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SUMMARY

The systematic sequencing of the cancer genome has led to the identification of numerous genetic 

alterations in cancer. However, a deeper understanding of the functional consequences of these 

alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS 

(OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor 

samples with shared oncogenic alterations onto a reference map defined by their underlying 

cellular states. We applied the methodology to the RAS pathway and identified nine distinct 

components that reflect transcriptional activities downstream of RAS and defined several 

functional states associated with patterns of transcriptional component activation that associates 

with genomic hallmarks and response to genetic and pharmacological perturbations. These results 

show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic 

cellular states across cancers, and an analytic framework to summarize knowledge, establish 

relationships, and generate more effective disease models for research or as part of individualized 

precision medicine paradigms.

In Brief

Assessing the functional consequences of oncogene activation is critical for subsequently 

characterizing disease in a patient and devising effective therapeutic strategies. We describe Onco-

GPS, a data-driven analysis framework to summarize, visualize, and discover new associations 

that may guide therapeutic strategies involving existing or new targets as part of individualized 

precision medicine paradigms.

INTRODUCTION

An accurate molecular classification of cancers is essential to achieve effective disease 

management and intervention. The systematic sequencing of cancer genomes has provided a 

rich catalog of somatic genetic alterations, knowledge of which has begun to inform 

treatment options, especially in cases where the lesions can be directly targeted with 
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available therapeutic agents, such as cancers with mutations in BRAF, EGFR, ALK, etc. 

(Lynch et al., 2004; Flaherty et al., 2010; Kwak et al., 2010). However, it is increasingly 

clear that mutational status alone is insufficient to unambiguously determine the oncogenic 

state of a given cancer sample and fully inform the appropriate therapeutic choice(s). This 

problem is relevant to the variability of response observed among highly selected groups of 

patient with so-called “actionable” mutations (Prahallad et al., 2012; Konieczkowski et al., 

2014; Hyman et al., 2015). For example, a large clinical trial across a cohort of non-

melanoma patients with BRAF mutant cancers showed highly variable responses to the 

selective BRAF inhibitor Vemurafenib (Hyman et al., 2015). These and other observations 

underscore the need for analytical methodologies that better delineate cellular states and 

help predict clinical responses to targeted agents.

Recent studies have shown that tumor heterogeneity may underlie variability in sensitivity to 

targeted agents (Singh et al., 2009; Prahallad et al., 2012; Konieczkowski et al., 2014; Zhu et 

al., 2014). For example, in BRAF mutant melanoma, reciprocal levels of the receptor 

tyrosine kinase (RTK) AXL and the transcription factor MITF correlate with sensitivity to 

BRAF inhibitors in a mutually exclusive manner (Konieczkowski et al., 2014). This cell-

state dichotomy generalizes to the state of individual melanoma single cells in vivo, as 

recently reported (Tirosh et al., 2016). In cancers with mutations in KRAS, the epithelial-

mesenchymal transition (EMT) program has been shown to underlie variability in response 

to genetic depletion of KRAS in some cells (Singh et al., 2009). While these findings 

suggest that transcriptional activities may underlie variability in cell responses to direct 

inhibition, knowing how this variability relates to the activity of the oncogene, and how to 

translate this information systematically into effective therapeutic strategies in a prospective 

manner, remains a challenge.

Experimental gene expression signatures derived from an activated oncogene have been used 

to predict its activation status across individual samples (Bild et al., 2006). Although this 

approach enables the identification of overall transcriptional changes driven by an oncogene, 

its effectiveness is limited by not knowing in advance the degree of heterogeneity of the 

transcriptional profiles due to the complex relationships between the activated oncogene and 

its multiple downstream effectors, as well as other cellular and genetic contexts that impinge 

on the fate of the final output. As such, an analytical methodology that embraces this 

complexity, e.g., by capturing the consequences of an activated driver oncogene and their 

corresponding multiple end states, will be valuable for further disease characterization and 

management.

Here, we introduce Onco-GPS (OncoGenic Positioning System), a data-driven analysis 

framework and associated experimental and computational methodology that makes uses of 

an oncogenic activation signature to identify multiple cellular states associated with 

oncogene activation, and apply it to explore cancers with altered RAS/MAPK signaling. The 

Onco-GPS method decomposes that signature into its constituent components in such a way 

that the context dependencies and different modalities of oncogenic activation are explicitly 

included. Once characterized and annotated, these components are used to deconstruct and 

define cellular states, and to map individual samples onto a novel visual paradigm: a two-

dimensional Onco-GPS “map.” This resulting model facilitates further molecular 
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characterization and provides an effective analysis and summarization tool that can be 

applied to explore complex oncogenic states.

RESULTS

Onco-GPS: Method Overview

The Onco-GPS approach is executed in three modular steps shown in Figure 1. Step I 

involves the experimental generation of a representative gene expression signature reflecting 

the activation of an oncogene of interest (Figure 1, panel I). In step II, the resulting signature 

is decomposed into a set of coherent transcriptional components using a large reference 
dataset representing multiple cellular states relevant to the oncogene of interest (Figure 1, 

panel II). These components are also biologically annotated and characterized through 

further analysis and experimental validation. In step III, a representative subset of samples 

and components are selected to define cellular states using a clustering procedure. The 

selected components are also used as transcriptional coordinates to generate a two-

dimensional map where the selected individual samples are projected relative to these 

transcriptional coordinates in analogy to a geographical GPS system (Figure 1, panel III) 

(Hofmann-Wellenhof et al., 2007). For example, the “ternary plot” Onco-GPS shown in 

Figure 1, panel III, makes use of three components to represent a defined population of 

cellular states and samples. More complex “global” Onco-GPS maps, can involve larger 

subsets of components if necessary (Figure S1; STAR Methods). Once an Onco-GPS map 

has been created, samples from independent test datasets can also be projected onto and 

displayed within the same Onco-GPS map, and their states predicted using a probabilistic 

classifier (STAR Methods). The Onco-GPS map can also be used to display the association 

of samples with various genomic features, such as genetic lesions, pathway activation, 

individual gene expression, genetic dependencies, and drug sensitivities. In the next sections, 

we will use the Onco-GPS approach to explore the complex functional landscape of cancer 

cell lines with alterations in the RAS/MAPK pathway. Details of the approach can be found 

in the STAR Methods.

Step I. Generate RAS/MAPK Oncogenic Signatures

To generate transcriptional signatures reflective of RAS/MAPK activation across multiple 

cellular contexts, we explored signature-based models that predict the oncogenic activation 

of BRAF and KRAS in a large panel of cancer cell lines representing multiple lineages. In 

Figure 2A, we show the profile of an isogenic signature of BRAF activation that we 

generated by introducing mutant BRAF V600E into immortalized human cells (see the 

STAR Methods for details) (Elenbaas et al., 2001; Lundberg et al., 2002; Garraway and 

Lander, 2013). This signature profile associated significantly with the mutational status of 

BRAF in cancer cell lines (Figure 2A), and allowed us to generate an accurate probabilistic 

model to infer the activation status of BRAF based on the expression (mRNA) of the genes 

in the signature (Figure 2B). When this model is compared against another signature that we 

generated by the overexpression of ETV1, a transcription factor known to be downstream of 

BRAF/MAPK, we found a significant overlap in both the number of samples that are 

predicted in the active state, and the number of overlapping genes in both signatures (Figure 

2C). These observations suggest that the primary output of oncogenic BRAF involves 
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transcriptional programs regulated by ETV1. In contrast, when we analyzed a KRAS 

activation signature generated by introducing an activating KRAS allele (G12V) in 

immortalized human lung cells, the corresponding profile only modestly aligned with the 

mutational status of KRAS (Figure 2D). If we compare the samples predicted to be active by 

this signature and three other independent KRAS signatures from the literature (Figure 2E), 

we observed greater differences and much less overlap than in the case of BRAF (Figure 

2F). This transcriptional complexity, consistent with our current understanding that the 

activation of RAS operates in a non-linear fashion and engages multiple downstream 

effectors and programs (Chang et al., 2009), implies that there are important limitations to 

delineate oncogenic states using transcriptional signatures for oncogenes that display more 

complex, heterogeneous, and context-dependent behavior. This motivated us to develop a 

signature decomposition strategy (step II) to derive higher-resolution RAS activation profiles 

(see STAR Methods for details).

Step II. Decompose the KRAS Signature and Generate Transcriptional Components

We used the top 1,000 differentially expressed genes from the KRAS activation signature 

generated from RNA-sequencing profiles, and decomposed them into components using 750 

samples from the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 

2012), corresponding to 25 lineages of solid tumors as a reference dataset. Restricting the 

decomposition process to the signature genes allowed us to emphasize the most relevant 

oncogene-driven transcriptional space and limit the effects of other transcriptional 

differences. The decomposition is based on a non-negative matrix factorization algorithm 

(Brunet et al., 2004; Tamayo et al., 2007), which decomposes the KRAS signature into nine 

distinct components (C1–C9) showing significant changes across the reference dataset 
(Figure 3) that were numerically stable (Figure S2D; STAR Methods). These transcriptional 
components, hereafter referred to as “components,” represent summaries of the most 

coherent gene expression patterns, relevant to the KRAS signature genes across the wide 

variety of cellular states and contexts represented in the reference dataset (Tables S1 and 

S2).

Analyze and Annotate the Transcriptional Components—To characterize and 

annotate the KRAS components, we associated each component profile against several 

genomic data-sets including mutations and copy number alterations, protein and gene 

expression, pathway activity (Barretina et al., 2012), gene dependency (Cowley et al., 2014), 

and drug sensitivity (Cancer Therapeutics Response Portal [CTRP] dataset, CCLE 

pharmacological profiling dataset) (Seashore-Ludlow et al., 2015). To quantify the degree of 

association, we used the information coefficient (IC), an information-theoretic measure 

(Kim et al., 2016), and an empirical permutation test to assess the statistical significance of 

the top hits (STAR Methods).

KRAS Components Map to a KRAS “Core” and MAPK Pathways—The 

association analysis shows that one of the nine components (hereafter, C3) associates with 

KRAS mutation status, the top-matching feature out of 37,276 genomic alterations (IC = 

0.424, p = 3.19 × 10−7, false discovery rate [FDR] = 1.06 × 10−7) (Figure 4A). Moreover, 

this association was stronger than any other KRAS signature, either from our prior studies or 
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from the literature (step I). This observation suggests that the decomposition strategy 

extracted a “core” KRAS signal from the initial KRAS signature. Interestingly, in addition to 

KRAS mutation, C3 is also associated with both a KRAS dependency signature (IC = 0.603, 

p = 1.31 × 10−6, FDR = 2.87 × 10−5) (Molecular Signature Database; Singh et al., 2009) and 

a profile of KRAS RNAi dependency from Project Achilles (IC = −0.605, p = 1.19 ×10−6, 

FDR = 2.00 × 10−3) (Cheung et al., 2011; Cowley et al., 2014). These findings suggest that 

the transcriptional activity of KRAS represented by C3 may be relevant to the KRAS 

dependence phenotype. This observation may also explain why KRAS mutant cancers with 

low C3 scores, i.e., samples on the right side of the top heatmap in Figure 4A, may be less 

dependent on KRAS for their survival. We also found similar genomic associations in 

several independent tumor datasets including the pan-cancer12 (PanCan12) TCGA (The 

Cancer Genome Atlas) dataset (Figures 4B and S3) (Seo et al., 2012; Hoadley et al., 2014; 

Kirzin et al., 2014). Furthermore, we observed that both RNAi-mediated suppression of 

KRAS in HCT116, a KRAS mutant colorectal cancer cell line, as well as withdrawal of 

KRAS expression in a transgenic mouse model driven by inducible KRAS, significantly 

attenuated C3 scores, suggesting that C3 scores track with KRAS activity, both in vitro and 

in vivo (Figures 4C and 4D) (Ying et al., 2012; Shao et al., 2014). Moreover, rescue of 

KRAS expression had modest effect in C3, suggesting that this observation is specific for 

KRAS (Figure 4C). Taken together, these observations suggest that C3 represents a core 

KRAS transcriptional program that underlies the KRAS dependency phenotype.

We also observed that C3 was significantly associated with mutations in key components of 

the WNT pathway, namely β-catenin and APC (Chamorro et al., 2005), as well as 

dependency on β-catenin (Figures 4E and 4F), suggesting this component may also impinge 

on the WNT/β-catenin pathway (Singh et al., 2012).

Next, we analyzed whether other component profiles were also associated with other known 

alterations downstream of the RAS/MAPK pathway, a well-established downstream effector 

of KRAS where RAF is the key effector known to activate the pathway. In this case, BRAF 

mutation was the top hit associated with component C6 out of 37,276 genomic alterations 

(Figure 4G; IC = 0.422, p = 3.19 ×10−7, FDR = 7.35 ×10−5). We also independently 

generated a BRAF V600E activation signature (Figure 2A; STAR Methods) and compared 

its enrichment profile against component C6 and observed a significant association (IC = 

0.639, p = 2.62 × 10−6, FDR = 1.50 × 10−5). We also observed a significant association of 

C6 with a signature of ETV1 activation (IC = 0.694, p = 2.62 × 10−6, FDR = 1.5 × 10−5, 

respectively) (Figures 2B and 4G). ETV1 is a well-established transcription factor, 

downstream of the MAPK pathway, and further suggests that C6 reflects a transcriptional 

program associated with MAPK activation.

We also assessed if the C6 profile predicted sensitivity to MAPK pathway inhibition. Indeed, 

we observed a significant association between C6 profiles with sensitivities to known 

clinical inhibitors of the MAPK pathway, including PLX4720 (Figure 4G; IC = −0.622, 4.16 

×10−5, FDR = 1.00 × 10−2). Finally, using previously published datasets (Pratilas et al., 

2009; Prahallad et al., 2012), we tested if inhibition of the BRAF/MAPK pathway could be 

detected by C6, and found that C6 enrichment scores were significantly attenuated by MEK 

inhibitors in BRAF V600E melanomas, both in vitro and in vivo (Figures 4H and 4I). As 
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BRAF/MAPK is a well-established effector pathway downstream of KRAS, these 

observations provide evidence that the unbiased Onco-GPS strategy can effectively extract 

and identify known transcriptional events downstream of KRAS.

Additional KRAS Components Map to NF-κB, MYC/E2F, ZEB1/EMT, and HNF1/
PAX8 Pathways—We further assessed which transcriptional regulators were associated 

with the remaining KRAS components. We found that C7 was significantly associated with 

features representing nuclear factor κB (NF-κB), a well-established pathway downstream of 

KRAS (Zhu et al. 2014). These included: (1) a gene set representing the NF-κB motif 

(Figure 5A) (IC = 0.573, p = 2.31 × 10−5, FDR = 1.64 × 10−3), (2) an independent gene set 

representing p50/p65 (IC = 0.682, p = 2.62 × 10−6, FDR = 5.66 × 10−8), and (3) a profile of 

NF-κB protein expression (IC = 0.398, p = 8.66 ×10−5, FDR = 8.33 × 10−4) (Hopewell et 

al., 2013). Furthermore, we observed corresponding changes in C7 scores upon introduction 

of a known activator or repressor of the NF-κB pathway, consistent with C7 representing 

activity of the NF-κB pathway (Figure 5B).

Among the genes most significantly associated with C7 was FOSL1 (FRA1) (IC = 0.770, p 

= 1.35 × 10−5, FDR = 6.06 × 10−2) (Figure 5C), a member of the AP-1 transcription factor 

family. This component was significantly associated with both higher mRNA and protein 

levels of FOSL1 (IC = 0.553, p = 1.24 × 10−5, FDR = 2.22 × 10−4) in both CCLE cancer cell 

lines, as well as in PanCan12 TCGA tumor samples (Figure 5C). AP-1 transcription factors 

are well-known downstream transcriptional regulators of KRAS. To investigate whether 

FOSL1 was specifically involved in regulating the C7/NF-κB pathway, we utilized CRISPR-

CAS9-mediated gene editing to knockout FOSL1 in YAPC, a KRAS mutant cell line with 

elevated component C7 score (Figure S4), and assessed the transcriptional consequences by 

mRNA profiling. Consistent with FOSL1 associations with C7, deletion of FOSL1 led to 

attenuation of C7, as predicted, but not in the negative controls. Interestingly, targeting FOS, 

another member of the AP-1 transcription factor complex (Figure 5D) did not change the 

levels of C7. Notably, the change in C7 was observed with deletion of JUN (Figure 5D), a 

dimerization unit of AP-1, suggesting that the AP-1 complex containing specifically FOSL1, 

but not FOS, may regulate the activity of component C7 downstream of KRAS.

We also observed significant associations between components C2 and C4 with E2F/MYC 

and ZEB1/EMT, respectively (Figures 5E–5H). To further validate these associations, we 

used CRISPR-CAS9 to delete E2F1 and ZEB1 in two KRAS mutant lines, YAPC and 

HCC44, with moderate/high activation of components C2 and C4, respectively. We observed 

significant attenuation of the respective components upon deletion of ZEB1 and E2F1 using 

three independent gRNAs relative to control gRNAs (Figures 5F and 5H), suggesting that 

these may indeed regulate the proposed pathways. Finally, Component C5 was associated 

with patterns of overexpression and dependency of HNF1 and PAX8 across multiple cancer 

types including subsets of ovary (Cheung et al., 2011), kidney, endometrial, and liver (Figure 

S5).

Similar analyses were applied to the other components and the results are summarized in 

Table S3. The complete set of component genomic annotations are provided as 

Supplemental Information. In summary, these observations show that Onco-GPS effectively 
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decomposes KRAS signatures into transcriptional components that reflect previously known 

and novel events associated with KRAS.

Step III. Define Cellular States and Generate Onco-GPS Map

KRAS Mutant Cancers Map onto Four Distinct Cellular States—Once the nine 

KRAS components were annotated and validated, we used them to determine what cellular 

states were consistent with the behavior of these components across KRAS mutant cancers. 

Interestingly, while the profiles of the nine components (C1–C9) are rather distinct across 

the entire set of CCLE cancer cell lines as expected (Figures 3, 6A, and S6A), when we 

restricted the scope to only the KRAS mutant samples, we observed that the components 

clustered into three major groups: (1) ERBB3/PI3K – WNT/KRAS core – AP1 (C1-C3-C9), 

(2) E2F – MAPK – EMT – MYC (C2-C6-C4-C8), and (3) PAX8/HNF1B – NF-κB (C5–C7) 

(Figure 6B). For example, many KRAS mutant cancers with component representing PAX8/

HNF1B (C5) also aligned with the component representing NF-κB (C7), while most of the 

core KRAS/WNT component (C3) aligned with the ERBB3/PI3K component (C1). These 

observations suggest that, in KRAS mutant cancers, the patterns of pathway co-activation, as 

represented by the components, reflect specific synergies and patterns of cooperation among 

these pathways. Based on these clustering patterns, the components C1-C7-C2 were selected 

as representative of the KRAS mutant cancers and were used to cluster KRAS mutant 

samples in the reference dataset using Hierarchical Consensus Clustering (Monti et al., 

2003) with the IC as similarity metric. This resulted in four clusters representing cellular 

states: S1–S4 (Figure 6C, top).

Projecting KRAS Mutant Cancers onto the Onco-GPS Map—To facilitate the 

visualization and integrated analysis of components, samples, and cellular states, we devised 

a novel visualization/analysis paradigm that we call Onco-GPS map. In this map, the 

transcriptional components are represented by nodes connected by straight lines (Figure 6C, 

bottom and S1B). The location of these nodes on the map derive from a projection algorithm 

(Sammon map) that makes the two-dimensional geometric distances between nodes 

approximate the “informational” distances between the components across the KRAS 

mutant samples in the reference dataset (STAR Methods). Once the location of the 

component nodes are known, the location of an individual sample can be found by 

calculating a vector sum of the components’ locations weighted by their component 

amplitudes for that sample. Using a physical analogy, this corresponds to calculating the 

equilibrium location of a mass being pulled by multiple strings (Figure 1, panel III); or, 

using a geographical GPS analogy, it corresponds to deriving the location of an object by 

estimating its proximity to a set of reference satellites (Figures 6C, bottom and S1C). In this 

way, samples with relatively high amplitude of a given component, with respect to the rest, 

will be projected near the location of that dominant component’s node (Figure 1, panel III). 

Finally, the states can be represented using background contour lines and colors in such way 

that a “region” of the map corresponds to samples sharing the same cellular state 

membership (Figures 6C, bottom and S1D; see STAR Methods for details).

One powerful feature of the Onco-GPS map is that once a group of samples has been 

projected onto it, they can be color coded to represent sample-specific, molecular features or 
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phenotypes of interest. For example, we can specify the tissue representation of individual 

KRAS mutant cancers associated with each cell state depicted on the Onco-GPS map 

(Figure S6). Moreover, in the Onco-GPS maps shown in Figures 6D and 6E, we color coded 

the samples to represent the activities of ZEB1 and NF-κB pathways using two independent 

signatures (Hinata et al., 2003; Aigner et al., 2007). In Figure S7, we color coded the 

samples to show the amplitude of each component. This allows a direct visual assessment of 

how each sample associates with specific features and biological phenotypes of interest, as 

well as enabling tracking of dynamic changes in the cell state of individual samples. We can 

also use the Onco-GPS to support high-level probabilistic inferential models or networks to 

predict functional phenotypes such as drug responses (see STAR Methods for details).

Analyzing the Onco-GPS KRAS Mutant Cellular States—We analyzed the top 

features associated with each of the four KRAS mutant states (S1–S4) and found that 

numerous gene sets representing EMT markers were enriched in states S1 and S2, and NF-

κB gene sets were enriched in states S2 and S3 (Figures 6D and 6E). This clearly delineates 

two major “axes” on the KRAS Onco-GPS: a vertical axis associated with the EMT, and a 

horizontal axis representing NF-κB activity. This observation confirms previous studies that 

suggested that EMT underlies the KRAS dependency phenotype (Singh et al., 2009), but 

also suggests the existence of additional, more refined states that can be explained by NF-κB 

activation status. To confirm these observations, we analyzed the expression of specific 

proteins and pathways in representative cancer cells in each subgroup. In agreement with the 

Onco-GPS predictions, we found that representative markers of epithelial (E-cadherin 

expression) and EMT (ZEB1 expression), as well as activation of NF-κB (p65 Ser536), were 

associated with samples in each of these major cell states (Figure S8).

Notably, we also observed significant association of these cell states with expression of 

specific RTKs (Figures S9A–S9E). For example, expression of ERBB3 was significantly 

associated with state S4, defined by the core KRAS/WNT component (C3) and the ERBB/

PI3K component (C1), while AXL/EGFR and MET were more dominant in states S2 and 

S3, respectively. As these states were defined purely by unbiased transcriptional analysis, 

their association with specific RTKs suggests that these either (1) play a direct role in 

defining these states, or (2) they reflect downstream transcriptional consequences of KRAS 

activation in those states. Indeed, prior studies have shown that expression patterns of certain 

RTKs are important in determining phenotypic outcomes among KRAS-driven cancers (Salt 

et al., 2014; Sun et al., 2014; Manchado et al., 2016).

State S1 KRAS Mutant Samples Are Sensitive to the Lapatinib and 
PD-0325901 Combination—We hypothesized that knowledge of the state for a given 

group of samples could be used to predict their chemical sensitivities to single agents or 

combinations that target the corresponding co-activated components. To assess the potential 

of this approach, we measured the associations between drug-sensitivity profiles and 

component activity across the reference dataset. Because only two components, C1 and C3, 

were enriched in state S4 relative to the remaining states, we inferred that these would be 

sensitive to the combined inhibition of these two components (Figure S7; Table S4). The 

initial analysis of those components found that they were indeed independently sensitive to 
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Lapatinib and PD-0325901, respectively (Table S5). We therefore performed a set of 

experiments to assess the sensitivity of a group of KRAS mutant cell lines to these two drugs 

as single agents and in combination. We choose three samples in state S4, high in the 

relevant components, C1 and C3, and a lineage-matched group of three samples representing 

the other states as controls (Figure 6F). As predicted, we found significant sensitivity to the 

compound combination in KRAS mutant cancers in state S4 (Figure 6G, bottom row) but 

not in the control group (Figure 6G, top row). These results indicate that KRAS mutant 

cancers associated with Onco-GPS cell states share chemical sensitivity phenotypes and 

demonstrate that this approach can be used effectively to predict drug combinations.

Collectively, these observations suggest that this approach can help to devise strategies to 

more effectively characterize KRAS mutant cancers, as well as identify potential biomarkers 

to infer disease states, and to guide the choice of pharmacological or immunological 

therapeutic agents. A summary of features associated with each KRAS transcriptional states 

(S1–S4) can be found in Figure 6H and Table S4.

An Onco-GPS for BRAF Mutants—We also used the Onco-GPS approach to explore 

cancers with mutations in BRAF using their most relevant subset of KRAS components: C6-
C7-C3 (Figure S10). In this case, the Onco-GPS clustering of BRAF mutant cancers 

produced three states (Figure S11) delineated by two major axes: BRAF/MAPK and NF-κB 

activation (Figure 7A). In the BRAF Onco-GPS map, the majority of BRAF mutant 

melanomas span states S1 and S2 proximal to C6 (the BRAF/MAPK component) (Figure 

S12). The most resistant BRAF mutant cancers were mapped either on state S2, close to C7 
(NF-κB/FOSL1 component), or on state S3 close to C3 (RAS/WNT component) (Figure 

7A). Then we analyzed the response of those BRAF mutant samples to two selective BRAF 
inhibitors, Vemurafenib and PLX4620. Samples in state S1 show significant sensitivity to 

these agents consistent with having higher amplitude of C6 (Figures 7B and 7C). In a similar 

manner to the KRAS mutant cancers, we also found significant associations of these states 

with overexpression of specific RTKs, namely, AXL and EGFR in state S2, as well as 

transcription regulators MITF and SOX10 in state S1 (Figure S13). This heterogeneity in the 

response to BRAF inhibition, and the identification of associated genomic hallmarks, is 

consistent with prior studies that identified the activation of NF-κB and AXL/EGFR as 

intrinsic BRAF inhibitor resistance mechanisms in both BRAF mutant melanomas and 

colorectal cancers (Wood et al., 2012; Garraway and Lander, 2013, Konieczkowski et al., 

2014). We also found that this relationship generalizes to an independent dataset of non-

overlapping BRAF mutant cancer cells (Sanger Cell Lines Project) for which a different 

MAPK inhibitor was used (PD-0325901) (Figure S14) (Garnett et al., 2012). Furthermore, 

we show that more sophisticated models for predicting MAPK inhibition response can be 

implemented, e.g., using a Bayesian predictor based on the BRAF Onco-GPS amplitudes of 

C6, C7 and the mutation status of NRAS, KRAS, and EGFR (Figures S15 and 16; STAR 

Methods).

Finally, the three states defined by the BRAF mutant Onco-GPS were also recapitulated by 

de novo Onco-GPS maps generated by replacing the KRAS components with selected 

pathways or proteins informed by each of the C6, C7, and C3 components, suggesting that 
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these states are robust and can be identified using their relevant marker features (Figure 

S17).

A summary of features associated with each BRAF transcriptional state can be found in 

Figure 7D and Table S6.

DISCUSSION

In this study, we introduce Onco-GPS as a general methodology and framework to 

decompose transcriptional signatures to delineate oncogenic cellular states. These states 

explicitly take into account context dependencies, heterogeneity, and the complexities 

associated with oncogenic activation. It is a fully data-driven approach and serves as a 

powerful device to establish relationships among features that are informative in strategizing 

therapy against cancers which otherwise share common oncogenic lesions.

Generation of informative Onco-GPS maps to explore genomic events or pathways will 

require derivation of accurate transcriptional profiles reflecting oncogenic activities in the 

relevant cellular contexts, as well as the ability to characterize and validate the resulting 

components and Onco-GPS cell states. The Onco-GPS decomposition makes use of 

signatures from isogenic systems of several different cellular backgrounds that provide clean 

and direct transcriptional information relevant to the oncogene; while at the same time 

incorporating diverse regulatory circuits inherently represented across multiple cellular 

contexts in the reference dataset. This approach deconvolves the functional consequences of 

oncogene activation in a more direct and unambiguous way. As we have shown, the resulting 

components offer many advantages as building blocks to define cellular states, compared 

with traditional signatures of oncogenic activation.

The nine KRAS components unveiled by the Onco-GPS analysis provide an intriguing view 

into RAS biology. It is remarkable that these components identify and summarize a 

surprisingly large number of known results in a systematic and unbiased manner. The 

components represent many well-known RAS-related pathways and processes that are 

induced synergistically with a less familiar combinatorial logic. For example, C6 clearly 

recapitulates changes associated with BRAF/MEK activation but it does not appear to be the 

“core” signal downstream of KRAS most associated with KRAS dependency. Instead, 

component C3, represents a combined RAS/WNT activation that associates more strongly 

with the KRAS dependency phenotype. Another key observation is that C3 and C6 profiles 

are associated with the variability in sensitivity to KRAS and BRAF inhibition. Previous 

studies have shown that the EMT program, through the ZEB1 transcription factor activity, 

underlies KRAS independence (Singh et al., 2009); and that the transition between MAPK 

inhibition-sensitive and -resistant states in BRAF mutant melanoma is associated with the 

interplay between MITF and NF-κB/AXL (Konieczkowski et al., 2014; Zhu et al., 2014). 

Our observations confirm these results and propose a causal link between default 

transcriptional activation of KRAS and BRAF (i.e., C3, C6), lineage-specific transcriptional 

program, and oncogene addiction/dependency. In this model, attenuation of the default 

transcriptional activity, and the consequent loss of oncogene dependency, is substituted by 

the activation of NF-κB/AXL and/or EMT programs. This in turn defines boundaries 
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between oncogenic states associated with activation/repression of specific “transition 

circuits.” In this transition between two oncogenic states with different properties, the 

relevant synergies or incompatibilities of different oncogenic circuits become explicit and 

impinge on the overall viability and pathway activation profiles at both sides of the 

transition. These transitional hallmarks are reminiscent of the “order parameters,” e.g., in a 

physical phase transition between different phases of a complex material (Sethna, 2011; 

Fultz, 2014), and suggest that the specific changes across the Onco-GPS states can provide a 

way to identify the most salient cellular circuits associated with resistance mechanisms. In 

addition, the fact that these two related but distinct oncogenic events display common 

pattern(s) of functional cooperation between the oncogene- and lineage-specific 

transcription factors (i.e., MITF, HNF4α/CDX2 versus HNF1B/PAX8, epithelial/EMT cell 

states, respectively), suggests that the lineage-specific transcriptional program and the de-

differentiation program may also participate in the defining cell states that are relevant for 

therapeutic strategies. The observation that resistant states, for both KRAS and BRAF 

mutant cancers, lie next to each other in the C7/NF-κB “phase,” suggests an intriguing 

functional convergence of resistance mechanisms that deserves further study.

The Onco-GPS results for both KRAS and BRAF mutant cancers strongly suggest that the 

mutation status alone is not a good proxy for the true “functional” oncogenic state. Indeed 

recent work indicates that tumors that harbor KRAS mutations are heterogeneous and that 

cell lineage and other genetic alterations differentiate subtypes of KRAS-driven cancers. 

Despite their underlying complexities, however, these cancers can be effectively categorized 

(Prahallad et al., 2012; Konieczkowski et al., 2014; Skoulidis et al., 2015). The divergent 

transcriptional states and associated features represented on the respective Onco-GPS maps, 

also suggest an interplay between oncogene activation and additional molecular events that 

ultimately drive cancers into a few, genetically complex but functionally similar, viable end 

states. Knowledge of these cooperating molecular events, or “genetic modifiers” may be 

critical in understanding their role vis-à-vis oncogenic states. For example, in non-small-cell 

lung carcinoma cancers mutational changes in TP53 and LKB1 have been shown to be 

enriched in differential gene expression changes in KRAS mutant cancers (Skoulidis et al., 

2015). Moreover, we observed significant enrichment of genomic aberrations in WNT 

components associated with KRAS mutant cancers in state S4. However, in examining the 

broader contributions across a large group of states associated with both KRAS and BRAF 

mutant cancers, no single event shows perfect one-to-one association with the Onco-GPS 

cellular states. In this situation, the functional role of those events may only be elucidated 

based on their complementarity and joint association against functional profiles, such as 

those provided by the Onco-GPS components or states (e.g., Kim et al., 2016). Another 

possibility, not necessarily exclusive of the previous one, is that the tissue of origin upon 

which the oncogene was activated also plays an important role in determining the viable 

states. This is supported by the differences we observed between the isogenic systems (data 

not shown), and the observation that certain tissues were more enriched in one state than the 

other in both the KRAS and BRAF Onco-GPS maps. However, it is unlikely that this may be 

the sole contributor as we also observe many exceptions. Another plausible explanation is 

that epigenetic events may also cooperate with the oncogenes in determining the induced 

states. Epigenetic landscapes have been shown to underlie developmental programs, and 
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perhaps provide a more molecularly tractable definition of how all of the aforementioned 

events might converge (Dawson and Kouzarides, 2012; Pott and Lieb, 2015). Indeed, the 

interplay of activated RAS with the PRC2 complex has recently been associated with an 

EMT-associated phenotype (De Raedt et al., 2014; Serresi et al., 2016). The diversity of 

oncogenic states induced by KRAS may also help explain the striking lack of overlap of the 

many RAS synthetic lethality lists published over the last decade (Downward, 2015).

We also showed that Onco-GPS can be used to predict the response of individual samples to 

single agents or combinations that target states by ablating their corresponding components 
for cancers with well-defined oncogenic lesions, but divergent response profiles. While this 

presents a powerful approach to infer combinatorial drug strategies, a key rate-limiting step 

is the lack of drug representation in some of the pathways or components. For example, 

there are only few drugs that target components C7, C2, and C4, which represent NF-κB, 

MYC/E2F, and EMT nodes, respectively. This may simply be due to lack of appropriate 

agents against these pathways or lack of chemical diversity in the available datasets. It is 

also possible that these states are intrinsically more robust, and consequently require the 

joint targeting of multiple pathways, or multiple entry points in the same pathway, to elicit a 

more significant effect on cell viability. This would be consistent with our prior observation 

that no single inhibitor appears to effectively target the entire NF-κB network in a KRAS 

oncogenic context (Barbie et al., 2014; Zhu et al., 2014). An interesting feature exclusively 

associated with state S3 was the overexpression of PDL-1 (Figure S9E). PDL-1 is known to 

play an inhibitory role against the immune system, and our results suggest that S3 KRAS 
mutant cancers may be configured to induce an immune evasion strategy through cell 

autonomous expression of PDL-1. This also suggests that Onco-GPS maps may serve as a 

guide to identify cancers that may benefit from the use of specific immunological 

interventions.

The Onco-GPS approach as a whole can serve as a framework to begin to explore other 

oncogenic events and pathways that can be tailored to accommodate differences in the 

biological complexities in each scenario. Further, individual steps involved in the generation 

of Onco-GPS (steps I to IV) can also facilitate analysis of relevant questions of interest. For 

example, the Onco-GPS map provides an effective analysis and visual paradigm for the 

development of network and inferential models that make explicit use of cellular states and 

other molecular hallmarks (i.e., cell state markers and biomarkers), to delineate differences 

or similarities and guide effective therapeutics strategies. Furthermore, Onco-GPS 

visualization facilitates depiction and tracking of dynamic changes in cell states of 

individual samples, rather than display them as static entities. The inferred oncogenic states 

can also be used as part of a high-level description and as input to models where they can 

mediate the statistical dependencies between genomic hallmarks and functional cellular 

phenotypes such as responses to pharmacological or immunological agents (see, e.g., 

Figures S15 and S16). The Onco-GPS approach can serve as a foundation for more 

comprehensive, flexible, and effective disease models for research purposes and as part of 

individualized precision medicine paradigms.

The analysis steps of the Onco-GPS method will be made available as a collection of Jupyter 

notebooks available at https://github.com/UCSD-CCAL/onco-gps-paper-analysis.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p-NF-KB Cell Signaling Cat #: 3033

FRA1 Cell Signaling Cat #: 5281

ZEB1 Santa Cruz Technologies Cat #:25388

E-cadherin BD Biosciences Cat #:BDB610181

B-actin Santa Cruz Technologies Cat #:47778

Chemicals, Peptides, and Recombinant Proteins

Lapatinib Selleck Chemicals Cat #: S1028

PD-032521 Selleck Chemicals Cat #: S1036

Critical Commercial Assays

Cell-titer-glo Promega G7572

IRDye® 800CW Goat anti-
Mouse IgG

LI-COR P/N 925-32211

IRDye® 800CW Goat anti-
Mouse IgG

LI-COR P/N 925-68021

RNeasy Plus Mini Kit QIAGEN Cat#: 74134

Pierce BCA Protein Assay 
Kit

Thermo Scientific Cat#: 23225

Deposited Data

Raw data files for RNA 
sequencing for KRAS 
signatures

NCBI Gene Expression Omnibus GEO: GSE94937

Raw data files for RNA 
sequencing for CRISPR-
Cas9 Experiments

NCBI Gene Expression Omnibus GEO: GSE84706

BRAF signature (L1000) Supplemental Information #5

ETV1 L1000 Supplemental Information #5

Experimental Models: Cell Lines

HCC44 DSMZ Cat#: ACC 534

YAPC DSMZ Cat#: ACC 382

LS513 ATCC CRL-2134

HCT15 ATCC CCL-225

AGS ATCC CRL-1739

NCI-H2009 ATCC CRL-5911

NCI-H358 ATCC CRL-5807

MIAPACA2 ATCC CRL-1420

KP4 RIKEN RCB1005

CALU1 ATCC HTB-54

RKN Health Science Research Resources Bank 
(HSRRB)

IFO50317
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REAGENT or RESOURCE SOURCE IDENTIFIER

SALE Lundberg et al., 2002 N/A

HMLE Elenbaas et al., 2001 N/A

PMEL Garraway and Lander, 2013 N/A

Recombinant DNA

KRAS G12V plx304 Shao et al., 2014 N/A

BRAF V600E plx304 Jané-Valbuena et al., 2010 N/A

ETV1 plx304 Jané-Valbuena et al., 2010 N/A

GFP pdonr223 Addgene # 25899

lentiCas9-Blast Addgene #52962

lentiGuide-Puro Addgene # 52963

Sequence-Based Reagents

Primer for CRISPR-Cas9 
gRNA

Supplemental Information #6

Software and Algorithms

PICARD https://broadinstitute.github.io/picard/

PRADA Torres-García et al., 2014

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/

ssGSEA www.Genepattern.org

Other

Melanoma samples with 
MEKi treatment

NCBI Gene Expression Omnibus GSE51115

Rescue of KRAS suppression 
in HCT116 colon cancer cell 
line

NCBI Gene Expression Omnibus GSE55942

Inducible KRAS model of 
mouse pancreatic cancer

NCBI Gene Expression Omnibus GSE32277

Melanoma patient samples 
before and after MEKi 
treatment

NCBI Gene Expression Omnibus GSE50535

NSCLC cell lines with NF-
KB modulations

NCBI Gene Expression Omnibus GSE33322

Primary Colorectal Tumors NCBI Gene Expression Omnibus GSE39084

Lung Adenocarcinoma NCBI Gene Expression Omnibus GSE40419

PanCan TCGA datasets 
(PanCan12)

Hoadley et al., 2014 Synapse.org

Achilles www.broadinstitute.org/achilles V2.20.1

CTD2 www.broadinstitute.org/ctrp (Seashore-
Ludlow et al., 2015)

CTRPv2.2

CCLE www.broadinstitute.org/CCLE V2

Gene sets www.msigdb.org C1, C2, C7 collection

OncoGPS This study. https://github.com/UCSD-CCAL/onco-gps-paper-analysis
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Pablo Tamayo (ptamayo@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Isogenic Cell Lines—Immortalized lung (SALE) were obtained and propagated as 

previously described (Lundberg et al., 2002). Briefly, SALE cells were grown in SABM 

medium (CC-3119, Lonza) containing SingleQuot Kit Supplement and Growth Factors 

(CC-4124). HMLE cells were grown in MEBM medium (Lonza - CC-3151) supplemented 

with SingleQuot Kit Supplement and Growth Factors (CC-4136). PMEL cells were grown in 

TICVA medium containing −100 μM isobutylmethylxanthine IBMX (Sigma), 50 ng/ml 12-

O-tetradeca-noyl-phorbol-13-acetate TPA (Sigma), 1 μM sodium vanadate Na3VO4, 1 mM 

N6, 2′-O-dibutyryladenosine 3:5-cyclic monophosphate dbcAMP (Sigma). All cells were 

incubated at 37 °C in 5% CO2.

KRAS Mutant Cancer Cell Lines—HCC44, YAPC, LS513, HCT15, AGS, NCI-H2009, 

NCI-H358, MIAPACA2, KP4, CALU1, RKN were cultured in either DMEM or RPMI 

supplemented with 10% FBS. All cells were incubated at 37 °C in 5% CO2.

Authentication of Cell Lines Used—The cancer cell lines were obtained from the 

Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle/home). All cell lines 

were fingerprinted multiple times using one of two genotyping platforms, Sequenom or 

Fluidigm. Sex of the cell lines are as follows; Male: YAPC, LS513, HCT15, NCI-H358, 

MIAPACA2, KP4, CALU1, Female: HCC44, AGS, NCI-H2009, RKN.

METHOD DETAILS

Plasmids and Cloning Constructs—For the generation of the CRISPR-Cas9 gRNAs, 

we used lentiGuide-Puro (Addgene) vector as a backbone. Single stranded oligos were 

ordered through IDT and annealed. LentiGuide-Puro were linearized using BsmBI 

restriction enzyme (NEB). Complementary single-stranded DNA oligos were annealed and 

the resulting double-stranded oligos were ligated into the linearized vector, followed by 

transformation in the Stbl3 (Invitrogen) competent cells for subsequent positive colony 

screening and propagation of the plasmid.

Lentivirus Generation—293T cells were transfected with respective lentiviral vector 

along with packaging plasmids (delta8.9 and VSV-G) using TransIT transfection reagents 

(Mirus Bio) and Optimem reduced serum media (Thermo Scientific). Viruses were collected 

48 hours after infection in DMEM supplemented with 20% FBS. All virus production and 

infections were carried out in BL2+ designated area by strictly following biohazard safety 

regulations.

Experimental Oncogenic Signature Generation—For the generation of the mRNA 

profile of KRAS, BRAF and ETV1 activation, HMLE, SALE or PMEL cells were infected 

with lentiviral constructs in plx304 vector expressing Open Reading Frame (ORFs) KRAS 
G12V, BRAF V600E, ETV1 or GFP in duplicates, supplemented with 8 μg/ml polybrene. 
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Cells were either harvested 24 hours after infection, or selected with blasticidin (10 μg/mL). 

For the generation of KRAS signature, three independent experiments were carried using 

one of the two KRAS G12V expression vector plx304 or plx302, which expresses selectable 

marker for blasticidin (10 μg/mL) and puromycin (2ug/mL), respectively. They cells were 

harvested after stable cell lines have been established and growth was resumed after 1–2 

weeks post infection. For harvesting, the cells were washed three times in ice cold PBS, and 

lysed, and harvested using the RNeasy mini kit according to the manufacturer’s protocols 

(Qiagen).

CRISPR-Cas9 Experiments—CRISPR-Cas9 experiments were carried out by first 

infecting HCC44 and YAPC cells with CAS9 using plx311 vector and selecting with 

blasticidin (10 μg/mL) to obtain stable CAS9 expressing cell lines. gRNAs were generated 

in pxr001 vector by cloning gRNAs against ZEB1, FOSL1, FOS, JUN and E2F1, as well as 

GFP, RFP and random gRNA controls. Three independent sequences for each gRNAs were 

used for experimentation (1 of 3 FOSL1 gRNA used for RNAseq experiment was flagged 

after quality control). These gRNAs were then infected and selected with puromycin 

(1ug/mL) 1 day after infection. Cells were harvested and RNA was extracted after 5 days 

infection using RNeasy mini kit (Qiagen).

Generation of BRAF V600E and ETV1 Signatures Using L1000—The mRNA 

profiles for BRAF B600E and ETV1 were obtained using the Broad Institute’s Luminex 

L1000 gene expression profiling platform (Peck et al., 2006). L1000 is a multiplexed gene 

expression assay that uses ligation mediated amplification (LMA) of RNA sequence specific 

probes combined with Luminex based detection to generate expression profiles of 978 genes 

(landmark genes) per sample in a 384 well format using Luminex FlexMap flow cytometry-

based scanner. The resulting readout is a measure of mean fluorescent intensity (MFI) for 

each landmark gene. The raw expression data are log2-scaled, quantile normalized, and z-

scored, such that a differential expression value is achieved for each gene in each well. 

Ectopic expression of BRAF V600E and ETV1 was confirmed by immunoblotting with V5 

antibody (Life Technologies) prior to harvesting, or by examining the expression of 

individual transcript levels in the mRNA profiles.

RNAseq Library Preparation and Sequencing—mRNA profiles for the generation of 

KRAS signature and the CRISPR perturbation profiles were carried out by RNAseq 

profiling approaches. Libraries were prepared using Illumina TruSeq Stranded mRNA 

sample preparation kits from 500ng of purified total RNA according to the manufacturer’s 

protocol. The finished dsDNA libraries were quantified by Qubit fluorometer, Agilent 

TapeStation 2200, and RT-qPCR using the Kapa Biosystems library quantification kit 

according to manufacturer’s protocols. Uniquely indexed libraries were pooled in equimolar 

ratios and sequenced on an Illumina NextSeq500 with single-end 75bp reads by the Dana-

Farber Cancer Institute Molecular Biology Core Facilities.

RNAseq Data Processing—FASTQ files were processed into BAM files using picard, a 

set of command line tools for manipulating high-throughput sequencing data using Homo 

Sapiens genome assembly 19 as the reference genome (McKenna et al., 2010) http://
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broadinstitute.github.io/picard/. These files were subsequently processed through the Broad 

Institute’s firehose RNASeq pipeline by using the following modules; PRADA - BAM to 

FASTQ for RNA-Seq (version 27), Align RNA Fastq (version 32), Mark Duplicates for 

RNA-Seq (version 25), Recalibrate RNA-Seq Bam Erase Intermediate Files for RNA-Seq 

(version 28). RPKM values were derived from processing through the Cufflinks (version 

12).

Immunoblots—KRAS mutant Cancer cell lines, were grown in RPMI or DMEM 

supplemented with 10% FBS. Cells were harvested by removing the media and washing 

twice in ice cold Phosphate Buffered Saline (PBS), followed by cell lysis with 

Radioimmunoprecipitation assay buffer (RIPA). The resulting lysate was centrifuged at 

maximum speed for 30 minutes and supernatant was resolved on a 4–12% Tris-Glycine gel 

using SDS-Page electrophoresis. Proteins were transferred to PVDF membrane and 

incubated overnight at 4 degrees with following antibodies; p-NF-KB - Ser536 (3033) (Cell 

Signaling), FRA1 (D80B4) (Cell Signaling). ZEB1 (Santa Cruz Technologies) E-cadherin 

(Santa Cruz Technologies) and B-actin (Santa Cruz Technologies). The membranes were 

further washed in PBS supplemented with 0.01% Tween and imaged on a LI-COR system.

Drug Sensitivity Experiments—DV90 (250 cells/well), LOVO (250 cells/well), NCI-

H2122 (250 cells/well), NCI-H1792 (250 cells/well), NCI-H23 (500 cells/well) and SW620 

(1000 cells/well) were plated at optimized cell densities in media (30 uL) in 384 well plates 

and incubated for 24 hours in standard cell culture conditions. Lapatinib and PD-032501 

were dissolved in DMSO and added as a single agent or combination in serial dilution 

ranging from concentration (6 dilutions ranging from 0 to 0.5uM for PD-032521 and 9 

dilutions ranging from 0 to 33uM for Lapatinib). After 72 hours, Celltiter-Glo (Promega) 

diluted 1:2 with PBS was added to each well (30 uL) and incubated at room temperature for 

10 minutes. Luminescence was measured using the EnVision plate reader (Perkin-Elmer). 

Cell viability was normalized to the appropriate no treatment control. All experiments were 

carried out in triplicates on independent days. The data points are averages of % viability in 

quadruplicates normalized to cells alone and plotted on a log scale.

QUANTIFICATION AND STATISTICAL ANALYSIS

Generation of Oncogenic Signatures—The BRAF and ETV1 signatures shown in 

Figure 2 were generated using consensus signatures combining the top 50 differentially 

expressed genes between isogenic cells controls and those infected with lentiviral constructs 

of BRAF V600, and wild-type ETV1 vs. controls in HMLE (breast), PMEL (skin) and 

SALE (lung) epithelial cell lines (see Isogenic Cell Lines above).

The KRAS I signature was generated using lentiviral constructs of KRAS G12V in lung 

SALE epithelial cell lines. The cell lines were immortalized by the introduction of TERT, 

and transformed by SV40 early region (Large-T and small-t antigen) and the relevant 

oncogene. These samples have been harvested post 24 hours after infection for early time 

point, and 2–3 weeks after infection to capture the activity of these oncogenes at a later time 

point. The mRNA profiles for BRAF B600E and ETV1 were obtained using the Broad 

Institute’s Luminex L1000 gene expression profiling platform (Peck et al., 2006). mRNA 

Kim et al. Page 18

Cell Syst. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://broadinstitute.github.io/picard/


profile for KRAS signature was generated using Illumina NextSeq500 with single-end 75bp 

reads to generate RNAseq reads. The other 3 KRAS signatures (KRAS II-IV) correspond to 

the following gene sets:

• KRAS II: gene set 

“CHIARADONNA_NEOPLASTIC_TRANSFORMATION_KRAS_UP” from 

MSigDB 5.1 sub-collection C2 (www.msigdb.org).

• KRAS III: gene set “KRAS.LUNG.BREAST_UP.V1_UP” from MSigDB 5.1 

sub-collection C6 (www.msigdb.org).

• KRAS IV: gene set “SWEET_KRAS_ONCOGENIC_SIGNATURE” from 

MSigDB 5.1 sub-collection C2 (www.msigdb.org).

The signatures profiles shown in the heatmaps were obtained using single-sample GSEA 

(Barbie et al., 2009). The heatmaps in Figures 2A and 2B correspond to the skin, lung, 

pancreas and ovary cancer cell lines in the CCLE dataset (Barretina et al., 2012), and the 

heatmaps in Figures 2D and 2E correspond to the lung, pancreas, ovary, large intestine and 

breast cancer cell lines from the same dataset. The mutation status of BRAF and KRAS used 

in those heatmaps, and for model fitting, was part of the mutation dataset part of the CCLE 

(Barretina et al., 2012). The models to predict activation are logistic generalized linear 

models (R function glm, Venables and Ripley, 2002) fitted to the mutations status of BRAF 
or KRAS using as input the ssGSEA score for the relevant signature. The threshold for 

activation was set at 50% probability (Figures 2B and 2E). For the signature used in the 

decomposition step of the Onco-GPS method we generated a higher-resolution KRAS 
signature based on RNASeq profiling of lentiviral constructs of KRAS G12 vs. controls in 

lung SALE epithelial cell lines. We also performed pilot experiments to identify optimal set 

of conditions (time, viral titer) to carry out the main experiments as well as to confirm the 

expression of these genes in the cell lines described above (Figure S2). This signature 

contains the 1,000 most differentially expressed genes (top 500/bottom 500) according to the 

Information Coefficient (IC) (Kim et al., 2016). We have also repeated the analysis using 

different number of genes from 500 to 2,000 and found very similar results indicating that 

the exact number of genes is not critical and the results are robust in general as long as the 

selected number of genes is not too small or too large. In other applications of the Onco-

GPS methodology e.g. to new datasets, if the number of samples is enough, one can 

alternatively select the signature genes using a threshold on the The FDRs are computed 

from empirical p-values using the standard Benjamini-Hochberg procedure. The empirical p-

values are obtained from an empirical permutation test where the target profile is randomly 

permuted to generate a null distribution for the Information Coefficient values. Discovery 

Rates (FDR) on both sides (up-regulated and down-regulated) of the gene list. In the case of 

the KRAS isogenic samples presented in the manuscript their number is rather small and as 

consequence the FDR estimates are not very reliable and we opted to use the gene-number 

threshold of 1,000. This threshold is roughly equivalent to an FDR of about 0.05.

Decompose Signature and Generate Transcriptional Components—The 

oncogenic signature defined above is decomposed using Non-Negative Matrix Factorization 

(NMF) (Brunet et al., 2004; Tamayo et al., 2007) in the Broad-Novartis Cell Line 
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Encyclopedia Reference Dataset (CCLE)(Barretina et al., 2012). This dataset, hereafter 

denoted as An×m, contains n rows (oncogenic signature) and m samples representing many 

instances of the cellular states of interest. In the KRAS example featured in the main text n = 

1,000 and m = 750. The procedure is performed as follows:

Generate Onco-GPS Transcriptional Components

a. Normalize the input matrix An×m by replacing each gene expression entry by its 

column rank and obtain matrix .

b. Perform a standard non-negative matrix factorization (NMF) (Cichocki et al., 

2008; Brunet et al., 2004) of matrix ,

(Equation 1)

where the resulting matrices Wn×k and Hk×m have lower rank than the original 

matrix An×m (k ≪ n,m).

c. Find an optimal number of components kC based on the numerical stability of 

multiple projections using different random seeds following the procedure from 

(Brunet et al., 2004). The peaks of the cophenetic coefficient represent the more 

stable decompositions and in our KRAS example we found an optimal solution 

at kC = 9 (Figure S2D).

Notice that Matrix Hk×m has the same number of samples as An×m but a smaller number of 

rows and can be interpreted as a summarized version of the original dataset, i.e., one 

described in the space of the most salient transcriptional programs (components) rather than 

the original variables (genes). In the KRAS example this procedure produces the 9 

transcriptional components C1–C9 described in the main text.

Analyze and Annotate the Transcriptional Components—In this step we perform a 

detailed analysis of the transcriptional components produced by the NMF decomposition in 

order to assign a biological interpretation to each component. The analysis consists of the 

following steps:

I. Define a target profile for each component in the CCLE Reference Dataset using 

the amplitudes of the Hk×m matrix. This matrix represents the intensity of each 

NMF component per sample.

II. Using the Information Coefficient (IC) (Kim et al., 2016) estimate the degree of 

association of each component target profile and the following genomic features:

1. Mutations and Copy Number Alterations (CNA). CCLE mutation and 

copy number datasets, www.broadinstitute.org/ccle (Barretina et al., 

2012). (The CCLE and Achilles datasets used in this analysis are 

preliminary versions of official releases that will become publicly 

available in 2016.)
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2. Gene expression. CCLE RNA Seq dataset*, www.broadinstitute.org/

ccle (Barretina et al., 2012).

3. Pathway expression (single sample GSEA of MSigDB gene sets) 

MSigDB v5.1 sub-collections c2, c5, c6 and h www.msigdb.org 

(Liberzon et al., 2011, 2015) and a few additional gene sets (Table S7):

• TAUBE_EMT_UP/DN, EMT gene set (Taube et al., 2010).

• GROGER_EMT_UP/DN, EMT gene set (Groger et al., 2012).

• Isogenic cell lines signatures (see Isogenic Cell Lines and 

Generation of Oncogenic Signatures sections above):

– BRAF_UP/DN (BRAF/V600 consensus signature in 

SALE, HMLE and PMEL),

– ETVI_UP/DN (ETV1 consensus signature in SALE, 

HMLE and PMEL),

– KRAS.Lung_SALE.Weeks_UP/DN (KRAS mut G12 

signature in SALE),

– KRAS.Breast_HMLE.Weeks_UP/DN (KRAS mut 

G12 signature in HMLE).

– KRAS.Skin_PMEL.Weeks_UP/DN (KRAS mut G12 

signature in PMEL).

4. TF and master regulators expression (single sample GSEA of gene sets) 

MSigDB v5.1, (Liberzon et al., 2011) www.msigdb.org, sub-collection 

c3 and 1,598 IPA gene sets, http://www.ingenuity.com.

5. Protein expression. CCLE Reverse Phased Protein Array (RPPA) 

dataset*, www.broadinstitute.org/ccle (Barretina et al., 2012).

6. Drug sensitivity1. CTRP dataset, www.broadinstitute.org/ctrp 

(Seashore-Ludlow et al., 2015).

7. Drug sensitivity2. CCLE pharmacological profiling, 

www.broadinstitute.org/CCLE (Barretina et al., 2012)

8. Gene dependency. RNAi Achilles dataset*, www.broadinstitute.org/

achilles, (Cowley et al., 2014).

The Information Coefficient (IC) (Linfoot, 1957; Joe, 1989; Kim et al., 2016) used for this 

task is a normalized version of the mutual information defined as,

(Equation 2)

where I(x,y) is the differential mutual information between x e.g. one of the component 

profiles (i.e. a row of the Hk×m matrix), and y e.g. a genomic feature such as, e.g., the 
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mRNA profile of a gene. This quantity is easier to interpret than the mutual information 

because it lies in the range [−1, 1], in analogy with the correlation coefficient. The sign of 

the correlation coefficient ρ(x,y) is used to provide directionality to the association measure. 

The differential mutual Information I(x,y) is a function of the ratio of joint and marginal 

probabilities,

(Equation 3)

Estimating this quantity using the component profiles and the genomic features requires the 

empirical approximation of continuous probability density distributions using kernel density 

estimators (Sheather, 2004). Our implementation is based on the R packages MASS 

(Venables and Ripley, 2002), misc3d (Feng and Tierney, 2008), and bcv (Scott, 1997; 

Venables and Ripley, 2002). When y is a binary variable, e.g. a mutation of copy number 

alteration status, the mutual information between them becomes the Jensen-Shannon 

divergence between the two continuous target distributions indexed by the summary variable 

(Lin, 1991).

We selected top scoring features that match the profile of each component and based on 

those we propose a biological interpretation for each component. Examples of the results of 

this analysis are shown in Figures 4, 5, 6, S3, and S5, for components C3, C6, C7, C2, C4 

and C5. A summary of the biological interpretation of all the components is shown in Table 

S3. The complete set of top scoring genomic features for each component is included in 

Supplemental Information.

Define Oncogenic States—As described in the main text the clustering of the selected 

subset of the Hk×m matrix samples and components is achieved by a Hierarchical Consensus 

Clustering algorithm (Monti et al., 2003) using as similarity metric the Information 
Coefficient (IC) described above between columns of the Hk×m matrix. The procedure is as 

follows:

Define Onco-GPS States

a. Standardize the rows of the Hk×m matrix. The standardized values above/below a 

threshold (3.25/−3.25) are set to that threshold to avoid extreme values.

b. Rescale the standardized-thresholded rows of the Hk×m matrix to the interval [0, 

1].

c. Implement a consensus clustering procedure by bootstrap re-sampling of the 

columns of the Hk×m matrix and by clustering them using hierarchical clustering 

(Ward agglomeration method, R function hclust) (Hartigan, 1975). The pairwise 

distance between columns of the H-matrix is computed using one minus the 

Information Coefficient (IC).
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d. Repeat the re-sampling 50 times for number-of-clusters/states values between a 

minimum and maximum (2 and 10 for the KRAS example) and generate a 

membership matrix for each of the number-of-clusters values.

e. Compute the cophenetic coefficient of the membership matrices and use it to 

choose an optimal value kS for the number of clusters/states (Monti et al., 2003).

f. Generate a final consensus clustering membership table for each of the number-

of-clusters values.

g. Train a multi-class support vector machine (SVM) classifier using as inputs the 

component amplitudes to predict each of the states (clusters). This is 

implemented using the svm function (C-classification mode) from R package 

e1071 (Fan et al., 2005). This classifier will be useful to assign states to samples 

from independent test datasets.

When this procedure is applied in the case of the KRAS mutant cancers, using components 

C1–C7–C2, an optimal solution corresponding to kS = 4 clusters/states was chosen (S1–S4). 

The corresponding heatmap is shown in Figure 7C.

A similar annotation analysis as the one performed for the components is performed for the 

KRAS mutant S1–S4 states using the state membership as a putative phenotype. For 

example, in order to annotate component S1 we define a binary vector where the samples 

that belong to S1 are assigned 1’s and the rest are assigned 0’s. This target vector is used to 

estimate the degree of association of each state and the same collection of genomic features 

described in section 5.3 above. The complete set of top scoring genomic features for each of 

the 4 states (S1–S4) is included in Supplemental Information.

Generate Onco-GPS Map—The generation of the Onco-GPS map requires as input the 

subset of the Hk×m matrix and the state membership computed above, and consists of three 

main steps:

A. Generating the Onco-GPS layout.

B. Projecting samples onto of the Onco-GPS layout.

C. Generating the Onco-GPS contour lines and state-membership background 

colors.

We will describe each of those steps in detail. The layout is generated by defining 

component “nodes” on a ternary diagram as e.g. was done for the KRAS C1–C7–C2 
components featured in Figure 6C. The procedure is as follows:

Generate Onco-GPS layout

a. Compute and the location of each component node, ( ) with j = 1, 2, 3 
(corresponding to C1, C2 and C7 in the KRAS example), as the vertices of an 

equilateral triangle (ternary diagram or Gibbs triangle),
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(Equation 4)

b. Plot a blue circle symbol and a text label representing the component node.

c. Plot straight lines connecting the component nodes.

Once the components layout is defined this way the samples are placed on the map 

according to their component amplitudes. The procedure is as follows:

Project Samples on Top of the Onco-GPS Layout

a. Compute the location for each sample as a vectorial sum of the components’ 

locations ( ) weighted by the normalized component amplitudes raised to 

an exponent α,

(Equation 5)

b. The exponent α provides a free parameter to tune the projection in such way that 

the samples are placed in appropriate locations, e.g., not too close or far away 

from the component nodes. This a global parameter that can be tuned for each 

problem.

Plot a circle symbol (and optional sample label) on the Onco-GPS using the corresponding 

color of the sample’s state (e.g. in Figure 6C: S1=purple, S2=blue, S3=red and S4=green).

This projection procedure is shown in Figure 1, panel III, for three representative samples. 

Once the layout, i.e., components nodes, of the Onco-GPS has been computed, and the 

samples have been placed on their corresponding locations as described above, it is useful to 

add an additional element to the Onco-GPS map: contour lines and color background to 

represent the states. These background colors and contours (S1=purple, S2=blue, S3=red 

and S4=green) can be seen at the bottom of Figure 6C. These graphical elements are 

computed following this procedure:

Generate Onco-GPS Contour Lines and Background Colors

a. Define a square lattice Lab, typically 200 x 200 or larger, on top of the Onco-GPS 

layout.

b. Use the state membership to subdivide samples into mutually exclusive state-

groups and define a probability density  on each lattice point for each of them 

using kernel density estimation (R function kde2d).

c. Compute the winning state  for each point in the lattice according to the 

largest state-group probability, and define a corresponding winning state 

probability ,

Kim et al. Page 24

Cell Syst. Author manuscript; available in PMC 2018 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Equation 6)

d. Define contour lines and background colors using the winning state probability 

(R function contourLines) and plot them to form the background of the Onco-
GPS map.

An independent test dataset can also be projected on top of the Onco-GPS by following the 

following procedure:

Project Independent test samples onto the Onco-GPS

a. Normalize the test dataset by replacing each gene expression value by its column 

rank.

b. Obtain the component amplitudes for the test samples by projecting them onto 

the space of the NMF components (Hk×m matrix space) using the Moore-Penrose 

pseudo-inverse of the Wn×k matrix (Tamayo et al., 2007),

(Equation 7)

c. Normalize the  matrix by standardization, thresholding and rescaling in 

the same way as was done with the Hk×m when the Onco-GPS was first 

generated.

d. Compute the Onco-GPS location of the samples by using Equation 5 with 

 instead of Hk×m

e. Use the svm classifier described above to provide predicted putative states to the 

test samples.

f. Plot the samples onto the Onco-GPS using colors corresponding to the predicted 

states.

This completes the description of the basic Onco-GPS used in the main text. In some cases 

one is interested in generating an Onco-GPS using all the NMF components or a subset of 

more than 3 component nodes. This can be accomplished using a generalization of the 

procedure outlined above using all the relevant components nodes. In order to generate this 

general Onco-GPS layout there is an additional component-projection step. Instead of using 

the equilateral triangle of Equation 4, location of the component nodes ( ) is obtained 

by a multidimensional scaling projection of the rows of the Hk×m matrix. This is necessary 

to be able to generate a layout that includes all the desired components, e.g., from kC down 

to 2-dimensional space. The component-projection procedure is as follows,
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Generate General Onco-GPS layout

a. Compute the location of the component nodes ( ) by performing a multi-

dimensional scaling projection of the H-matrix from kC to 2-dimensions. We 

implement this step using a Sammon map projection (function gx.2dproj from R 

package rgr). Other multidimensional scaling projection algorithms, such as PCA 

or tSNE, can also be used. Figure S1A shows the example of this projection for 

all the 9 KRAS components.

b. To facilitate the visualization of the component nodes in the general Onco-GPS 

we add lines connecting each of them with its neighbors on the layout. This is 

implemented using a Delaunay triangulation procedure on the components nodes 

2D coordinates (R function delaunay from package spatstat). Figure S1B shows 

these resulting lines connecting the projected KRAS component nodes.

c. The projection of the samples on this general Onco-GPS layout can then proceed 

in the same way as described by Equation 5 but using all the component nodes in 

the vectorial sums. Figure S1C shows the resulting projection of the samples on 

top of the 9-node Onco-GPS.

d. The contours lines and color background are also generated as in the original 

ternary Onco-GPS described above. Figure S1D shows the final 9-component 

Onco-GPS and its corresponding 17 states (S1–S17) obtained when applying the 

procedure from section 5.4 using all the samples and all the components.

Applications of the Onco-GPS—Original or independent test samples that have been 

projected on top of the Onco-GPS map can be color coded to represent specific 

characteristics of molecular features. This can be simply done by using color maps that map 

e.g. discrete feature values onto distinct colors. Continuous values can be mapped to rainbow 

palettes as in show for example in Figures 6D–7E, S6, S7, S9, and S12–A15. In addition one 

can generate matching scores to assess the degree of association between the feature of 

interest and the state membership using box plots and Information Coefficients (IC) as 

shown in Figures 7B–C, S9, and S13B–S13D.

Inferential Models Based on the Onco-GPS—Besides representing primary 

characteristics of the samples, the Onco-GPS can also be used to develop inferential models 

based on specific component, states, relevant sample characteristics or a combination of all 

of them, in order to predict a quantity of interest. For example, in Figure S15 we show this 

application modality using the Onco-GPS BRAF example. We developed a probabilistic 

predictor of drug response based on the amplitude of two specific components and three 

complementary genomic features. The drug sensitivity target variable is defined were from 

the PLX-4720 BRAF inhibitor responses of the BRAF mutant samples in the CTRP v2 

dataset (www.broadinstitute.org/ctrp, Seashore-Ludlow et al., 2015). In Figure S15A, we 

show the Onco-GPS for BRAF mutant samples where the samples are color-coded to 

represent their observed sensitivity to BRAF inhibition (blue=sensitive, red=resistance). We 

then define a sensitivity target binary variable equal to 1, if the sample is sensitivity and 

equal to 0 if it is resistant, using as threshold the mean sensitivity over all samples. We fit a 
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Bayesian cumulative log odds model (Tamayo et al., 2011) (Mozina et al., 2004) to estimate 

the posterior probability of response conditional to the 3 model inputs,

x1: component amplitude of C6 (BRAF/MAPK),

x2: component amplitude of C7 (NFκB), and,

x3: combined mutation status of NRAS, EGFR and KRAS,

(Equation 8)

where d̄ = 1 − d and each term in the sum represents the amount of evidence that each 

variable provides to the model (Good, 1985). Each conditional probability is estimated using 

a single-variable logistic regression model. In this case these features were chosen based on 

prior knowledge of the MAPK-MITF/NFκB cell state distinction that influences sensitivity 

to MAPK pathway inhibitors (Konieczkowski et al., 2014). In other more general cases 

appropriate features for the model can be derived from other relevant prior knowledge and/or 

from a targeted feature selection process. The probabilistic model is then used to predict the 

samples in the same training set achieving a very significant model fit (Figure S15B, AUC 

ROC: 0.943 p-val: 8.17x10−9) indicating that those variables indeed have high information 

content with respect to BRAF inhibition sensitivity. The p-values associated with the area 

under the ROC values were computed using a Wilcoxon test as part of the functionality 

provided by the R package verification (release 1.2). We test the model in an independent 

dataset of BRAF mutants cell lines (Sanger dataset) (Yang et al., 2013). As there are some 

cell lines represented in both datasets we removed them from the training set before fitting 

the model. The inferential model is effective at predicting sensitivity to BRAF inhibition 

(SB590885) in this independent test dataset (Figure S15C, AUC ROC: 0.735, p-val: 

0.00237). The model not only provides a prediction for each sample but it also produces a 

Bayesian nomogram that summarizes the amount of evidence that each variable contributes 

to the final prediction (Figure S15D). This demonstrates that the Onco-GPS provides a 

suitable framework for implementing high-level probabilistic or graphical inferential models 

or networks that can be used to predict functional characteristics, such as drug response.

Onco-GPS States and the Statistical Dependence between Gene Expression 
and Drug Response—The strong correlation between component C1/state S4 activity 

and sensitivity to drugs lapatnib and PD-0325901 suggests that oncogenic states can be 

effective latent variables that mediate the statistical dependence, e.g., between gene 

expression and functional cellular phenotypes such as drug response. To investigate this 

possibility we identified 50 genes and 50 drugs relevant to KRAS mutant cancers, and 

verified whether the Onco-GPS state membership labels could mediate the statistical 

dependency between those two sets of features. We define X = {x1,x2,x3,…,x50}, a 

collection of random variables corresponding to the set of 50 representative gene expression 

profiles, and Y = {y1,y2,y3,…,y50}, a collection of random variables corresponding to the 

representative 50 profiles of drug response, and z a random variable representing Onco-GPS 
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state membership labels (S1–S4). Variable z can completely capture the statistical 

dependence between X and Y if these are conditionally independent given z. However, since 

X and Y are continuous random variables and z is a discrete random variable, canonical 

models depicting conditional independence, such as Bayesian networks or Markov random 

fields, would have an overly complex structure. Instead, we quantified the level of 

conditional independence with a normalized conditional mutual information score (NCMI),

(Equation 9)

where the numerator is the mutual information between a (gene expression, drug response) 

pair conditioned on the oncogenic state label z, and the denominator is the mutual 

information between the same pair without conditioning. NCMI(xi; yj|z) = N if xi and yi are 

conditionally independent given z. Generally a small NCMI(xi; yj|z) indicates a strong 

capability of the Onco-GPS states to mediate the dependency between gene expression and 

drug response.

We selected gene expression-drug response pairs whose mutual information is equal or 

greater than 0.05 and calculated the distribution of their NCMI scores. To assess its 

statistical significance, we randomly permuted the Onco-GPS state membership labels 1,000 

times, calculated the NCMI score distribution for each random trial, and compared the 

empirical NCMI score distribution with the top-ranking NCMI score distributions from the 

randomly-permuted data. Figure S16 shows the NCMI score distributions of observed and 

permuted data for the 4-state KRAS Onco-GPS data. The observed NCMI score distribution 

is within 1% of the corresponding distribution for permuted data, in terms of their capacity 

to explain the dependency between gene expression and drug response. This suggests that 

the 4 Onco-GPS states (S1–S4) effectively mediate a significant fraction of the statistical 

dependence between gene expression and drug response for KRAS mutant samples. This 

suggest that a coarse-grained network, generated using the components as latent variables or 

“master hubs,” can be used to model the most salient relationships between genomic 

variables, clinical and biological phenotypes etc. We will explore this possibility in a future 

publication.

DATA AND SOFTWARE AVAILABILITY

Raw data files for RNA sequencing for KRAS signatures have been deposited to NCBI Gene 

Expression Omnibus accession number GSE94937. Raw data files for RNA sequencing for 

CRISPR-Cas9 Experiments have been deposited to NCBI Gene Expression Omnibus 

accession number GSE84706. The different analysis steps of the Onco-GPS method will be 

made available as a collection of Jupyter notebooks available at ccal.ucsd.edu (https://

github.com/UCSD-CCAL/onco-gps-paper-analysis).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Functional oncogene activation can be broken down into several distinct 

programs

• Onco-GPS is a discovery tool to identify genomic features, i.e., drug 

responses

• Onco-GPS map is a visualization tool to depict cancers, cell states, and 

transitions
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Figure 1. Schematic Diagram of the Onco-GPS Analysis Framework and Methodology
(I) Oncogenic activation signature is generated by experimentally expressing the oncogene 

of interest in an isogenic cell system. (II) The signature is decomposed using non-negative 

matrix factorization (NMF) using a reference dataset in order to generate transcriptional 

components. The components are optionally clustered or sub-selected to represent a specific 

sample population (e.g., KRAS mutants). (III) Cellular states are defined by clustering and 

an Onco-GPS map is generated. Samples are then projected onto the Onco-GPS map and 

further characterized by associating them to diverse genomic features.
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Figure 2. Analysis of Signature-Based Models that Predict the Oncogenic Activation of BRAF 
and KRAS
(A) Profile of an isogenic signature of BRAF activation and BRAF mutation status in 

hundreds of cancer cell lines.

(B) Probabilistic model to infer the activation status of BRAF based on the mRNA values of 

the BRAF signature genes. Activation status of cell lines according to the BRAF model and 

an additional model based on an ETV1 isogenic signature.

(C) Overlap in the number of samples that are predicted in the active state, and the number 

of overlapping genes in both signatures.

(D) Analysis of signature-based models that predict the oncogenic activation of KRAS.

(E) Probabilistic model to infer the activation status of KRAS based on the mRNA values of 

the KRAS signature genes. Activation status of cell lines according to the KRAS model and 

three additional models based on three KRAS signature from the Molecular Signatures 

Database (MSigDB, STAR Methods).

(F) Overlap in the number of samples that are predicted in the active state, and the number 

of overlapping genes in the four KRAS signatures.
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Figure 3. Generation of KRAS Components from the KRAS Signature
Schematic depiction of lung KRAS signature (left) being decomposed into W and H 

matrices (right, only H matrix shown).
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Figure 4. Characterization of the KRAS Transcriptional Components C3 and C6 Against 
genomic features
(A) selected KRAS features associated with component C3 in the CCLE and Achilles 

datasets; (B) selected KRAS features associated with component C3 in the TCGA PanCan12 

dataset. Dot plot depicting changes in component C3 scores upon genetic suppression of 

KRAS (C) in vitro and (D) in vivo. (E) WNT features associated with component C3 in the 

CCLE and Achilles dataset and in (F) the PanCan12 TCGA dataset. (G) Selected features 

associated with component C6 in the CCLE and CTRP datasets. Dot plots depict changes in 

component C6 scores upon treatment with MEK inhibitor (H) in vitro and (I) in vivo.
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Figure 5. Characterization of the KRAS Transcriptional Components C2, C4, and C7 against 
Key Molecular Features
(A) Selected features associated with component C7 in the CCLE dataset; (B) component 

C7 is modulated by the targeted modulation of NF-κB top; (C) association of component C7 
with FOSL1 mRNA in CCLE and TCGA PanCan12 dataset; (D) CRISPR-CAS9-mediated 

deletion of FOSL1/FRA1 and JUN led to attenuation of C7, but not suppression of FOS or 

control; (E) associations of component C4 in the CCLE dataset; (F) suppression of E2F1 
attenuates component C2; (G) associations of component C2 in the CCLE dataset; and (H) 

suppression of ZEB1 attenuates component C2.
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Figure 6. Generation of Onco-GPS Map for KRAS Mutant Cancers
(A and B) Association matrix of the nine KRAS components (C1–C9) with each other 

according to the information coefficient (IC) in (A) all CCLE samples, (B) the KRAS 

mutant samples. Components highlighted in red depict components that were chosen as 

representative components for subsequent analysis.

(C–E) Generation of Onco-GPS Map for CCLE KRAS mutant cancers from components 

C1-C7-C2 and their corresponding states S1–S4 (C). KRAS mutant samples color coded 

according to ZEB1 targets gene set (D) and NF-κβ gene set (E).

(F) Validation of drug combination prediction in a subset of Onco-GPS samples across three 

cancer cell lines representing state S4 versus other states.

(G) The each heatmaps show relative cell viability measured by CellTiter-Glo Assay (blue to 

viable red: decreased viability) upon combined treatment of Lapatinib and PD-0325901. 

Horizontal gray triangles represent seven increasing doses of PD-0325901 ranging from 0 to 

500 nM, vertical great triangles represent nine increasing doses of Lapatnib from 0 to 33 

μM). All relative viability values represented in the heatmaps were normalized to DMSO 

control (red, cell enrichment; blue, cell depletion).

(H) Summary of key genomic features associated with each of the 4 KRAS mutant Onco-

GPS states S1–S4.
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Figure 7. Onco-GPS Map for BRAF Mutant Cancers
(A) BRAF mutant cancers divided into three states are depicted on the Onco-GPS map and 

their corresponding states S1–S3.

(B and C) Drug sensitivities to (B) BRAF inhibitor Vemurafenib (p = 0.001) and (C) 

PLX4720 in the CCLE dataset (p = 0.001).

(D) Summary of genomic features associated with each of the BRAF mutant Onco-GPS 

states S1–S3.
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