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SUMMARY
Lowering total tau levels is an attractive therapeutic strategy for Alzheimer’s disease and other tauopathies. High-throughput screening

in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. How-

ever, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, andmulti-step differentiation

procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly

converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into

cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify

tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous

human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative

disease.
INTRODUCTION

The microtubule-associated neuronal protein tau stabi-

lizes microtubules and mediates axon outgrowth and

axonal transport. Abnormal tau is strongly implicated in

Alzheimer’s disease (AD) and other neurodegenerative

tauopathies (Wang and Mandelkow, 2016). Although in-

traneuronal aggregates of insoluble tau fibrils, known as

neurofibrillary tangles, are a hallmark of tauopathies and

correlate with cognitive decline in AD (Nelson et al.,

2012), soluble tau may also play a key pathogenic role

(Brunden et al., 2008; Spires-Jones et al., 2011). In

Drosophila and mouse models, overexpression of wild-

type human tau induces neurodegeneration (Wittmann

et al., 2001), axonopathy (Spittaels et al., 1999), and

extensive cell death (Andorfer et al., 2005) independently

of tangle formation. In two regulatable tauopathy mouse

models, suppressing soluble tau expression resulted in

memory recovery (Santacruz et al., 2005; Sydow et al.,

2011) and stabilized neuron numbers (Santacruz et al.,

2005) without reducing the level of neurofibrillary tan-

gles, suggesting that soluble forms of tau promote neuro-

degeneration. Lowering endogenous tau levels reduces

amyloid b (Ab)-induced behavioral deficits in AD mouse

models (Roberson et al., 2007; Vossel et al., 2010), and

lowering total tau levels by inhibiting tau acetylation or
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phosphorylation rescues tau-related memory deficits in

PS19 transgenic mice (Lasagna-Reeves et al., 2016; Min

et al., 2015). Since tau knockout mice appear to be cogni-

tively normal, lowering total tau levels in neurons appears

to be safe and will likely have a high therapeutic index

(Morris et al., 2013). Thus, soluble tau is a promising

therapeutic target. However, identifying selective, non-

toxic tau-lowering compounds has proven to be difficult

(Gruninger, 2015).

Cell-based ‘‘phenotypic’’ high-throughput screening

(HTS) is a powerful unbiased tool to identify gene targets

or small-molecule compounds exerting desired effects.

However, HTS requires large numbers of cells and has

been largely restricted to immortalized human neuronal

lines, such as neuroblastoma SH-SY5Y(Jain et al., 2012)

and gliomaH4 (Albrecht et al., 2004) cells, or non-neuronal

lines, such as HeLa cells (Fatokun et al., 2013). Since these

cells differ physiologically from post-mitotic neurons, hits

identified in these cells might not work in neurons. This

may be particularly true for tau, a neuronal protein that is

abundant in axons but is mainly expressed in the cytosol

in non-neuronal cells (Uberti et al., 1997). Rodent primary

neurons are more physiologically relevant, but challenges

in scalability preclude their use for HTS, and certain com-

pounds may differ in activity between human and rodent

cells.
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Figure 1. Engineering of i3N iPSCs and Generation of Homogeneous Functional Glutamatergic Neurons by a Simplified Two-Step
Procedure
(A) Schematic of the targeting of the AAVS1 locus with pUCM.Puro-CAG.rtTA3G-TRE3G.Ngn2 donor vector by TALEN-mediated integration.
The third-generation doxycycline-inducible reverse transcriptional activator (rtTA3G) is driven by the CAG promoter and followed by
rbGlob polyA tail. Mouse Ngn2 is driven by the tet response element (TRE3G) and followed by SV40 polyA tail. It is oriented tail-to-tail with

(legend continued on next page)

1222 Stem Cell Reports j Vol. 9 j 1221–1233 j October 10, 2017



Human induced pluripotent stem cells (iPSCs) are a

promising alternative because they can be used to generate

large numbers of subtype-specific human neurons that are

relevant to neurodegenerative disease. However, iPSC-

derived neurons currently have limited utility in HTS as-

says (D’Aiuto et al., 2014), as traditional differentiation

methods are difficult to scale up and usually yield a hetero-

geneous population of neurons and glia-like cells over a

protracted timeline (Muratore et al., 2014; Nicholas et al.,

2013). More homogeneous neuronal populations can be

produced by overexpressing pro-neuronal transcription

factors (Chanda et al., 2014; Pang et al., 2011). Neurogenin

2 (NGN2)-induced neurons from various human embry-

onic stem cell and iPSC lines show robust morphological,

transcriptional, and functional homogeneity (Busskamp

et al., 2014; Zhang et al., 2013). However, this method

has shortcomings for HTS. First, it entails a labor-intensive

multi-step differentiation procedure that is difficult to

apply to microplates. Second, it is subject to cell-to-cell

and well-to-well variability due to different viral infection

and puromycin selection rates, uneven cell distribution,

which might affect cell survival and image quantification,

and experiment-to-experiment variability due to differ-

ences in viral titers and qualities of primary mouse glia

from different batches. Third, it is costly to scale up.

In this study, we engineered a clonal iPSC line that stably

harbors a doxycycline-inducible mouse Ngn2 transgene at

an adeno-associated virus integration site 1 (AAVS1) safe-

harbor locus. This integrated, inducible, and isogenic

Ngn2 iPSC line (i3N) can be differentiated into functional

glutamatergic cortical neurons by a simplified two-step dif-

ferentiation protocol. We developed a robust high-content

screening (HCS) assay to identify tau-lowering compounds

and discovered compounds that target adrenergic receptor

(AR) pathways to lower endogenous human tau.
rtTA3G. Orange boxes are exons of the PPP1R12C gene; gray boxes are
junction PCR screening and generate 1.1-kb and 1.5-kb PCR products,
detect the nonintegrated allele at the AAVS1 locus.
(B) Flow diagram of the two-step procedure for generating i3Neurons
(C) Representative phase-contrast images during the differentiation
50 mm.
(D) Representative images showing immunocytochemical staining for
NeuN in i3Neurons after 4 weeks of differentiation. Nuclei were label
(E) Representative images of immunocytochemical staining of mature
an axon identified by the axon initiation segment marker ankyrin G (
(F) Representative confocal images of i3Neurons showing immunola
receptors (red) and the presynaptic vesicular glutamate transporter VG
glutamatergic synapses formed between i3Neurons. Scale bar, 5 mm.
(G) Representative traces of action potentials evoked by 500-ms curren
at a higher firing frequency (black trace).
(H) Spontaneous excitatory postsynaptic currents recorded from an i3

(bottom).
See also Figures S1 and S2.
RESULTS

Engineered iPSCs for Scalable Production of

Homogeneous Excitatory Neurons

Lentivirus-mediatedNGN2 expression induces rapid differ-

entiation of iPSCs into excitatory neurons (Zhang et al.,

2013). To avoid viral transduction-induced toxicity and

variability in NGN2 expression, we engineered isogenic

iPSC lines with an integrated Ngn2 expression cassette. A

doxycycline-inducible Ngn2 transgene was integrated

into the AAVS1 safe harbor of a well-characterized control

human iPSC line (WTC11) (Miyaoka et al., 2014) by

TALEN-mediated integration of a donor cassette contain-

ing a puromycin-resistance gene (Figure 1A). Six puromy-

cin-resistant clones were picked, and integration of

the Ngn2 transgene into the AAVS1 locus was confirmed

with two sets of primers (PCR1 and PCR2) (Figures 1A

and S1A). Transgene integration into both alleles was

confirmed by the absence of the wild-type allele, deter-

mined by a third set of primers (PCR3) (clones 1 and 4).

These iPSC clones have isogenic, integrated, and inducible

NGN2 expression (i3N); neurons derived from them

are called i3Neurons. Further characterization of clone 1

in the absence of doxycycline showed homogeneous

expression of the pluripotency markers OCT4, SOX2,

and TRA-1-81, indicating no leakage of NGN2 expression

(Figure S1B). The cells also had a normal karyotype

(Figure S1C).

i3N iPSCs could be differentiated into functional excit-

atory neurons by the published multi-step differentiation

protocol. To overcome the poor scalability and reproduc-

ibility of this procedure when adapted to the HTS plat-

form, we established a simplified two-step protocol

(Figure 1B). After doxycycline induction and subplating,

pre-differentiated i3Neurons became post-mitotic, and
regions of homology. PCR1 and PCR2 primers are used for 50 and 30

respectively. PCR3 primers (product size, 248 base pairs) are used to

.
of i3Neurons. The timeline is the same as shown in (B). Scale bar,

the pan-neuronal marker MAP2, bIII tubulin (TUJ1 antibody), and
ed by Hoechst. Scale bar, 25 mm.
8-week-old i3Neurons show tau enrichment (detected with HT7) in
AnkG). Nuclei were labeled by Hoechst. Scale bar, 25 mm.
beling of postsynaptic GluR2/3 containing AMPA-type glutamate
lut1 (green). The colocalization of GluR2/3 and VGlut1 puncta marks

t step injections at just above the firing threshold (green trace) and

N neuron (top) were blocked by CNQX, an AMPA receptor antagonist
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exhibited neuron-like morphology in less than 7 days and

mature neuronal morphology within 3–4 weeks in the

absence of glia (Figure 1C). Differentiated neuron mar-

kers bIII tubulin (TUJ1), microtubule-associated protein 2

(MAP2), and neuronal nuclei antigen (NeuN)were detected

in i3Neurons after 4 weeks of maturation (Figure 1D). The

absence of Olig2-positive oligodendrocytes or glial fibril-

lary acidic protein (GFAP)-positive astrocytes confirmed

the purity of the neuronal population (Figure S2A).

In 8-week-old i3Neurons, tau was abundant in axons

identified by the presence of a single axonal initial segment

(AIS), as detected with ankyrin G staining (Kordeli et al.,

1995) (Figure 1E). More than 90% of i3Neurons contained

AIS, supporting the notion that they exhibit mature polar-

ity by 8 weeks (Figure S2B). Tau expression had little over-

lap with MAP2, a dendritic marker (Figure 1E). Both

three-repeat (3R) and four-repeat (4R) tau were detected

(Figure S2C). Tau in i3Neurons were also highly phosphor-

ylated, compared with healthy human brain (Figure S2D).

Importantly, all i3Neurons expressed vesicular glutamate

transporter 1 (VGlut1), a marker of glutamatergic neurons,

and were GABA negative, indicating a homogeneous popu-

lation of excitatory glutamatergic neurons (Figure S2E).

The punctate distribution of synapsin-1 staining along

the processes revealed abundant synapse formation (Fig-

ure S2F). When co-cultured with glia, i3Neurons had

mature synapses that contained juxtaposed pre- and post-

synaptic markers of glutamatergic synapses (Figure 1F).

Whole-cell patch-clamp recordings showed action poten-

tial firing in response to current injections (Figure 1G).

Spontaneous postsynaptic currents detected in i3Neurons

were blocked byCNQX, anAMPA receptor antagonist, con-

firming functional glutamatergic synaptic transmission

(Figure 1H).

i3Neurons Cultured in Microplates Show

Homogeneous Gene Expression with Low Variability

Two key determinants of reliable HTS are scalability and

minimal well-to-well variability. We were able to produce

large quantities of i3Neurons via i3N iPSC proliferation

and a pre-differentiation step. Subsequent subplating en-

ables i3Neurons culture in 96- and 384-well microplates

with even cell distribution (Figure 1B). To determine

whether i3Neurons homogeneously differentiate in micro-

plates, we quantified the expression of multiple neuronal

and glial genes of 4-week-old cells from 12 randomly

selected wells of a 96-well plate by RT-qPCR (Figure 2).

Consistently high levels of pan-neuronal genes, AMPA re-

ceptor genes, glutamate transporter genes, synaptic genes,

and CUX1, a marker of cortical layer 2/3 neurons, were

observed in all 12 wells, suggesting a uniform differentia-

tion of glutamatergic cortical neurons. In addition, all the

i3Neurons showed low expression of twomarkers of neural
1224 Stem Cell Reports j Vol. 9 j 1221–1233 j October 10, 2017
progenitor cells, PAX6 and NESTIN, indicating that they

were fully differentiated. Ngn2 was undetectable, as ex-

pected in the absence of doxycycline. No markers of glial

cells or of GABAergic neurons (e.g., GAD65/67) were de-

tected, but the GABA receptors GABRA2 and GABRB1

were expressed at low levels. Thus, i3Neurons can be

cultured in microplates with low well-to-well variability

and are suitable for HTS.

Optimization of an HCS Assay to Screen

for Tau-Lowering Compounds

Lowering tau levels has emerged as a key therapeutic op-

portunity in AD. To our knowledge, no HCS targeting

endogenous tau has been performed in post-mitotic hu-

man neurons. Because i3Neurons are scalable and highly

homogeneous, they are an ideal system to screen for tau-

targeted therapeutics. Taking advantage of the highly spe-

cific anti-human tau antibody HT7, we set out to develop

a 384-well format HCS assay to detect endogenous tau

levels in i3Neurons (Figure 3A). Total tau levels were deter-

mined by immunoreactivity of HT7 normalized to bIII

tubulin intensity in a corresponding well (HT7/TUJ1) (Fig-

ure 3B). The background signal, measured inwells omitting

HT7, was more than 10-fold lower than those with HT7

(Figures 3B and S3A). The optimal seeding density was

2,000 cells/well (Figure S3A). Neuronal health was judged

from neurite total length (Figure S3B) and valid nucleus

count (Figure S3C), two highly correlated health parame-

ters (Figure S3D) that are widely used (Harrill et al., 2013;

K Hancock et al., 2015). Treatment with a tau-specific

siRNA reduced the total tau levels in a dose-dependent

manner (Figures 3C and 3D), whereas increased total tau

levels were detected when i3Neurons were infected by

AAV human tau (Figures S3E and S3F), confirming assay

specificity and sensitivity. Salicylate, YM-01, and methy-

lene blue reduce total tau levels (Abisambra et al., 2013; Ho-

sokawa et al., 2012; Min et al., 2015). All three compounds

reduced the HT7/TUJ1 signal in a time-dependent manner

accompanied by a mild yet significant reduction of neurite

total length (Figure 3E). The Z0 factor, ameasure of the assay

response window (Zhang et al., 1999) and determined by

values of control and hTau siRNA, was 0.41, supporting

the robustness of the HCS assay.

Identification of Tau-Lowering Compounds via HCS

Next, we used the HCS assay to screen LOPAC (Library of

Pharmacologically Active Compounds) for tau-lowering

compounds. This library contains 1,280 bioactive small

molecules, including inhibitors, receptor ligands,marketed

drugs, and pharmaceutically relevant structures, that affect

most signaling pathways and cover major drug target clas-

ses. Since overwhelming majority compounds did not

change tau levels (Figure 4A), we used sample compounds
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Figure 2. i3Neurons Show Homogeneous
Expression of Glutamatergic Cortical
Neuronal Genes
Heatmap of RT-qPCR analysis of expression
levels of genes listed on the right. Expres-
sion levels are normalized to housekeeping
gene GAPDH (expressed as �DCt) and color
coded as shown. mRNA was harvested
from 12 random wells of 4-week-old i3Neu-
rons cultured in a 96-well plate. See also
Table S1.
as their own control and calculated Z scores based on

LOPAC compounds on each plate (Brideau et al., 2003).

Compounds that changed tau (as judged from the HT7/

TUJ1 ratio) were defined as hits if their Z scores were greater

than 3 or less than �3, a stringent cut-off correlates to a p

value of 0.00135 (Zhang et al., 2006). All hits were then

ranked by neuronal health parameters, including neurite

total length (Figure 4B) and valid nucleus count (Figure 4C).

The top two tau-lowering hits that show least cytotox-

icity, measured by neurite total length and valid nucleus
count, are two functionally related AR agonists, moxoni-

dine and metaproterenol (Figures 4B and 4C). To validate

these hits, we adapted a sensitive human tau ELISA

that uses HT7 as the capture antibody and Tau5 as the

detection antibody (Meredith et al., 2013). The dynamic

range of the assay was >3,000, and the detection limit

was �10.7 pg/mL (Figure 5A). This assay readily detected

siRNA-induced reduction of endogenous human tau

by >50% (Figure 5B). We then confirmed that moxonidine,

clonidine (a moxonidine-related adrenergic agonist), and
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Figure 3. Development and Validation of an HCS Assay to Detect Tau Levels in i3Neurons
(A) Schematic of the HCS assay optimized to measure cellular tau levels in neurons treated with small-molecule compounds.
(B) Representative fluorescence high-content images showing tau (green) and bIII tubulin (white) channels from a background well (left,
anti-TUJ1 only) and a control well (right, anti-HT7 and TUJ1). Neurite regions (purple) were traced according to the TUJ1 channel and
were applied to the tau channel with the neuronal profiling module of Cellomics software. Scale bar, 10 mm.
(C) Representative fluorescence high-content images showing tau (green) and bIII tubulin (white) channels from i3Neurons after 7 days of
treatment with control siRNA or human tau siRNA (0.5 or 1 mM). Scale bar, 50 mm.
(D) Automated quantification of human tau levels (left) and neurite total length (right) from i3Neurons treated with human tau siRNA.
Data are from three independent experiments, total N = 42 per treatment; values are means ± SEM relative to control siRNA. ****p <
0.0001 compared with control siRNA, STATA mixed model. ####p < 0.0001, STATA mixed model.
(E) Automated quantification of human tau levels (left) and neurite total length (right) from i3Neurons treated with 5 mM salicylate, 1 mM
YM-01, or 1.5 mM methylene blue for 24–72 hr. Data are from three independent experiments, total N = 42 per treatment; values are
means ± SEM relative to DMSO. ***p < 0.001, ****p < 0.0001, compared with DMSO, STATA mixed model; #p < 0.05, ###p < 0.001, ####p <
0.0001, comparison between three time points within each compound treatment, STATA mixed model.
See also Figure S3.
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metaproterenol reduced tau levels in a dose-dependent

manner. None of the three compounds induced a signifi-

cant loss of bIII tubulin, as measured with a bIII tubulin

ELISA, indicating a lack of toxicity (Figures 5C–5E).

Additional pharmacologic modulators of a- and b-AR

activity were used to further confirm the involvement of

a- and b-adrenergic signaling in modulating endogenous

human tau levels. i3Neurons were treated with nonselec-

tive a- or b-AR agonists (dexmedetomidine or isoproter-

enol) and their respective antagonists. Activation of a- or

b-ARs significantly reduced endogenous human tau levels,

and inhibition by nonselective antagonists caused tau

accumulation (Figures 5F and 5G). Moreover, the tau-

lowering effects of moxonidine and metaproterenol were

abolished by pre-incubationwith the corresponding antag-

onists (atipomezole and propranol, respectively) (Figures

5F and 5G). The ability of a- or b-AR agonists to reduce

endogenous tau levels was further confirmed in an inde-

pendent line of i3Neurons (Figures S4A and S4B). Our

results showed that activation of a- and b-adrenergic
signaling pathways could represent tau-lowering therapeu-

tic strategies in human neurons.
DISCUSSION

In this study, we integrated a doxycycline-inducible mouse

Ngn2 cassette into the AAVS1 locus and established iPSC

lines that can be converted efficiently to a uniform popula-

tion of glutamatergic neurons by a simplified two-step pro-

tocol. We then developed a robust, scalable, and simple

HCS assay and used it to identify compounds that lower

tau in post-mitotic human neurons. This proof-of-princi-

ple screen identified AR agonists as a class of compounds

that decrease endogenous human tau levels.

i3Neurons have several features that make them suitable

for HTS, particularly imaging-based HCS. First, the popula-

tion of differentiated neurons is homogeneous, whichmay

reflect the uniform genetic background of the clonal

i3N iPSCs. As all of the iPSC-derived cells are neurons,
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Figure 5. Activation of a- and b-AR Re-
duces Total Tau Levels in i3Neurons
(A) Representative calibration curve of HT7-
Tau5 ultra-sensitive human tau ELISA. Inset
shows the assay’s limit of quantification
(LOQ).
(B) 7-day incubation of human tau siRNA
significantly lowered total tau levels in
i3Neurons. Human tau levels were quantified
by HT7-Tau5 ELISA and normalized to protein
level. Values are means ± SEM relative to
control siRNA. Data are from one experiment,
N = 6 wells per treatment.
(C–E) Concentration-response curve of mox-
inidine (C), clonidine (D), and metaproter-
enol (E) determined by HT7-Tau5 ELISA.
Insets show the bIII tubulin level for each
concentration as determined by bIII tubulin
ELISA. Both tau and bIII tubulin levels are
normalized to protein levels. Values are
means ± SEM relative to DMSO control. Data
are from four independent experiments per-
formed in triplicate (C, N = 12 per concen-
tration) and three independent experiments
performed in triplicate (D and E, N = 9 per
concentration). *p < 0.05, **p < 0.01, ***p <
0.001; STATA mixed model.
(F and G) 3-day incubation with moxonidine
(30 mM) and the a-AR agonist dexmedeto-
midine (100 mM) (F) or metaproterenol
(30 mM) and the b-AR agonist isoproterenol
(30 mM) (G) significantly reduced total
tau levels in i3Neurons. The a-AR antag-
onist atipamezole (100 mM) (F) and the
b-AR antagonist propranolol (50 mM) (G)
increased total tau levels and abolished the
tau-lowering effect of moxonidine (F) or
metaproterenol (G), respectively. Human tau
levels were quantified by HT7-Tau5 ELISA and
normalized to protein level. Values are means
± SEM relative to DMSO control. Data are from
three independent experiments performed in
triplicate (F, N = 9 per treatment) and four
independent experiments performed in trip-
licate (G, N = 12 per treatment) ***p < 0.001,
STATA mixed model.
See also Figure S4.
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sensitivity and specificity of HTS screens is increased. Other

safe-harbor loci besides the AAVS1 locus (e.g., citrate lyase

beta-like) can be used in human iPSCs (Cerbini et al.,

2015). By targeting multiple safe-harbor sites with P2A or

IRES elements, it may be possible to integrate multiple

inducible transcription factors to differentiate iPSCs into

other neuronal subtypes, such as dopaminergic neurons

(Amamoto and Arlotta, 2014) or motor neurons (Hester

et al., 2011), for use in HTS. Second, our simplified glia-

free differentiation protocol overcomes hurdles, such as

scalability, variability, complexity, and cost, that previously

hindered the use of iPSC-derived neurons in drug discovery

pipelines. For example, instead of generating and freezing

large quantities of neuronal precursor cells, our approach

involves a single cost-effective 3-day pre-differentiation

procedure. The pre-differentiated neurons are post-mitotic

and can be subplated onto poly-D-lysine/laminin-coated

microplates with high consistency. Differentiation of

i3Neurons does not require viral infection, puromycin se-

lection, or frequent medium change, thereby reducing

the possibility of introducing variability and contamina-

tion during HTS. Thus, standardized HTS procedures can

be established regardless of location, time, or users, facili-

tating future use of i3Neurons for ultra-HTS of large libraries

of chemical compounds.

Tau-targeted approaches have been proposed as an alter-

native therapeutic strategy for AD and other tauopathies

(Dehdashti et al., 2013; DeVos et al., 2013; Panza et al.,

2016). Previous tau-targeted small-molecule strategies—

including kinase inhibitors against hyperphosphorylated

tau, tau aggregation inhibitors, microtubule stabilizers,

and compounds that enhance clearance of tau aggre-

gates—have had limited success (Brunden et al., 2009;

Gruninger, 2015; Medda et al., 2016; Min et al., 2015;

Panza et al., 2016). Lowering total tau levels may have

beneficial effects. For example, the MAPT H1c haplotype

increases tau expression and is associated with increased

risk of progressive supranuclear palsy, corticobasal degener-

ation, and AD (Baker et al., 1999; Di Maria et al., 2000;

Myers et al., 2005, 2007). Tau lowering in transgenicmouse

models rescued functional deficits and tau-mediated neu-

rodegeneration (Andrews-Zwilling et al., 2010; Ittner

et al., 2010; Lasagna-Reeves et al., 2016; Min et al., 2015;

Roberson et al., 2007, 2011; Vossel et al., 2010) and appears

to be safe (Morris et al., 2013). However, discovering com-

pounds that reduce total tau levels has been challenging.

Tau is natively unstructured and has proved a difficult

target for rational drug design. Several tau-lowering candi-

dates that reduce tau gene transcription were identified by

small-scale screening with in-cell western analysis (Dickey

et al., 2006). AlphaLISA and homogeneous time-resolved

fluorescence assays were used in SH-SY5Y cells to screen

for tau-lowering compounds (Dehdashti et al., 2013). How-
ever, these studies were done and validated only in tumor

cell lines that lack well-defined axons highly enriched in

tau. Previous tau-lowering compounds also caused signifi-

cant cytotoxicity (Dehdashti et al., 2013). In addition, the

regulation of tau homeostasis may differ in rodent and hu-

man neurons. Indeed, methylene blue, which reduces the

levels of human tau overexpressed inmouse neurons in vivo

and in vitro (Congdon et al., 2012; Hosokawa et al., 2012),

had minor effect in human neurons in our assay.

Using i3Neurons in a robust HCS assay, we identified AR

agonists as a class of tau-lowering compounds. Both a- and

b-AR signaling appeared to regulate tau levels in similar

fashion, as AR activation led to tau reduction and AR

inhibition led to tau accumulation. Besides moxonidine

hydrochloride (a-adrenergic agonist) and metaproterenol

hemisulfate (b-adrenergic agonist), threeothera- orb-adren-

ergic agonists (clonidine, dexmedetomidine, and isoproter-

enol) also reduced tau levels in human neurons. The tau-

lowering effects of moxonidine and metaproterenol were

abolished by their corresponding antagonists atipomezole

and propranol, which elevated tau levels by themselves. In

agreementwith our findings, the selective b2-AR antagonist

ICI 118,551 increased tau phosphorylation and accumula-

tion in an AD mouse model (Branca et al., 2014). Paradoxi-

cally, genetic suppression of b2-ARs reduced tau pathology

(Wisely et al., 2014). One likely explanation could be that

complete removal of b2 AR prevented harmful effects of

dysregulated b2-ARs, such as binding to Ab.

Deficiency in a- or b-AR signaling has been implicated in

AD. Levels of high-affinity a2-ARs are markedly reduced in

AD patients (Pascual et al., 1992). Polymorphisms of b-ARs

are linked to increased risk of late-onset AD (Yu et al., 2008).

The natural ligand of ARs is norepinephrine, whose major

source in the CNS is noradrenergic neurons in the locus co-

eruleus (LC); these neurons project widely to the forebrain,

which includes two regions especially affected by tauopa-

thies, the hippocampus and neocortex (Mather andHarley,

2016). Patients with AD have significant degeneration of

neurons in the LC and much lower levels of norepineph-

rine. Interestingly, abnormal tau lesions emerged predom-

inantly in LC regions even in individuals in their 20s, 30s,

and 40s (Braak and Del Trecidi, 2015; Braak et al., 2011),

suggesting that low levels of norepinephrine in the LC

may lead to tau accumulation in young susceptible people

and can eventually propagate to other brain regions.

How adrenergic signaling affects tau homeostasis is not

known. Interestingly, some AR-modulating compounds

may have a beneficial effect that is independent of their

AR agonist activities. For example, norepinephrine and

isoproterenol, whose chemical backbones contain 1,2-di-

hydroxybenzene, reduce insoluble tau levels by directly

binding cysteine residues in tau to prevent tau oligomeriza-

tion, independent of their AR agonist activities (Soeda
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et al., 2015). Modulating adrenergic signaling could affect

other aspects of AD pathology as well. Chronic activation

of b-ARs increases Ab production (Ni et al., 2006) and pro-

tects against the detrimental effects of Ab on hippocampal

function (Li et al., 2013). AR activation also reduces lipo-

polysaccharide-induced expression of tumor necrosis fac-

tor alpha in microglia (Schlachetzki et al., 2010; Szabo

et al., 1997) and interferon-g-induced expression of class

II antigens in astrocytes (Frohman et al., 1988). More

studies are needed to dissect the molecular mechanisms

underlying the role of adrenergic signaling in AD and to

further validate AR agonists as a potential therapeutic strat-

egy for AD and related tauopathies.
EXPERIMENTAL PROCEDURES

Chemicals and Reagents
Allmedium, reagents, and supplements for iPSC culture and differ-

entiation were from Invitrogen unless otherwise specified. Doxy-

cycline, DMSO, cytosine b-D-arabinofuranoside (Ara-C), salicylate,

LOPAC library, AR agonists and antagonists, and electrophysiology

related chemicals were from Sigma.
Generating and Selecting i3N iPSC Clones
Ngn2 transgenewas subcloned to a pUCMdonor vector containing

an AAVS1 homology arm. The Tet-ON 3G-controlled Ngn2 trans-

gene was integrated to the AAVS1 locus of human iPSC lines

through a TALEN nuclease pair. Genomic DNA from puromycin-

selected and expanded clones were purified and genotyped

by three PCR reactions. We generated i3N iPSC lines from two

independent wild-type genetic background human iPSC lines:

WTC11 (Miyaoka et al., 2014) and F12486.13 (female, white, age

at biopsy 48 years, reprogrammed by Sendai virus, generated by

Dr. Celeste Karch, Washington University in St. Louis). The iPSC

protocol was approved by the Committee on Human Research at

the University of California, San Francisco (15-15798). A detailed

protocol is described in Supplemental Experimental Procedures.
i3Neuron Differentiation
i3Neurons were differentiated with a simplified two-step protocol

(pre-differentiation and maturation). For pre-differentiation,

i3N iPSCs were incubated with doxycycline (2 mg/mL) for 3 days

at a density of 2.0–2.5 3 106 cells/well in six-well plates coated

with Matrigel in knockout Dulbecco’s modified Eagle’s medium

(KO-DMEM)/F12 medium containing N2 supplement, non-essen-

tial amino acids (NEAA), mouse laminin (0.2 mg/mL), brain-

derived neurotrophic factor (BDNF, 10 ng/mL), neurotrophin-3

(NT3,10 ng/mL; Peprotech), and Y-27632. The medium was

changed daily, and Y-27632 was removed from day 2. For matura-

tion, pre-differentiated i3N precursor cells were dissociated,

counted, and subplated at the desired density on plates coated

with poly-D-lysine (PDL)/laminin inmaturationmedium contain-

ing 50% DMEM/F12, 50% Neurobasal-A medium, 0.53 B27 sup-

plement, 0.53 N2 supplement, GlutaMax, NEAA, mouse laminin

(1 mg/mL), BDNF (10 ng/mL), and NT3 (10 ng/mL). Half of the
1230 Stem Cell Reports j Vol. 9 j 1221–1233 j October 10, 2017
medium was replaced on day 7 and again on day 14, and the me-

dium volume was doubled on day 21. Thereafter, one-third of

themediumwas replacedweekly until the cells were used. For elec-

trophysiological recording, i3N precursor cells were subplated on

Matrigel-coated coverslips, and mouse glia were added on day 1

in maturation medium containing 5% heat-inactivated fetal

bovine serum and 2 mM Ara-C.

Immunocytochemistry
i3N iPSCs or i3Neurons in coverslips were fixed with conditioned

medium containing 4% paraformaldehyde, permeabilized with

0.1%TritonX-100, and incubated for 1 hr in blocking solution con-

taining PBS, 0.01% Triton X-100, and 5% normal goat serum. The

cells were then incubated in blocking solution containing primary

antibody overnight at 4�C, followed by incubation with secondary

antibody for 1 hr. Images were acquired with an LSM880 confocal

system (Zeiss) with Airyscan and a 203 or 633 oil-immersion objec-

tive lens. Antibodies used for immunocytochemistry were those

against SOX2 (sc-17320S; Santa Cruz Biotechnology), OCT4 (sc-

5279; Santa Cruz Biotechnology), TRA-1-81 (sc-21706; Santa Cruz

Biotechnology), MAP2 (AB5622 or MAB3418; Millipore), VGlut1

(MAB5502; Millipore), bIII tubulin (TUJ1; Aves Labs), neuronal nu-

clear antigen (MAB377; Millipore), GABA (A2052; Sigma), HT7

(MN1000; Thermo Fisher), ankyrin G (N106/36; NeuroMa), synap-

sin-1 (D12G5; Cell Signaling), Olig2 (AB9610; Millipore), GFAP

(MAB3402; Millipore), and GluR2/3 (AB1506; Millipore).

Reverse Transcription and Real-Time qPCR
i3Neurons were cultured in 96-well PDL plates (655946, Greiner) at

a density of 10,000 cells/well for 4 weeks. cDNA from 12 random

wells was obtained with Cells-to-CT Kits (Ambion) as recommen-

ded by the manufacturer. qPCR reactions were done in duplicate

with SYBR Green Real-Time PCR master mixes (Applied Bio-

systems) and the Applied Biosystems 7900HT fast real-time PCR

system. All the primers (Table S1) have been validated with human

brain RNA (Zhang et al., 2013). RNAswithout reverse transcription

were used as negative control, and the dissociation curve fromeach

gene was reviewed to ensure the desired amplification. Expression

levels were normalized to GAPDH.

HCS Assay to Determine Total Tau Levels
After pre-differentiation, i3N precursor cells were placed in 384-well

plates at a density of 2,000 cells/well. Fresh maturation medium

was added weekly. On day 18, human tau siRNA, known tau-

lowering compounds (salicylate, YM-01, and methylene blue) and

1,280 compounds from LOPAC were added and incubated at

the desired final concentration for the desired amount of time.

Human tau, recognized by HT7 antibody, total neurites, recognized

by bIII tubulin antibody (TUJ1; Aves Labs) and nuclei, recognized

by Hoechst were detected by a semi-automated immunostaining

procedure. A fully automated ArrayScan high-content system

(Thermo) was used to acquire images and quantify total tau levels.

See Supplemental Experimental Procedures for detailed methods.

Human Tau and bIII Tubulin ELISA
Sensitive human tau and bIII tubulin ELISAs were adapted and

modified according to previous reports (Barten et al., 2011;



Meredith et al., 2013). Briefly, mousemonoclonal antibodyHT7 or

rabbit monoclonal bIII tubulin antibody (ab68193; Abcam) was

used for capture. The respective analytes were detected with alka-

line phosphatase-conjugated mouse monoclonal antibodies Tau5

or TUJ1 (806401, 801201; BioLegend). Recombinant full-length

human tau (rPeptide) and recombinant bIII tubulin (Cytoskeleton)

were used to generated standard curves for each assay. The CDP-

Star substrate (T2214, Invitrogen) was used as a chemiluminescent

alkaline phosphatase substrate. See Supplemental Experimental

Procedures for detailed methods.
Statistics
The sample size for each experiment was determined on the basis

of previous experience. Differences between means were assessed

by unpaired Student’s t test (GraphPad Prism, v. 6.0) or multilevel

mixed-effects linear regression model (STATA12; StataCorp), as

indicated. Values are reported as means ± SEM. The Shapiro-Wilk

test of normality and F test to compare variances were applied to

datasets when applicable.
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