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ABSTRACT

Heparin has been used clinically as an anti-coagulant for more than 100 y and the major source of
this therapeutic is still animal tissues. Contamination issues in some batches of heparin over 10 y
ago have highlighted the need to develop alternative methods of production of this essential drug.'
Bioengineering heparin by expressing serglycin in mammalian cells is a promising approach that
was recently reported by the authors.? This addendum explores the approaches that the authors are
taking to increase the yield of recombinantly expressed serglycin decorated with heparin/heparan
sulfate focusing on cell culture and bioreactor conditions and proposes that the cell
microenvironment is a key modulator of heparin biosynthesis.

Bioengineering is used to manufacture a range of
therapeutics including immunotherapies, insulin and
vaccines while other drugs, such as heparin, continue
to be made the way they have been for more than
100 y. Heparin used clinically is isolated from animal
tissues including porcine intestinal mucosa and bovine
lungs® and is used as an anticoagulant to prevent
thrombosis peri-operatively and to treat deep vein
thrombosis. In 2007, the death of patients from an
anaphylactic-like response who were receiving heparin
was found to be due to the presence of contaminating
over-sulfated chondroitin sulfate in some of the
batches of heparin. This has led to a world-wide effort
to produce heparin that is safe by the introduction of
quality control measures for the presence of chondroi-
tin sulfate by detecting the presence of sulfated galac-
tosaminoglycan  structures. The bioengineering
approach to produce heparin from non-animal sour-
ces reported by the authors uses a process that is less
susceptible to contamination.’

Despite the recent contamination crisis, the main
stay of anticoagulant therapy remains animal-derived
heparin.* Fondaparinux is a clinical alternative to ani-
mal-derived heparin that is a pentasaccharide synthe-
sized chemically from D-glucose and cellobiose that
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contains the anti-thrombin binding site. Since launch-
ing, it has been not been able to take over a significant
proportion of market share due to the cost of produc-
tion and the limited clinical indications for use.” Other
methods of heparin production that are being devel-
oped include chemical synthesis, chemo-enzymatic
synthesis, sulfation of unsulfated polysaccharides and
metabolic engineering of cells to overexpress enzymes
involved in the biosynthesis of heparin.®® The authors
of this current article have reported a bioengineering
approach to produce heparin involving the recombi-
nant expression of the proteoglycan serglycin in mam-
malian cells.” This method produced crude heparin
with one-seventh the activity of clinical-grade unfrac-
tionated heparin. It is speculated that the level of activ-
ity of the bioengineered heparin would increase once
it is purified using methods similar those currently
used to manufacture clinical-grade heparin from
crude extracts.

The production of bioengineered heparin was
achieved through the expression of human serglycin
in human cells. This form of heparin can therefore be
considered human heparin as it is produced by human
cells that may have distinct advantages over porcine
and bovine heparins that are structurally different and
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require different dosing to achieve therapeutic
anticoagulant activity.” Additionally, there is some
evidence to suggest a higher propensity to form
heparin-platelet factor 4 complexes with bovine
heparin than porcine heparin, which is a precursor to
heparin-induced thromobocytopenia.'® The expressed
serglycin was shown to bind platelet factor 4 via its
pendent glycosaminoglycan chains'' however, the
propensity of the isolated bioengineered human
heparin chains to form complexes with platelet factor
4 and the immunogenicity of these complexes remains
unknown and is under investigation.

Optimization of the production of heparin/heparan
sulfate was explored using the HEK-293 cells that
expressed the recombinant serglycin and exposing
them to different levels of glucose in the culture
medium. High levels of glucose in the culture medium
can increase glycosaminoglycan synthesis.'” The level
of glucose in the culture medium was found to affect
the yield of recombinant serglycin protein core as well
as its level of decoration with heparin/heparan sulfate
chains.” Further analysis of the yield of serglycin from
HEK-293 cells exposed to different levels of glucose in
the culture medium indicated that the production of
the protein core was lowest when cells were cultured
in 25 mM glucose and highest when the cells were
cultured in 50 mM glucose (Fig. 1). The level of
serglycin
protein core with heparin/heparan sulfate chains was

post-translational modification of the

)

o)

£ 10 - 250
2 W
g 84 - 200 g
: —
D B- L 150 'S
: g
£ 4 -100 —
o 3
2 2. 50 Q
< r
S 0 . . 0

8. 0 20 40 60

= [Glucose] (mM)

Figure 1. The yield of serglycin and heparin/heparan sulfate from
HEK-293 cells expressing serglycin cultured in different glucose
concentrations and purified by anion exchange chromatography
using methods described by Lord et al.2

highest when the cells were cultured in medium
containing 25 mM glucose (Fig. 1). These data support
the notion that the speed with which proteins transit
through the Golgi is a factor in determining the type
of glycosaminoglycan chains that are post-translation-
ally added to proteoglycans.”> Culturing the cells in
medium containing 25 mM glucose provided the
highest level of heparin/heparan sulfate substitution of
the protein core, however this level did not reach the
maximal theoretical heparin/heparan sulfate produc-
tion. Thus it is speculated that additional factors may
enhance post-translational modification of serglycin
with heparin/heparan sulfate chains and thus increase
the yield of bioengineered human heparin.

The challenge in optimizing the production of
glycosaminoglycan chains is that they are synthesized
by over 40 enzymes in the Golgi of cells for chain
elongation, epimerization and sulfate modification."*
It is not known how to precisely control the
expression and timed activity of these enzymes,
although a review of recombinantly expressed proteo-
glycans indicates they are predominantly decorated
with chondroitin sulfate.> Detailed imaging of the
enzymes involved in glycosaminoglycan biosynthesis
revealed their spatial orientation in the Golgi and
provides some evidence for the speed with which a
protein transits the Golgi may be a factor in the type
and extent of glycosaminoglycan decoration.'” There
is also evidence to suggest that the amino acid
sequences glycosaminoglycan
attachment site play a role in dictating the type of
glycosaminoglycan attachment.'®

There is substantial evidence in the literature that
serglycin produced by different cell types is decorated
with different glycosaminoglycan chains. Neutrophils,
macrophages, platelets, smooth muscle and endothelial

upstream of the

cells produce serglycin with chondroitin/dermatan and
heparan sulfate chains.” Both circulating and connec-
tive tissue-resident mast cells produce serglycin while
only the connective tissue-resident mast cells are
known to decorate serglycin with heparin.'” Thus, it is
possible to speculate that the connective tissue micro-
environment provides the appropriate cues for mast
cells to produce heparin. To explore this phenomenon,
the human mast cell line, HMC-1, was used because it
expressed both heparin and chondroitin sulfate when it
was either cultured alone (Fig. 2A) or co-cultured with
the human fetal lung fibroblast cell line, MRC-5
(Fig. 2D). MRC-5 cells themselves do not express
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Figure 2. The human mast cell line, HMC-1, expressed both hepa-
rin and chondroitin sulfate however, when co-cultured with
human fetal lung fibroblast cell line, MRC-5 increased the relative
expression of heparin. Expression of (i) heparin (clone 2Q546)
and (i) chondroitin sulfate (clone CS-56) by (A) HMC-1, (B) MRC-5
and (D) co-cultures of HMC-1 and MRC-5 cells as determined by
immunocytochemistry using methods described by Jung et al.'
Heparin and chondroitin sulfate are depicted in green in panels
A and B and depicted in red in panel D. Cell nuclei were stained
with DAPI, shown in blue in panels A, B and D. (C) Phase contrast
microscope images of (i) MRC-5 cells and (i) co-cultures of
HMC-1 and MRC-5 cells. The inset in panel C (ii) indicates the
presence of HMC-1 cells on top of the confluent MRC-5 cell layer
as determined by Toluidine blue that stained the acidic granules
a purple/pink color using methods described by Kirshenbaum
et al."® Scale bar in panel C (ii) inset represents 200 zzm.

detectable levels of either glycosaminoglycan when cul-
tured alone (Fig. 2B). Phase contrast images of the
MRC-5 cells indicated that a confluent monolayer of
cells had formed after 7 d in culture (Fig. 2C (i)). Co-
cultures of MRC-5 and HMC-1 cells were prepared by
culturing MRC-5 cells for 7 d and confluent followed
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by the addition of HMC-1 cells for a further 7 d. Phase
contrast microscopy indicated that the MRC-5 cells
maintained a confluent monolayer on the tissue culture
surface with the HMC-1 cells adhering to the surface of
the MRC-5 cells (Fig. 2C (ii)). The presence of the
HMC-1 cells in the co-cultures was confirmed by Tolu-
idine blue staining that indicated the presence of their
acidic granules by a purple/pink color (Fig. 2C (ii)
inset) that were localized intracellularly. HMC-1 cells
maintained their expression of heparin in the co-cul-
tures, however they reduced their expression of chon-
droitin sulfate (Fig. 2D). These data demonstrate for
the first time that the microenvironment plays a role in
directing glycosaminoglycan biosynthesis. This is most
likely due to affecting intracellular processes such as
protein production rates. These data make it possible
to speculate that the microenvironment of cells has a
deterministic role in the glycosaminoglycan decoration
of proteoglycans. Indeed, there is already evidence for
this in the way different cell types, both in vivo and in
vitro, differentially decorate the protein core of proteo-
glycans with glycosaminoglycan chains. These data
raise the possibility of regulating the type of glycosami-
noglycan chains that decorate proteoglycans by provid-
ing the appropriate microenvironment. This will be
particularly useful to optimize the production of bioen-
gineered human heparin.
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