody to
delineate inner plexiform layer (IPL) stratification
(Table 1). Labelling with all five TRPV1 antibodies was
similar between WT and Trpv1−/− retinas, indicating
that none are specific for TRPV1. As a positive
control, we used tyramide amplification and a rabbit
TRPV1 antibody (Neuromics, Edina, MN, USA) in
the dorsal root ganglia of Trpv1Cre:Ai9 reporter mice.
A subset of tdTomato-positive neurons also were
TRPV1-immunoreactive (ir), although this signal was
weak. Our variable and inconsistent immunoreactivity
in the retina is consistent with previous reports of weak
and inconsistent retinal TRPV1 immunolabelling (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA) (Gilliam
& Wensel, 2011; Molnar et al. 2012). Since these results
indicated that commercial antibodies are non-specific,

we studied TRPV1 expression using Ai9 reporter
mice that harbour a Rosa-CAG-LSL-tdTomato-WPRE
conditional allele crossed to Trpv1Cre mice or we injected
AAV1.CAG.Flex.tdTomato WPRE.bGH (AAV−Flex-tdTom;
AV-1-ALL864; Penn Vector Core, Philadelphia, PA, USA)
intravitreally in Trpv1Cre mice both to sparsely label retinal
cells and to define cells that transiently expressed Trpv1 in
the mature retina. Virus (titre = 9.55e12 viral genome
copies/ml) was loaded into a pipette, which was attached
to a Picospritzer II (20 psi; Micro Control Instruments,
Framfield, UK). A 10 ms puff injected 2–4 μl of solution
into the vitreal cavity of the eye in 1- to 3-month-old mice
(n = 9; Jaubert-Miazza et al. 2005). ChAT bands were used
to assess RGC dendritic stratification within the IPL.

Cell counting

Images in retinal wholemounts were acquired as maximal
confocal projections of a stack (0.5 μm per image)
acquired with a 10× air objective (NA 0.25) at
1024 × 1024 pixel resolution and dwell time of 10 μs per
pixel. The size of the pinhole was 80–100 μm. tdTomato+
RGCs were counted in each retinal quadrant to compute
the densities of labelled cells (Fig. 1). Vertical sections
(Fig. 2) were acquired using a 40× objective (NA 0.8),
with 12 sections counted from each of three Trpv1Cre:Ai9
mice. The central retina was defined as spanning the area
within 0.6 mm from the optic nerve head and periphery
as the area >0.6 mm from the optic nerve head (Dräger
& Olsen, 1981). Distribution of TRPV1+, RBPMS+ and
Brn3a+ cells was calculated as a percentage of the total cell
number per 100 μm. To avoid recounting, the gap between
sections was set at �24 μm; counts from cells within
200 μm areas were pooled. Significance was assessed using
a non-parametric statistic (see below).

Fluorescence in situ hybridization (FISH)

In vitro transcription from the cDNA fragments of
mouse Trpv1 (Shibasaki et al. 2010) and Cnr1 (Jelsing
et al. 2008) was performed with a digoxigenin (DIG) or
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fluorescein (FLU) RNA-labelling kit (Roche Diagnostics,
Indianapolis, IN, USA). Adult mouse retinae (8 weeks
old) were dissected out and frozen in Tissue-Tek
OCT compound (Sakura Finetech Japan). Transverse
sections (20 μm thick) were cut by using a cryostat
and collected onto silane-coated glass slides (Agilent
Technologies, Santa Clara, CA, USA). After fixation
with paraformaldehyde/0.1 M phosphate buffer for
10 min, the sections were dehydrated with 100%
methanol for 1 h and acetylated with triethanolamine
(Sigma-Aldrich) for 10 min. Hybridization was carried
out for 18 h at 65°C with cRNA probes (500 ng/ml).
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Figure 1. Trpv1Cre:Ai9 and Trpv1Cre:AAV−Flex-tdTom tdTomato
expression in retinal ganglion and amacrine cells
A, confocal image of a retinal wholemount (Trpv1Cre:Ai9) shows
tdTomato+ cells in the INL and GCL. Arrows denote cells in the RGCL
and arrowheads denote cells in the IPL. B, image of a transverse
section from another Trpv1Cre:Ai9 retina compares the stratification
of TRPV1 expression relative to ChAT bands delineating the IPL
sublaminae S2 and S4. C, comparison of tdTomato+ cells across the
nasal, temporal, dorsal and ventral quadrants in Trpv1Cre:Ai9 retinas.
Di, confocal image of a retinal wholemount from a
Trpv1Cre:AAV−Flex-tdTom retina (axons are indicated by arrowheads).
Its side view (Dii) shows tdTomato+ cells in the INL and GCL. Ei,
confocal image from a whole mount retina and its side view (Eii) in a
region with sparsely labelled cells (same retina as D). In sparse areas,
RGCs could be identified using RBPMS expression (green label). In
the side view, one GC stratifies in the ON sublaminae, while another
whose soma is displaced in the INL has thick processes in IPL
sublamina S1, and an axon projecting through the IPL to the nerve
fibre layer (arrow). Scale bars: A and B = 50 µm; Di = 30 µm;
Dii = 20 µm; Ei = 30 µm, Eii = 20 µm.

Sections were washed in 2× SSC for 1 h at 65°C
and incubated with normal goat serum for 30 min
at room temperature. After incubation with normal
goat serum (Vector Laboratories, Inc., Burlingame, CA,
USA) for 2 h at room temperature, hybridization was
detected by overnight incubation with sheep anti-DIG-AP,
Fab fragments (Roche Diagnostics; 1:5,000) or sheep
anti-FLU-POD, Fab fragments (Roche Diagnostics;
1:1000) at 4°C. To detect alkaline phosphatase, we used
the 3-hydroxy-N-2′-biphenyl-2-naphthalenecarboxamide
phosphate ester (HNPP) Fluorescent Detection Set (Roche
Diagnostics). To detect peroxidase, we used the TSA Plus
Biotin Kit (PerkinElmer, Waltham, MA, USA; 1:100) and
Alexa Fluor 488-labelled streptavidin (Life Technologies,
1:1000). The fluorescence images were captured via a
BX53 fluorescence microscope (Olympus) equipped with
a DP80 CCD camera (Olympus).

Calcium imaging

Acutely isolated retinal cells were used for Ca2+ imaging
as in Ryskamp et al. (2011). After dissociation and plating
(described above), cells were loaded with Fura-2 AM
(5 μM) for 30 min, followed by a 10–30 min wash with
L-15. The saline used for perfusion contained: (in mM)
133 NaCl, 10 Hepes hemisodium salt, 10 glucose, 2.5 KCl,
2 CaCl2, 1.5 MgCl2, 1.25 NaH2PO4, 1 pyruvic acid, 1
lactic acid and 0.5 glutathione. Epifluorescence images
were acquired using an inverted Nikon Ti microscope
with 20× (0.75 NA oil), 40× (1.3 NA oil and 0.8 NA
water) and 60× (1.0 NA water) objectives. Excitation
light from a xenon arc lamp (band pass filtered at 340
and 380 nm) was delivered using a Lambda DG-4 (Sutter
Instruments, Novato, CA, USA). Fluorescence emissions
(high pass filtered at 510 nm) were detected with a 14-bit
CoolSNAP HQ2 camera and analysed using NIS-Elements
AR 3.2. Regions of interest were drawn to include the
entire RGC somata. In most experiments, �R/R (peak
F340/F380 ratio – baseline/baseline) was used to quantify
the amplitude of Ca2+ signals (Ryskamp et al. 2016).
In a subset of experiments, the apparent free [Ca2+]i

was estimated using a calibration procedure at the end
of experiments to determine the dependence of Fura-2
emissions on free [Ca2+] (Ryskamp et al. 2011). For
this, Ca2+ was removed from the saline (by perfusing
with Ca2+-free media containing 1 mM EGTA), and after
cytosolic Ca2+ dropped to an asymptotic low, perfusion
was temporarily stopped and ionomycin (10 μM) was
added to release internal Ca2+. After obtaining emission
parameters associated with the depletion of free Ca2+,
cells were perfused with saline containing 10 mM Ca2+
to obtain emission parameters associated with Fura-2
saturation. These parameters were obtained for each
RGC and the apparent free [Ca2+]i was assumed to
equal: ((R – Rmin)/(Rmax – R)) × (F380max/F380min) × Kd,

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society
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Figure 2. Region-specific distribution of TRPV1+
cells within the RGCL
Vertical sections of the transgenic mouse retina. A,
Trpv1:TdTomato (red) is co-expressed in subsets of
RBMPS+ (green) and Brn3a+ (blue) RGCs in the central
(top panel row), initial-peripheral (‘Peripheral-I’) (middle
row) and mid-peripheral (‘Peripheral-II’) (bottom row)
retina whereas displaced RGCs (arrowheads) are
tdTomato-negative. Transmitted images are shown on
the left. Scale bar = 20 µm. B, proportion of TRPV1+,
RBMPS+-TRPV1+, Brn3a+-TRPV1+ and
RBMPS+-Brn3a+-TRPV1+ cells across central to
peripheral retina is plotted relative to the total number
of cells per 200 µm. C, proportion of total RBMPS+ and
Brn3a+ cells across central to peripheral retina is plotted
relative to the total number of cells per 100 µm.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and
∗∗∗∗P < 0.0001.
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where R = F340/F380 ratio at a specific time (e.g. base-
line or peak response); Rmin is the F340/F380 ratio at
zero free Ca2+; Rmax is the ratio at saturating Ca2+;
and Kd at room temperature is 224 nM (Grynkiewicz
et al. 1985). Trapping by de-esterification was assumed
to accumulate the intracellular dye to �100 μM (Križaj
& Copenhagen, 1998) whereas manganese quenching
showed �95% of the Fura-2 fluorescence to be cyto-
solic, with the large majority of the dye de-esterified
and minimal compartmentalization (Szikra et al. 2009).
The calibration protocol assumes that the spectral and
biophysical properties of de-esterified Fura-2 in RGCs
correspond to those established previously, with the Kd

chosen in our study corresponding to the value determined
by Grynkiewicz et al. (1985). Kd can also be influenced by
the intracellular environment, with the reported range
of 140–250 nM (Molecular Probes catalogue; Verkhratsky
& Toescu, 1998). Our in situ calibrations represent
nominal concentration values that are based on those
assumptions.

Statistical analysis

Statistical analyses were performed with GraphPad Prism
6.0 or OriginPro 8.5. Results represent averages of RGC
responses from at least three animals (typically, 3–5
slides per experiment). Data are represented as means ±
SEM. Cells from male and female animals responded
identically to TRPV1 and eCB compounds and responses
were pooled. An unpaired t test was used to compare
two means, whereas ANOVA (one-way or two-way) with
post hoc Tukey’s or Wilcoxon tests was used to compare
three or more means. The Wilcoxon test was used for
the assessment of RGC distribution shown in Fig. 2.
Significance is indicated as NS P > 0.05, ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001.

Results

TRPV1 expression in the mouse retina is confined
to a subset of RGCs

Due to non-specific labelling with commercial TRPV1
antibodies (see Methods), we evaluated fluorescent
reporter expression in mature (i) Trpv1Cre:Ai9 retinas or
(ii) adult Trpv1Cre retinas infected with an AAV−Flex-tdTom

construct. TRPV1 expression corresponds to expression of
the fluorescent marker, tdTomato (Mishra et al. 2011), in
both retinal whole mounts (Fig. 1A) and vertical sections
(Fig. 1B). We counted 104 tdTomato+ cells/mm2 in the
RGC layer (RGCL). Many tdTomato+ cells had axons
(arrowheads; Fig. 1D and E) indicating that some RGCs
express TRPV1. We confirmed that tdTomato+ cells were
RGCs by reacting Trpv1cre:Ai9 retinas (n = 3) with either
a pan-RGC antibody, RBMPS (Rodriguez et al. 2014;

Figs 1Ei and 2A) or a Brn3a antibody that labels specific
subsets of RGCs (Nadal-Nicolás et al. 2009; Badea &
Nathans, 2011; Fig. 2A). Starburst amacrine cells lacked
TRPV1, but we used ChAT antibody to delineate IPL sub-
strata in vertical retinal sections (Fig. 1B). The density
of TRPV1:tdTomato+ cells was similar across the dorsal,
ventral, nasal and temporal RGCL quadrants (Fig. 1C).
Assuming a total retinal area of 14 mm2 (Williams &
Goldowitz, 1992; Lyubarsky & Pugh, 1996), we estimate
that the mouse retina contains �1456 Trpv1-expressing
RGCL cells.

Both the total number of TRPV1:tdTomato cells and
tdTomato+ cells that also expressed RBPMS or Brn3a
signals across the retina were non-uniform, with a
sharp increase at the transition from the central to the
mid-peripheral retina. The density gradually dropped
with increasing distance from the centre (Fig. 2B). Unlike
tdTomato+ cells (Fig. 2B), the densities of RBMPS-ir and
Brn3a-ir cells were uniformly distributed across all retinal
regions (Fig. 2C). These results show that tdTomato+ cells
in the central retina that do not express RBPMS or Brn3a
are displaced amacrines whereas peripheral tdTomato+
cells are predominantly RGCs. The displaced RGCs within
the proximal inner nuclear layer (INL) showed RBPMS-ir
but lacked tdTomato+ or Brn3a-ir (arrowheads in Fig. 2A).
These data demonstrate that TRPV1 is expressed in a
subset of RGCs within the RGCL but not proximal INL
whereas the density of TRPV1-expressing RGCs is highest
within the early- to mid-peripheral retina. It is important
to keep in mind that the distribution pattern of TRPV1+
cells in Trpv1cre:Ai9 retinas reflects the combination of
developmental and mature TRPV1 expression. While
these results could overestimate the number of TRPV1+
cells in the adult retina, expression in AAV-transduced
retinas (Fig. 1D and E) demonstrates that the Trpv1 gene
continues to be regularly transcribed and translated in the
adult retina. Expression of tdTomato in mature RGC axons
is similar to signals reported in primary PNS afferents
(Cavanaugh et al. 2011).

Exogenous application of TRPV1 agonists induces
desensitizing calcium signals in dissociated RGCs

To evaluate functional expression of TRPV1, we imaged
responses of dissociated RGCs loaded with the Ca2+
indicator dye Fura-2 to two sequential bath applications
of CAP in 2 mM Ca2+-containing saline and then to
glutamate (100 μM) to confirm each RGC’s viability.
RGCs were identified by the shape and diameter of their
perikarya and by Thy1:CFP+ or Thy1:YFP+ fluorescence
(Ryskamp et al. 2011, 2014b). At the end of each
experiment, RGCs were briefly exposed to glutamate
(100μM) to confirm their viability and only these cells were
included in the analysed data. The WT RGC response to
CAP consisted of a peak in Ca2+ fluorescence (black trace
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in Fig. 3A) followed by gradual desensitization to base-
line in the continued presence of CAP (arrowheads 2–5 in
Fig. 3B). The response had a time constant of 57.8 ± 3.1 s,
similar to the ‘acute’ TRPV1 desensitization rate reported
in sensory neurons (Cholewinski et al. 1993; Koplas et al.
1997). CAP (10 μM) elevated [Ca2+]i in 35 ± 0.8% of
RGCs (70/200) and increased the Fura-2 fluorescence ratio
(340/380) from a baseline of 0.94 ± 0.09 to 1.73 ± 0.05
(n = 70; N = 14 animals; P < 0.001). CAP responses were
absent from Trpv1−/− RGCs (n = 74; N = 20) (red trace,
Fig. 3A). WT and TRPV1 KO cells showed comparable
[Ca2+]i responses to glutamate puffs (Fig. 3D). Together
these results demonstrate that functional TRPV1 channels
are present and that CAP elevates [Ca2+]RGC exclusively
via TRPV1.

Repeated exposure to CAP induced TRPV1 tachy-
phylaxis (diminished responsiveness to repeated CAP
stimulation; Docherty et al. 1996; Koplas et al. 1997)
in these RGCs. In fact, the second application of CAP
(CAP2, Fig. 3D) did not elicit a [Ca2+]i response within
a 25 min time frame (CAP2 grey bar; Fig. 3D and E), but
did recover after 30 min (black bar denoting the CAP2
response in Fig. 3E).These results indicate that TRPV1
channels remain trapped in a desensitized/inactivated state
once activated by CAP.

Extracellular Ca2+ was required, as RGCs did not
respond to CAP in Ca2+-free saline (n = 40; Fig. 3C
and D). This also eliminates the possibility that the
CAP response predominantly involved release from intra-
cellular compartments (Gallego-Sandı́n et al. 2009),
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Figure 3. TRPV1 signalling in mouse RGCs is characterized by robust Ca2+ influx followed by
desensitization and tachyphylaxis
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trace) but not Trpv1−/− mice (n = 20; red trace); 100 µM glutamate (Glut) was applied to check RGC viability. Error
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requires Ca2+ influx via TRPV1. D, cumulative data. A second CAP stimulus (CAP2) delivered 10 min following the
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establishing the plasma membrane as the dominant pool
of activatable TRPV1. The TRPV1 antagonist CPZ (10μM)
suppressed CAP-induced [Ca2+]i increases (Fig. 3D),
confirming the specificity of functional Trpv1 expression
in RGCs.

TRPV1 is not a volume sensor in mouse RGCs

In other parts of the CNS, TRPV1 is activated by neuronal
shrinking and modulates the responsiveness to eCBs
(Sudbury et al. 2010; Pan et al. 2011; Castillo et al.
2012). To determine whether RGC TRPV1 channels are
activated by the decrease in cell volume, we compared
RGC responses of WT (n = 31) and Trpv1−/− (n = 30)
cells to hypertonic stimulation by mannitol supplemen-
tation. In the presence of a hypertonic stimulus (494
mOsm saline), RGC somata showed comparable, albeit
limited shrinkage (Fig. 4A and D). Both WT and Trpv1−/−
cells compensated with a regulatory volume increase
that was slightly more pronounced for Trpv1−/− RGCs
(Fig. 4A). This was not investigated further. Hypertonic
stimuli also did not significantly increase [Ca2+]i levels in
either WT or Trpv1−/− RGCs (Fig. 4B and C), although
both showed small, transient [Ca2+]i increases in subsets
of both RGC genotypes (4/52 in WT, 7/56 in Trpv1−/−).
These data suggest that, unlike its cognate thermochannel
TRPV4 (Jo et al. 2015; Toft-Bertelsen et al. 2017), TRPV1
neither modulates the RGC volume in response to osmotic
stress nor mediates shrinking-induced Ca2+ signals.

TRPV1 colocalizes with CB1R

For TRPV1 to interact with eCBs, both must be expressed
in the same RGC. Consistent with the binding studies that
identify CB1Rs as the predominant cannabinoid receptor
isoform in rodent retinas (Pinar-Sueiro et al. 2013;
Bouchard et al. 2016), analysis of vertical sections of the
mouse retina revealed strong immunoreactivity for CB1R
within the outer plexiform layer, IPL and RGCL (Fig. 5A).
In the GCL, the perikarya of CB1R-ir cells strongly
co-expressed Brn3a (arrows in Fig. 5Aiii) whereas CB1R
label was weaker in adjacent Brn3a-immunonegative cells
(arrowheads; Fig. 5Aiii). We validated the specificity of
the CB1R antibody using Cnr1−/− retinas (a generous
gift from Dr Christian Casanova, University of Montreal)
(Fig. 5Aiv), where only background noise was evident
(Fig. 5B).

Localization of Trpv1 and Cnr1 mRNAs in the RGCL
was verified using FISH (Jelsing et al. 2008; Shibasaki
et al. 2010), with Trpv1 and Cnr1 probes co-labelling
subsets of cells in the RGCL (inset in Fig. 5Ciii). In
Trpv1Cre:Ai9 retinals, tdTomato was localized to cells
within the RGCL that were CB1R-ir (inset in Fig. 5Cii),
and also labeled a few cells in the INL (arrowhead).
CB1R-ir signals in tdTomato+ cells were, on average, not
significantly different when compared to Brn3a+ cells but
were significantly more prominent when compared to
Brn3a− cells (Fig. 5D). The cytosolic CB1Rir signals in
the RGCL cells may reflect localization to intracellular
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compartments, such as the mitochondria (Benard et al.
2012).

eCBs evoke TRPV1-mediated calcium signals in RGCs

Since eCBs and TRPV1 are co-expressed, it is conceivable
that they might modulate RGC function through parallel
stimulation of the TRPV1 ion channel and the CB1R
GPCR. We evaluated the potential of eCBs to stimulate
TRPV1 activity in the retina in vitro, using AEA and NADA
(Di Marzo et al. 1994; Zygmunt et al. 1999; Ryskamp et al.
2014b). In dissociated RGCs, both eCB ligands triggered
marked elevations in [Ca2+]i, showing desensitization
kinetics similar to those of the RGC response to CAP
(Fig. 6A). To obtain a measure of the absolute [Ca2+]i

response to eCB ligands, we calibrated Fura-2 fluorescence
signals using AEA and NADA in a subset of experiments.
For example, AEA increased [Ca2+]i in WT cells from
51 ± 10 to 409 ± 51 nM (n = 26; P < 0.0001) (Fig. 6A
and B), with a desensitization time constant of 60.3 ± 8.5,
similar to CAP (one-way ANOVA, post hoc Dunnett test).
eCB-induced [Ca2+]i increases were antagonized by the
TRPV1 blockers, CPZ and BCTC (1μM); the latter reduced
AEA-evoked [Ca2+]i increases to 77 ± 33 nM (n = 45;
P < 0.0001) (Fig. 6B and E). AEA/NADA-evoked Ca2+
signals were largely absent in Trpv1−/− cells, as indicated
by the low percentage of responding cells (Fig. 6C) and

the insensitivity of cytosolic [Ca2+]i in KO cells to the two
eCBs (Fig. 6B–D).

TRPV4, a cognate vanilloid receptor, is expressed in
WT RGCs (Ryskamp et al. 2011, 2014a), has similar
functional properties to TRPV1 and may be sensitive
to AEA (Güler et al. 2002; Watanabe et al. 2003). To
disambiguate our result, we tested whether eCBs activate
TRPV4 in RGCs. Fura-2-mediated signals induced by
AEA were recorded in the presence of the selective
TRPV4 antagonist, HC-067047 (1 μM). HC-067047,
which fully blocks TRPV4-mediated [Ca2+]i elevations
in mouse RGCs and glia (Ryskamp et al. 2014a; Jo
et al. 2015), did not affect eCB-evoked [Ca2+]RGC

responses (Fig. 6E). Consistent with this finding, eCBs
failed to evoke [Ca2+]i elevations in Trpv1−/− RGCs
(Fig. 6E). We conclude that eCB-induced [Ca2+]i

elevations in mouse RGCs are predominantly mediated by
TRPV1.

TRPV1 functionally interacts with CB1R

Co-expression of TRPV1 and CB1R in RGCs (Fig. 5)
suggests that eCBs may mediate parallel signalling through
these proteins. To determine whether CB1R activation has
an impact on TRPV1 channel signalling, we stimulated
isolated RGCs with CAP in the presence/absence of 2-AG,
an agonist of CB1R/CB2Rs that is a far less potent activator
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of TRPV1 (Sugiura et al. 1999; Zygmunt et al. 2013).
Application of 2-AG (1 μM) alone had no effect on
[Ca2+]RGC in WT or Trpv1−/− cells (Fig. 7), suggesting
that this eCB does not directly activate TRPV1. However,
CAP-evoked [Ca2+]i elevations in isolated RGCs were
completely suppressed by 2-AG in adult (P30–60) retinas
(Fig. 7A–C), indicating that CB1R activation functionally
interacts with TRPV1 to inhibit calcium influx. We found
that this suppressive effect is absent in RGCs dissociated
from early postnatal (P6–7) retinas (Fig. 6D and E);
however, developmental regulation of CB1R-mediated
modulation of TRPV1 signalling was not investigated
further.

2-AG can function as a partial TRPV1 agonist in some
cell types (Zygmunt et al. 2013). Although the lack of
calcium responses to 2-AG argues against partial agonist
action at the micromolar concentration used, we used four
additional assays to verify the effect of the CB1R signalling
pathway on TRPV1 activation. First, RGCs were exposed
to 2-AG in the presence of the inverse CB1R antagonist
rimonabant (0.5 μM), which reverses the suppressive effect
of eCBs on neuronal TRPV1 activation (Mahmud et al.

2009). As shown in Fig. 7F and G, rimonabant disinhibited
the CAP response to 2-AG. Because rimonabant may
act as partial TRPV1 agonist (Zygmunt et al. 1999;
De Petrocellis et al. 2001; Gibson et al. 2008) we also
exposed RGCs to CAP in the presence of WIN55,122-2
(5 μM), a non-selective CB1R agonist that is structurally
unrelated to 2-AG. Preincubation with WIN55,122-2
inhibited CAP-evoked [Ca2+]i increases (Fig. 7G). Third,
if CB1R–TRPV1 interactions in RGCs involve the classical
heterotrimeric Gi protein–receptor intermediation, the
inhibitory effect of 2-AG should be antagonized by PTX,
an ADP-ribosylating toxin that prevents G proteins from
interacting with their cognate GPCRs. PTX (100 ng/ml)
blocked 2-AG-mediated inhibition of TRPV1 signalling
(Fig. 6H and I) but did not affect the CAP response itself
(n = 64, N = 3). Finally, RGCs from Cnr1−/− retinas
were stimulated with CAP in the presence and absence
of 2-AG. As shown in Fig. 7J and K, the amplitude of
CAP-evoked [Ca2+]i elevations in Cnr1−/− cells (n = 17)
was similar to responses induced in cells preincubated
with 2-AG (n = 16). The percentages of CAP responders
(28.8%) and CAP + 2-AG responders (27.6%) in Cnr1−/−
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NS P > 0.05, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001.

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society



6510 A. O. Jo and others J Physiol 595.20

cells were similar to 35% CAP-responding RGCs from
wild-type retinas.

TRPV1 tachyphylaxis is regulated through
CB1R-mediated modulation of cAMP signalling

CAP-mediated desensitization of TRPV1 generally
involves two separate mechanisms: (i) ‘acute
desensitization’ during sustained exposure to CAP,
and (ii) ‘tachyphylaxis’, the diminution of the peak
response during successive delivery of the same CAP
concentration (Cholewinski et al. 1993; Koplas et al.
1997). Given that TRPV1 desensitization in sensory
neurons requires protein kinase A (PKA) and that CB1Rs
have been linked to Gi-mediated inhibition of adenylate
cyclase, reduction in [cAMP]i and suppression of PKA
(Di Marzo, 2008), we designed experiments to determine
whether PKA activation might obviate the inhibitory
action of CB1Rs on TRPV1. RGCs were stimulated with
CAP in the presence of forskolin (FSK), a commonly
used adenylate cyclase activator. As shown in Fig. 8A and
D, FSK restores the capacity of WT RGCs to respond
to repeated application of CAP and also antagonizes
the inhibitory effect of 2-AG on the amplitude and
prevalence of RGC responses to CAP (Fig. 8B and C).
FSK had no discernible effect on glutamate-evoked
[Ca2+]i responses (Fig. 8D) or baseline [Ca2+]i levels
(Fig. 8A and D). Even though tachyphylaxis was pre-
vented by FSK (Fig. 8A), acute desensitization of the
channel persisted (arrowheads in Fig. 8A), indicating that
desensitization and tachyphylaxis are governed by distinct
mechanisms.

To further evaluate the involvement of cAMP signalling,
we stimulated TRPV1 channels in RGCs with CAP in the

presence of Sp-cAMPS (5 μM), a membrane-permeable
analogue of cAMP. The analogue had no effect on the
time course of CAP-evoked [Ca2+]i responses and in
RGCs incubated in Sp-cAMPS tachyphylaxis was obviated
(Fig. 8E and F). In the presence of Rp-cAMPS (5 μM),
a potent competitive antagonist of cAMP, RGCs were
unable to respond to the second application of CAP
(Fig. 8G and H). These data show that (i) CB1R-dependent
suppression of PKA signalling plays a crucial role in
regulating repetitive TRPV1 activation, and (ii) PKA
represents a main regulator of TRPV1 tachyphylaxis in
RGCs. Thus, PKA-dependent phosphorylation, regulated
through the CB1R pathway, is critical for use-dependent
activation of TRPV1 channels in mouse RGCs.

Discussion

These data demonstrate the localized pattern of
retinal TRPV1 expression and provide new insights
into the complexity of TRPV1 and eCB signalling in
the mammalian retina. Collectively, our data reveal
the importance of parallel eCB-dependent signalling
mechanisms in the retina and uncover molecular
mechanisms that underlie modulation of TRPV1
signalling in RGCs.

The localization of TRPV1 expression in the
brain/retina has been debated because: (i) the channel
is barely detectable in some TRPV1 reporter mice
(Cavanaugh et al. 2011), (ii) antibodies and mRNA probes
that reliably detect the channel in the PNS show minimal
signals in WT retinas (see Methods; Gilliam & Wensel,
2011), (iii) TRPV1 expression was not detectable in the
optic nerve head (Choi et al. 2015) and (iv) morphological
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and physiological retinal phenotypes induced by CAP
probably involved activation of bipolar TRPM1 channels
(Shen et al. 2009). Our counts of TRPV1:tdTomato+ cells
and analyses of TRPV1-responders in dissociated retinal
preparations showed that the channel is confined to a sub-
set of RGCs. Taking the average density of RGCL neurons
to be �8200 cells/mm2 (Jeon et al. 1998), the overall
estimated proportion of TRPV1-expressors is �17%. The
percentage increases to �44% if the analysis is confined to
RGCs (3300 cells/mm2), which matches our functional
analyses of CAP responsivity of RGC [Ca2+]i signals

(�25–40%). While the Trpv1Cre:Ai9 reporter line show
TRPV1 to be an embryonic marker of nociceptors, with
tdT expression in cells that had expressed Trpv1 during
development or are actively expressing Trpv1, (Mishra
et al. 2011), the similar percentages of tdT+ cells in
the RGCL of Trpv1:Ai9 retinas and CAP responding
cells in dissociated WT retinal preparations argue against
major developmental loss of TRPV1 functionality. TRPV1
expression in the adult was confirmed by AAV:Trpv1+
signals which brought out the dendritic–axonal features
of TRPV1-expressing neurons.
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We found that the relative proportion of TRPV1-
expressing RGCs vis à vis putative displaced
amacrine cells increases from the central towards the
initial/mid-peripheral region. This may seem surprising
given that the mouse lacks the steep eccentricity gradient
of photoreceptors and RGCs that predicts uniform
encoding of the visual space, although previous work
shows that RGCs exhibit a modest (yet several-fold)
reduction in density from centre to periphery (Dräger &
Olsen, 1981; Jeon et al. 1998) with pronounced functional
differences across the dorsoventral axis (Hilgen et al.
2017). Taking into account that categorization of mouse
RGCs differs based on morphological, physiological
and molecular criteria (Sanes & Masland, 2015), it is
unclear whether the density of TRPV1+ RGCs with the
highly significant peaks in the mid-periphery reflects
non-uniform distribution of RGC subtypes, local
changes in eCB signalling, differences in the expression
of the molecular marker (TRPV1) or a combination
of these. Non-uniform distribution patterns have
recently been shown for ON alpha-like (Bleckert et al.
2014), intrinsically photosensitive (Hughes et al. 2013)
and W3/G10 ‘local edge detector’ RGCs (Zhang et al.
2014; Baden et al. 2016) while asymmetry in J-RGC
morphology was observed in a subset of directionally
selective OFF-RGCs (Kim et al. 2008). Regardless, our data
suggest that transduction of TRPV1-activating stimuli in
the mouse retina might be spatially non-uniform.

We did not investigate the acute component of
TRPV1 desensitization in mouse RGCs, which is likely
to involve Ca2+-CaM and/or calcineurin modulation
(Docherty et al. 1996; Numazaki et al. 2003); however,
our observation that stimulation of the cAMP pathway
obviates the refractory period induced by pre-exposure
to CAP and that suppression of cAMP signalling is
required for tachyphylaxis establishes CB1R signalling
and PKA-mediated phosphorylation as a critical regulator
of RGC TRPV1 signalling. The functional significance
of tachyphylaxis in RGCs is unknown; however, an
analogy with sensory neurons (e.g. Levine & Reichling,
1999) suggests possible roles in inflammatory hyperalgesia
imposed by mechanical stress. The refractory period might
involve additional reciprocal feedback loops between
Ca2+ influx and Ca2+-dependent adenylate cyclases,
several of which (Ca2+-activated AC3, AC5, AC8 and
Ca2+-CaM-inhibited AC1) were localized to the RGCL
(Nicol et al. 2006). The absence of shrinking-induced
TRPV1 activation suggests that RGCs express the
full-length protein rather than the short, CAP-insensitive,
N-terminal splice variant that has been implicated in the
transduction of cell shrinkage in osmosensitive hypo-
thalamic neurons (Sudbury et al. 2010).

A main finding is that ubiquitous eCBs such as
AEA and 2-AG modulate [Ca2+]RGC through parallel
TRP and CB1R mechanisms. Although CB1Rs are

believed to be principally presynaptic (Gibson et al.
2008; Yazulla, 2008; Elphick, 2012), our data underline
the potential for non-retrograde eCB signalling within
the adult inner retina. [Ca2+]RGC elevations induced by
AEA/NADA are consistent with full agonist action on
the CAP/AEA/3H-RTX binding site that may involve
the Tyr511 residue of TRPV1 (Jordt & Julius, 2002),
whereas suppression of CAP-induced [Ca2+]i signalling
by 2-AG/WIN55,122 and PTX-mediated suppression of
the inhibitory action of 2-AG confirm the metabotropic
activation of Gαi and its downstream effectors in RGCs.
Recent studies in central neurons similarly demonstrated
the importance of anterograde mechanisms in synaptic
plasticity (Yoshida et al. 2006; Kano et al. 2009; Chávez
et al. 2014). Intriguingly, TRPV1 inhibition by 2-AG was
absent in early postnatal (P6–P8) (wild-type and trans-
genic) RGCs. While the molecular mechanisms associated
with the apparent age-dependent effectiveness of eCB
signalling remain to be determined, they could involve
lower expression of CB1Rs in the early postnatal retina
(Zabouri et al. 2011) or reduced expression of signalling
components downstream from the GPCR. The resistance
of AEA-evoked [Ca2+]i elevations to HC-067047 suggests
that AEA hydrolases that produce downstream eicosanoid
activators of TRPV4 were not operational under our
experimental conditions.

Our findings identify new possible roles for time-
dependent modulation of eCB signalling in the inner
retina. For example, activity-dependent eCB release
from bipolar cells and/or RGCs might transiently
elevate [Ca2+]i in TRPV1-expressing cells, followed by
metabotropic, CB1R-mediated suppression of glutamate
release from CB1R-expressing bipolar and amacrine
processes (Middleton & Protti, 2011) and inhibition
of TRPV1-dependent Ca2+ signalling in RGCs. This
could accentuate contrast sensitivity while preserving
the response bandwidth of the bipolar-RGC synapse
(Miracourt et al. 2016). By decreasing glutamate release
and suppressing postsynaptic voltage-operated Ca2+
channels, eCB release might also protect RGCs from insults
such as intraocular pressure (IOP)-induced ischaemia
(Lalonde et al. 2006; Opere et al. 2006; Nucci et al. 2007;
Miraucourt et al. 2016), which would be consistent with
the increased sensitivity of Cnr1−/− mice to inflammatory,
oxidative stress and excitotoxic insults (Albayram et al.
2011). In any case, the precise mechanism of eCB action
on RGCs will be determined by the local balance between
anandamide and 2-AG release, which were proposed to
modulate tonic and use-dependent components of eCB
signalling, respectively (Elphick, 2012).

Together, these findings reinforce the important role
of non-synaptic ion channels in the regulation of neuro-
nal output (Llinás, 2014). TRP channels are increasingly
recognized to play key functions in the transmission
of information from the retina to more central visual
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structures, given their role in glutamatergic signalling
(TRPM1; Morgans et al. 2009; Shen et al. 2009), swelling
and inflammation (TRPV4; Ryskamp et al. 2011, 2014b,
2015), mechanical stress (TRPC1, TRPV1; Sappington
et al. 2009; Molnar et al. 2016), sensitivity to membrane
lipid derivatives (TRPV1/4; Ryskamp et al. 2014b, 2016)
and cholesterol (Lakk et al. 2017), endoplasmic reticulum
Ca2+ store repletion (TRPC1; Szikra et al. 2009; Molnar
et al. 2016) and transduction of the intrinsic RGC
response to light (TRPC6/7; Xue et al. 2011). Our data
demonstrate that retinal TRPV1 expression is limited to
subsets of RGCs and amacrine cells, with peak TRPV1+
RGC density between the centre and the mid-periphery.
Additional functions of TRPV1 may influence the intrinsic
excitability of RGCs through integration of local pH and
thermal stimuli (Miraucourt et al. 2016) and sensitivity to
mechanical stress and IOP (Sappington et al. 2009; Ward
et al. 2014).
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Križaj D (2012). Store-operated channels regulate
intracellular calcium in mammalian rods. J Physiol 590,
3465–3481.

Molnar T, Yarishkin O, Iuso A, Barabas P, Jones B, Marc RE,
Phuong TT & Križaj D (2016). Store-operated calcium entry
in Müller glia is controlled by synergistic activation of TRPC
and Orai channels. J Neurosci 36, 3184–3198.

Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS,
Duvoisin RM & Brown RL (2009). TRPM1 is required for
the depolarizing light response in retinal ON-bipolar cells.
Proc Natl Acad Sci USA 106, 19174–19178.

Mori F, Ribolsi M, Kusayanagi H, Monteleone F, Mantovani V,
Buttari F, Marasco E, Bernardi G, Maccarrone M &
Centonze D (2012). TRPV1 channels regulate cortical
excitability in humans. J Neurosci 32, 873–879.
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