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Abstract

Drug-drug interactions (DDIs) are known to be responsible for nearly a third of all adverse 

drug reactions. Hence several current efforts focus on extracting signal from EMRs to prioritize 

DDIs that need further exploration. To this end, being able to extract explicit mentions of DDIs 

in free text narratives is an important task. In this paper, we explore recurrent neural network 

(RNN) architectures to detect and classify DDIs from unstructured text using the DDIExtraction 

dataset from the SemEval 2013 (task 9) shared task. Our methods are in line with those used 

in other recent deep learning efforts for relation extraction including DDI extraction. However, 

to our knowledge, we are the first to investigate the potential of character-level RNNs (Char-

RNNs) for DDI extraction (and relation extraction in general). Furthermore, we explore a simple 

but effective model bootstrapping method to (a). build model averaging ensembles, (b). derive 

confidence intervals around mean micro-F scores (MMF), and (c). assess the average behavior 

of our methods. Without any rule based filtering of negative examples, a popular heuristic used 

by most earlier efforts, we achieve an MMF of 69.13. By adding simple replicable heuristics 

to filter negative instances we are able to achieve an MMF of 70.38. Furthermore, our best 

ensembles produce micro F-scores of 70.81 (without filtering) and 72.13 (with filtering), which 

are superior to metrics reported in published results. Although Char-RNNs turnout to be inferior 

to regular word based RNN models in overall comparisons, we find that ensembling models from 

both architectures results in nontrivial gains over simply using either alone, indicating that they 

complement each other.

I. Introduction

Adverse drug reactions (ADRs) have been a major concern as polypharmacy became more 

common in modern medical practice [1]. ADRs may lead to hospitalization and/or extend 

the lengths of stay for already admitted in-patients [2]. Drug-drug interactions (DDIs) 

represent an important category of ADRs. Specifically, a drug interaction is said to occur 

“when the effects of one drug are changed by the presence of another drug, herbal medicine, 

food, drink or by some environmental chemical agent” [1]. The result of DDIs can be 

unexpected failure of therapy [3] due to reduction in efficacy or more direct harm due to 

increase in toxicity of a drug. Although manually curated databases that discuss DDIs exist 

[1], [4], most of the up-to-date information is still latent in unstructured text. Thus it is 
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important to extract such interactions as they are presented as findings in research articles, 

warnings in drug labels, or observations in clinical notes [5]. The 2013 DDI extraction 

challenge [6], [7] introduced a new dataset and challenge to extract mentions of such 

interactions from free text narratives. A few recent efforts focused on employing deep 

neural networks (or deep nets) for extracting DDIs using the SemEval challenge dataset 

and demonstrated improvements over linear models. In this paper, we use character-level 

recurrent neural networks (Char-RNNs) along with conventional word-level RNNs to extract 

DDIs using the 2013 DDIExtraction dataset [6].

II. 2013 DDIExtraction Challenge Dataset

In this section, we briefly outline the characteristics of the dataset used in this task. Two 

different databases, Medline abstracts and DrugBank [4] narratives, were used to identify 

sentences on the subject of DDIs to create the DDI corpus used for the SemEval 2013 

shared on DDI extraction [8]. Pharmacological substances and four different types of DDI 

manifestations in text were annotated for a total of 792 documents. The different types of 

interactions annotated in descending order of their frequencies are

1. mechanism, where the pharmacokinetic mechanism is explicitly discussed (e.g., 

“ Ethanol decreases the elimination of abacavir causing an increase in overall 

exposure”),

2. effect, where a consequence of an interaction (pharmacodynamic aspect) is 

specified (e.g., “the antihypertensive effect of losartan may be blunted by 

the non-steroidal anti-inflammatory drug indomethacin”)

3. advice, where suggestions regarding handling a drug interaction are made 

in text (e.g., “Patients should be warned of the potential danger of the self-

administration of benzodiazepines while under treatment with Suboxone”)

4. int, where a DDI is discussed without any specific additional information.

All pairs of drugs mentioned in each sentence are separately annotated as either participating 

in any of these four types of interactions or simply declared as false indicating there is 

no interaction. For this study, following other efforts in DDI extraction, we assume the 

drug mention spans are already provided and thus the main task is to classify the type of 

interaction (any of the four types above or false if no interaction exists). The total number 

of candidate drug pairs in the training dataset is 27,792 out of which ≈ 15% are positive 

examples assigned to one of the four classes mentioned earlier. The test set has 5,716 

candidate pairs and around 17% are positive examples.

III. Related Work

The DDI extraction task is a special case of binary relation extraction where (subject, 

predicate, object) triples are extracted from natural language. In this case both the subject 

and object are pharmacological substances and the predicate is the type of interaction 

discussed in Section II. The top two teams [9], [10] in the competition used a variety of 

techniques but the two commons themes were usage of interesting kernels for support vector 

machine (SVM) models and application of negative instance filtering using straightforward 
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rules (more later). The top team [9] used a two stage approach where a binary SVM 

classifier first rules out sentences as “less informative” when they are not expected to 

contain valid DDIs. The second stage relation classifier uses a hybrid kernel that combines 

a feature-based, a shallow linguistic, and a tree kernel for the SVM model. The second 

ranking team [10] also followed the two stage setup (detection followed by classification) 

using a majority voting approach involving SVM models with interesting shallow linguistic 

and tree kernels. After the competition, Kim et al. [11] used a more involved set of 

features including n-grams based on shortest dependency and constituency paths connecting 

candidate pairs. They used these features with the one-against-one approach for muticlass 

modeling with SVMs using a linear kernel. Using a graph kernel based on the so called 

context vectors defined using the dependency graphs of sentences, Zheng et al. [12] used 

SVMs to extract DDIs.

Over the past couple of years, the resurgence of deep nets has renewed the interest in 

using such methods for DDI extraction, in particular using the DDIExtraction dataset. Here 

we outline some of these recent attempts. Liu et al. [13] represent the first team to work 

along these lines using a convolutional neural network (CNN) that uses dense word vectors 

to represent the document as a matrix that is subsequently convolved over using multiple 

convolution filters (CFs). They also used position vectors as additional information for each 

word based on its position relative to the two candidate drugs in the sentence. They use 

max-over-time pooling and finally predict the interaction type using a softmax output layer. 

The same team also extended this initial effort using convolutions over shortest dependency 

paths connecting the mentions of the drugs [14]. Zhao et al. [15] trained word embeddings 

using the shortest dependency paths and employed a CNN model with word, position, 

and additional part-of-speech (POS) tag embeddings. Recently, Suárez-Paniagua et al. [16] 

explored CNN architectures with different parameter settings including word and position 

vector dimensions and CF sizes. They, however, concluded that their results are not better 

than those achieved through more complex deep net models by other published efforts.

All prior efforts we discussed thus far move the state-of-the-art but we identify the following 

gaps:

• Although CNNs are powerful, given the inherent sequential nature of sentences 

and differences in the relative importances of words closer to the drug mentions, 

recurrent neural networks (RNNs) also offer an important alternative. Moreover, 

RNNs are already popular for relation extraction in other domains [17], [18] but 

it appears there are no prior results on using them for DDI extraction.

• Additionally, the role of Char-RNNs appears completely unexplored for relation 

extraction in general, not just for DDIs. Although character-level embeddings are 

intuitively more useful for morphologically richer languages unlike English, they 

might be more suitable for relation extraction given they can model tense/voice 

variations.

• The training process of deep nets with many randomly initialized parameters is 

not deterministic in that for a fixed train and test set split of a dataset, different 

runs involving building a model with the train set and evaluating it on the test 
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set do not result in the same performance. Depending on the initial parameters 

chosen, one may get (un)lucky in the eventual model's performance. Typically 

model averaging is employed to arrive at more stable models and may also be 

used to study the average behavior of deep nets' performance. These aspects are 

also missing in prior studies on DDI extraction.

In this paper, we address these gaps using the DDIExtraction dataset by exploring both 

regular RNN and Char-RNN based hierarchical architectures with model averaging and 

bootstrapping to study average behavior.

IV. Introduction to RNNs and LSTMs

Unlike feedforward networks like CNNs, RNNs have cyclical connections and are more 

suitable for natural language processing (NLP) tasks where the meaning of a text segment is 

naturally dependent on what occurred in the narrative before it. Typically, RNNs recurrently 

compose word vectors [19] of a sentence from left to right, effectively letting information 

persist from the history of previously seen words. There is usually an input layer, a hidden 

layer that is connected to itself, and an output layer. The hidden layer's output is fed back to 

itself at consecutive time steps (generally as many times as there are words in the narrative) 

and the output at any time step is generally the recurrent composition of information until 

that point. Parameter optimization is implemented through the so called back propagation 
through time because of the “unfolding” of the cyclical connections in the hidden layer 

through different time steps. For a thorough treatment of RNNs, we encourage the reader 

to refer to a popular resource by Graves [20, Chapter 3]. In the context of conventional 

RNNs for NLP, the input at each time step is the vector corresponding to the next word in 

the narrative. The output is the context vector that composes word vectors that include all 

previous words and itself using the RNN architecture.

To exploit signals that come from the future part of a sentence in interpreting the current 

word, running the RNN from right to left over the input text can yield additional contextual 

hints for eventual prediction tasks. This resulted in bi-directional RNNs (BiRNNs) which 

essentially have two separate RNNs, each with its own parameters, capturing the context at 

each position from both directions. The output at each time step is a combination of output 

vectors from both RNNs typically produced via concatenation. To handle the problem of 

vanishing gradients [21] in regular RNNs, a more involved hidden layer with the so called 

long short-term memory (LSTM) units [22], [23] has become popular, especially for NLP. 

The state representation in an LSTM unit includes an explicit memory cell access to and 

use of which is controlled through three gates – first to control how much of the next input 

to incorporate in the memory (input gate), second to determine to what extent the current 

memory is to be forgotten (forget gate), and third to limit the extent of information from the 

current memory cell to propagate to the output state (output gate). These three gates control 

the flow of information based on the previous output and cell state via sigmoid outputs ∈ [0, 

1]. In this effort, we use BiRNNs with LSTM units (simply termed BiLSTMs) in the hidden 

layer as the main neural architecture with specific LSTM details outlined by Goldberg [24, 

Section 11].
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V. Word and Character-Level RNNs

In this section, we present details of the two RNN architectures used in our study. The main 

architecture proposed is shown in Figure 1.

A. Instance Preprocessing

Before we proceed further, we discuss some basic preprocessing steps. Each instance for 

classification comes with a particular sentence and a pair of drugs mentioned in it. Given 

a sentence might contain more than two drugs, it might contain multiple candidate pairs 

(precisely n(n – 1)/2 pairs if n drugs are mentioned) for which classification is needed. We 

first convert all the sentences in the dataset into lowercase. Subsequently, we perform so 

called entity blinding by replacing the first drug (considered left to right) in the sentence 

with the upper case string “DRUGA” and the second drug span with the string “DRUGB”. 

All other drug mentions are replaced with “DRUGN”. For example, consider the drug 

pair benzodiazepines and subutex in the sentence “Patients should be warned of the 

potential danger of the intravenous self-administration of benzodiazepines while under 

treatment with suboxone or subutex”. The modified instance passed to the model is: 

“patients should be warned of the potential danger of the intravenous self-administration 

of DRUGA while under treatment with DRUGN or DRUGB”.

B. Word-Level RNNs with Position Vectors

In this model, the input to the neural network is an input sentence tokenized into N words 

including the special drug mention tokens as outlined in Section V-A. Such a sentence is 

represented as a sequence of word embeddings, [w1, …, e1, …, e2, …, wN], where wi is the 

word embedding for the i-th word and e1 and e2 are the special token vectors for DRUGA 

and DRUGB respectively. In addition to word vectors, we use position vectors first proposed 

by Zeng et al. [25] for relation classification and found useful by all deep net efforts 

discussed in Section III for DDI extraction. The idea is to use low dimensional vectors that 

represent the relative positions of a word with respect to the two drug mentions. These are 

denoted by pj where j is an integer that represents the positional difference with regards to 

a specific drug mention. For each word, we have two position vectors corresponding to its 

location with respect to the two candidate drugs. These vectors are concatenated to the word 

vector and input to the RNN at each time step. The position vectors are randomly initialized 

and are learned along with the word vectors during the training process. For the example 

sentence at the end Section V-A, the position vectors for the word “treatment” with respect 

to DRUGB and DRUGA are p−4 and p3 respectively. The position vectors concatenated with 

word vectors are as outlined in component ① of Figure 1, where ρ(e) ∈ ℤ+ is the position 

of the drug mention e. The final set of input vectors passed to the RNN is thus [x1, …, xN] 

where

xi = wi pi − ρ(e2) pi − ρ(e1)

(1)
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with wi being the word vector for the word at position i and ‖ denoting the concatenation 

operation. We note that wi could be the vector for the tokens DRUGA, DRUGB, or DRUGN 

when the corresponding drug mention occurs at the i-th position.

With this setup, we first use a BiLSTM layer at the word level to capture the contextual 

information of the sentence with respect to each word. Concretely,

h i = Word−LSTM→ xi ,

h i = Word−LSTM← (xi), and

hi = h i ∥ h i fori = 1, …, N

(2)

where h⃗i, h⃖i ∈ ℝd and hi ∈ ℝ2d such that d (a network hyperparameter) is the number 

of output units at each LSTM time step. Also, Word-LSTM is functionally identical to a 

traditional LSTM cell (without peepholes) and the prefix “Word” is used only to indicate 

that its input is based on word vectors. This forms the component ② of Figure 1.

Next, we perform a max-pooling operation over all hi vectors to produce the feature vector 

h = ℎmax
1 , …, ℎmax

2d  where ℎmax
i = max ℎ1

i, …, ℎN
i  represents the maximum value across all N 

BiLSTM word representations for the dimension i. This corresponds to the component 

③ of Figure 1. Finally, we use a fully-connected output layer with m outputs, where m 
corresponds to the number of interaction types (here m = 5). The output is computed as

q = Wq ⋅ h + bq

where q ∈ ℝm and q ∈ ℝm×2d and bq ∈ ℝm are additional network parameters. In order to 

get a categorical distribution, we apply the softmax function to the vector q to obtain

pj = eqj

∑i = 1
m eqi

,

where pj ∈ [0, 1] is the probability estimate of the label at index j forming the final 

component ④ of Figure 1.

C. Character-Level RNNs

Char-RNNs are popular for modeling morphologically richer languages [26] and solving 

NLP tasks such as POS tagging for such languages [27] often with substantially fewer 

network parameters. Although they were explored for text classification [28], we do not see 

prior studies applying them for relation extraction. To address this gap, in this effort, we 

assess their effectiveness for the DDI extraction use-case through a hierarchical character 

and word based RNN architecture.
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The architecture of Char-RNNs we use is identical to that of the word based model (Figure 

1) except the word vectors are derived using an LSTM on character embeddings instead 

of using pre-trained word embeddings. That is, the word embeddings are composed of 

embeddings for the constituent characters. Specifically, let the word

wi = ci
1, …, ci

l(wi) ,

where ci
j is the j-th character of word wi and l(wi) is its length (number of characters). For wi, 

we feed its character embeddings into a forward LSTM with k (equal to the dimensionality 

of word vectors) output units such that

g i
t = Char−LSTM→ (ci

t), fort = 1, …, l(wi),

where g i
t ∈ ℝk is the output at time step t and Char-LSTM is a regular LSTM but indicates 

the particular instance that processes character embeddings in contrast with word level 

BiLSTM in equation (2). The output state at the last step g i

l(wi)
 encodes the left-to-right 

context accumulating at the last character and is used as the word embedding

wi = g i
l(wi)

(3)

for concatenation with position vectors in right hand side of equation (1). This is conveyed 

in step  on the left bottom portion of Figure 1. Thus instead of pre-trained word vectors, 

component  of Figure 1, we use randomly initialized character embeddings, which are 

modified during the training process, to form word vectors. Except for these changes, the 

rest of the architecture of the end-to-end Char-RNN deep net for DDI extraction is identical 

to the components ② – ④ in Figure 1 with details as in Section V-B. This particular 

architecture is motivated by the hierarchical LSTM model (https://github.com/tensorflow/

fold/blob/master/tensorflow_fold/g3doc/blocks.md) of the Tensor-Flow Fold framework 

[29]. As such, our setup is different from traditional approaches where Char-RNNs are 

used for language modeling or sequence tagging [26], [27].

VI. Experiments and Results

Next we describe our experimental setup and present results obtained using architectures 

described in Section V.

A. Negative Instance Filtering

All prior results from Section III on the DDI dataset (Section II) use some form of negative 

instance filtering. This is natural given a few straightforward types of drug pair mentions 

do not constitute DDIs. For example, when describing hypernymic relations using the 
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construct “DRUGA such as DRUGB”, it is clear that this particular instance does not 

represent an interaction between the drugs. However, prior studies outline only general 

guidelines for filtering without unambiguously specifying all rules in an exhaustive manner. 

This hinders replicability for other follow-up efforts. In our current effort, we conduct 

experiments without any filtering and also apply some minimal filtering fully specified by 

the following patterns that capture certain coordination structures, hypernymic relations, and 

other constructs inspired from a prior effort by Kim et al. [11].

“^DRUGA :”, “^DRUGB :”,

“DRUGA, DRUGB”, “DRUGB, DRUGA”,

“DRUGA (DRUGB)”, “DRUGB (DRUGA)”,

“DRUGA, DRUGB, and DRUGN”,

“DRUGB, DRUGA, and DRUGN”,

“DRUGN, DRUGB, and DRUGA”,

“DRUGA, DRUGN, and DRUGB”,

“DRUGN, DRUGA, and DRUGB”,

“DRUGN, DRUGB, and DRUGA”,

“DRUGA such as DRUGB”,

“DRUGB such as DRUGA”,

“DRUGA such as DRUGN or DRUGB”, and

“DRUGB such as DRUGN or DRUGA”

The idea is to automatically classify any instance as false if it matches one of these patterns. 

However, this could lead to misclassification of some positive instances leading to false 

negatives (FNs). However, these specific rules weed out many more potential false positives 

(FPs) than the number of new FNs they incur. Table I shows the exact numbers of instances 

we have in the dataset before and after applying the filters. As we can see, these rules 

result in a major reduction in negative instances while incurring a very small dip in positive 

instances.

B. Model Configuration Details

The following are the implementation choices made for the regular word based RNN 

model based on experimentation and best practices from other efforts. This architecture 

was implemented using the Theano [30] library.

• We ran Google's word2vec [19] system on Medline citations (2014 PubMed 

baseline) to obtain 300-dimensional pre-trained word vectors, which are used 
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as initial vectors to populate a sentence matrix. The tokenizer used is a simple 

splitter on non-word characters (those excluding the English alphabet, ten digits, 

and underscore symbol). For words in the training dataset that do not have 

pre-trained word vectors, we initialized each of their elements randomly by 

drawing from a uniform distribution with values ranging between the minimum 

and maximum values for that element among pre-trained vectors. The special 

tokens for DRUGA, DRUGB, and DRUGN were randomly initialized using the 

same approach.

• The position vector dimensionality was set to 32 with each element initialized 

from the uniform distribution U(0, 0.01). The number of position vectors was 

determined based on the maximum position variation observed in the training 

sentences. Positions with respect to DRUGA (DRUGB) that are beyond those 

observed during training were assigned the vector corresponding to the farthest 

position encountered during training for DRUGA (DRUGB).

• The output dimensionality of each LSTM is 512, leading to 1024 features input 

to the softmax layer given there are two LSTMs. The BiLSTM weight matrices 

and the weight matrix q were initialized to values drawn from a normal 

distribution with mean 0 and standard deviation 2/input − size where the input 

size is 364 (300 for word vectors and 32 each for two position vectors) for the 

LSTMs and 1024 for the softmax layer. The bias vector bq was initialized to the 

zero vector and the LSTM bias vectors were initialized to [1, …, 1].

• AdaGrad [31] was used for optimization with an initial learning rate of 0.01. 

The mini-batch size was set to 50 instances and sentences were zero padded at 

the end based on the length of the longest sentence in the training dataset. The 

number of epochs used was 25 with an early stopping criterion where we stopped 

training if there were five consecutive epochs in the training procedure that did 

not increase the validation micro F-score. The dropout parameter was set to 0.5.

Next we discuss empirical implementation choices made for the Char-RNN based 

hierarchical LSTM model discussed in Section V-C and implemented using TensorFlow 

Fold [29].

• Given word representations are based on character embeddings in this model, 

we don't have pre-trained word embeddings to incorporate. We used 128 

ASCII characters and embedded them as 250 dimensional vectors. Although 

it is atypical to have the dimensionality to be higher the vocabulary 

size, our experiments indicated that higher dimensionality was essential to 

achieve reasonable performance. The dimensionality of Char-LSTM output 

was set to 250, which thus also becomes the word vector size given 

the setup in equation (3). The Word-LSTM output dimensionality was 

determined to be 250 and hence we have 500 input features for the 

softmax layer. All parameters were initialized according to TensorFlow's 

recommended guidelines based on the input size (https://www.tensorflow.org/

api_docs/python/tf/uniform_unit_scaling_initializer).
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• The position vector dimensionality was set to 32 and positions farther than 

those observed during training were handled in the same way at test time as we 

outlined earlier for regular RNNs.

• We used AdaGrad [31] for optimization with initial learning rate of 0.5 and 

initial gradient accumulator value of 0.1, the default value in TensorFlow. The 

mini-batch size was set to 50 instances and zero padding was not necessary given 

the dynamic computations allowed by TensorFlow Fold. We used 30 epochs and 

stored the best model that has the best micro F-score on the validation dataset. 

The dropout parameter was set to 0.2.

C. Bootstrapped Model Averaging

As discussed toward the end of Section III, due to large number of local minima owing 

to larger parameters spaces, a single end-to-end deep net tends to converge to different 

solutions under different parameter initializations. Although the error rates may be similar, 

the actual errors made might differ among the resulting models. Hence it is well known that 

ensembling several models built from the same architecture results in higher performance 

than using the constituent individual models [32], [33]. In our prior efforts in text 

classification with deep nets, we consistently observed performance gains with ensembling 

via voting [34] or through model averaging [35], [36]. In model averaging, we predict the 

final class based on the average of the class probability estimates of multiple (typically 

10–20) deep net models trained using the same architecture but with different parameter 

initializations.

In this study, we build 20 regular RNN models and 20 Char-RNN based hierarchical models 

with different parameter initializations and subsets of the training data using 10% of it 

for validation and 90% for actual model building. To study the stability (and variance) 

of the model averaged ensembles, we randomly considered 10,000 such ensembles of ten 

models each from Char-RNN models, regular RNN models, and their union where five were 

selected from each group. Note that the number of combinations for ten models for the 

individual architectures is 20C10 and for the mixed setup is (20C5)2. The mean precision, 

mean recall, and mean micro-F score (MMF) with 95% confidence interval along with its 

standard deviation are shown in Table II. Among all ensembles, the table also shows the 

maximum and minimum F-scores achieved per ensemble type.

We first make two interesting observations from Table II:

1. The standard deviation σ of micro F-scores is < 0.5 except for row five where it 

is just over 0.5. This indicates that ensemble models are highly consistent in their 

performance.

2. The widths of the 95% confidence intervals (CIs) around the MMFs are also 

very small (mostly < 0.01). This indicates that the true MMFs are expected to 

lie in extremely tight intervals around the corresponding sample MMFs. This 

implies the sample means are very reflective of the average behavior of ensemble 

models.
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Rows 5–6 when compared with rows 2–3 show that negative instance filtering (from Section 

VI-A) consistently improves performance given the corresponding CIs do not overlap 

for Word-RNNs and the combined ensemble type. For the same reason, with or without 

filtering, we also observe consistent improvements when building ensembles with both 

character and word level models over those built just with either type. Furthermore, word 

model ensembles are better than their character counterparts, which is not surprising given 

direct representation of words is known to better capture their semantics at the expense of 

a large set of parameters to learn. Nevertheless it is interesting to see that by just using 

128 character embeddings we are able to achieve scores close to those achieved by models 

where each word has its own representation. Also noteworthy is the ability of Char-RNNs 

to complement word based models in building better joint ensembles. From the last two 

columns we observe that the F-score values have a range of 3 to 4 points even if σ is small. 

Thus there could be better ensembles in the short tail portion. For instance, the best MMF 

value we have is 70.38 corresponding to the last row but the best micro F-score achieved for 

that ensemble type is 72.13 which is close to 2 points away from the mean.

In Table III, we compare our models with others described in Section III. The first two rows 

represent models that participated in the original competition and were blinded to the test set 

completely. The remaining rows represent efforts after the competition when the full dataset 

was released. We note that the winning team's entry [9] still has a high recall of 65.60 

compared with rest of the subsequent attempts. Rows 1–4 are based on classical methods 

involving SVMs and different types of kernels while the rest deal with deep net models. Our 

models are shown in the last four rows of the table.

All teams used some form of negative instance filtering. But this process is subjective and 

the filtering rules differ from team to team and are often not fully specified. In some cases 

the counts after the filtering are not disclosed [13], [14]. Although Zhao et al. [15] present 

counts after filtering, it is not clear how the two rules they discuss lead to filtering 56% (over 

2800) of the negative test instances while removing only 8 positive instances. Our rules 

(from Section VI-A) filter only 14% of negative instances while also removing 3 positive 

instances. If not implemented with few generic patterns, this process can be tedious and can 

result in rules that are potentially too specific to work for other datasets. Thus we wanted 

to assess the best we can do without any rule based filtering given the confusing variations 

noticed in earlier efforts. Rows 8 and 9 of Table III correspond our results in this scenario. 

Our mean F-score here 69.13 is already better or comparable with other models that filter 

negative instances. However, it trades off some recall for gains in precision to do that. Our 

best ensemble without filtering beats all models but has the same F-score as the model by 

Liu et al. [14].

Our ensemble performances with the mildly filtered dataset (see Section VI-A) are shown 

in the final two rows. Our mean performances in this case are better than reported by most 

other efforts that use elaborate yet underspecified negative instance filtering schemes. Our 

best ensemble with filtering achieves superior results when compared with prior results on 

the 2013 DDIExtraction dataset. However, we believe the mean measures are more reflective 

of the expected performance on new test sets given the best model was obtained by simply 

attempting various ensembles on the test set. This we believe is the common problem of all 
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prior studies surveyed in this paper on the DDI extraction task. Without exception, all such 

efforts do not report their architecture's average behavior based on different instantiations 

of network parameters. In this context, it is not clear whether the results will be consistent 

when a different initialization is used. Hence, we refrain to follow suit and report both 

the best model's results and also the average behavior, which in our case turns out to be 

consistent with tight confidence intervals.

VII. Concluding Remarks

In this paper, we took a deliberate approach to evaluate the potential of word and character-

level RNNs for DDI extraction. We used a small set of fully specified patterns that filter 

certain obvious types of negative instances. We conducted experiments to assess the utility 

and consistency of model averaging and the complementary aspects of regular and Char-

RNNs. We demonstrated that our models are superior or on par with prior results even when 

considering average behavior with minimal filtering. As such, we believe, our effort throws 

new light on evaluating deep neural architectures. The following are some limitations of our 

current study discussed along with future research plans.

• In this paper, we do not report any qualitative error analyses of our results in 

terms of patterns found in FPs and potential reasons for FNs. Furthermore, it is 

not clear why and how Char-RNNs complement regular RNNs. While we notice 

the effect, the underlying linguistic insights are not apparent. We wish to pursue 

attention incorporated architectures to analyze these phenomena based on our 

prior experiences [35].

• Although we considered 10,000 model averaging ensembles, we trained only 20 

models for word based and Char-RNN based hierarchical architectures. So the 

variety of models within the ensembles is limited and we plan to increase it by 

training more models per architecture to generate more diverse ensembles.

• The main focus of this paper was on classifying the type of interaction between 

a pair of drugs including the case when there is no interaction captured by the 

false class (in addition to the four specific types). However, it might be more 

useful just to detect the interaction without having to identify the specific type. 

Although this is a simpler binary classification problem, it nevertheless warrants 

a separate architecture tuned to maximize the detection F-score, which is going 

to be part of our future work.

• We are aware of more complex neural architectures that combine RNNs and 

CNNs [17], employ hierarchical attention over the three sentence segments 

separated by the entity pair [18], and use Tree-RNNs (also known as recursive 

neural networks) [37] for relation classification. Our initial attempts in using 

these did not improve over results in this paper. We will take a more thorough 

approach in evaluating the suitability and assessing the modifications needed to 

adapt them to the DDI extraction task.
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Fig. 1. Word and Character-Level RNN for DDI Extraction
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Table I
Counts before and after negative instance filtering

Class
Training Test

Before After Before After

Total Pairs 27792 23338 5716 4872

Negative DDIs 23772 19342 4737 3896

Positive DDIs 4020 3996 979 976

Mechanism 1319 1309 302 301

Effect 1687 1676 360 358

Advise 826 824 221 221

Int 188 187 96 96
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Table III
Comparison with prior efforts

Team Precision Recall F-score

FBK-irst [9] 64.60 65.60 65.10

WBI [10] 64.20 57.90 60.90

Kim et al. [11] – – 67.00

Zheng et al. [12] – – 68.40

Liu et al. [13] 75.70 64.60 69.75

Liu et al. [14] 78.24 64.66 70.81

Zhao et al. [15] 72.50 65.10 68.60

Our mean scores (¬F) 77.78 62.21 69.13

Our best ensemble (¬F) 79.34 63.94 70.81

Our mean scores (+F) 78.56 63.76 70.38

Our best ensemble (+F) 79.68 65.88 72.13
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