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Abstract

The aim of this article is to develop a Bayesian random graph mixture model (RGMM) to detect 

the latent class network (LCN) structure of brain connectivity networks and estimate the 

parameters governing this structure. The use of conjugate priors for unknown parameters leads to 

efficient estimation, and a well-known nonidentifiability issue is avoided by a particular 

parameterization of the stochastic block model (SBM). Posterior computation proceeds via an 

efficient Markov Chain Monte Carlo algorithm. Simulations demonstrate that LCN outperforms 

several other competing methods for community detection in weighted networks, and we apply 

our RGMM to estimate the latent community structures in the functional resting brain networks of 

185 subjects from the ADHD-200 sample. We find overlap in the estimated community structure 

across subjects, but also heterogeneity even within a given diagnosis group.

1. Introduction

A problem of particular interest in the field of neuroscience is to understand the structure 

and organization of functional and structural brain networks and their relationships with 

predictors such as disease status and behavior [16, 3]. The existing literature has largely 

focused on various topological measures, such as degree distribution, clustering coefficient 

and network diameter, and their clinical implications [3, 26, 14, 9]. These types of global 

and local network characteristics are convenient in their ability to reduce large networks to a 

small set of statistics that describe their large-scale organization. The community network 

structure, in which there exist groups of nodes (sometimes called “modules”) that have 

dense connections within each group and sparse connections between different groups, has 
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been observed in numerous real life networks [34, 10, 7, 15, 33], including functional brain 

networks [26, 16]. See [7] for a comprehensive review of various approaches to the 

community detection problem.

Our motivating data are resting-state functional magnetic resonance images (fMRI) from the 

ADHD-200 sample, which is downloadable from http://fcon_1000.projects.nitrc.org/indi/

adhd200. In this study, we have used the dataset with 215 subjects collected at New York 

University. After removing the ADHD hyperactive/impulsive subtype due to a small sample 

size, our analysis dataset consists of 185 subjects: 91 typically developing controls, 62 of the 

ADHD combined subtype, and 32 of the ADHD inattentive subtype. For each subject, we 

calculated a 116 × 116 Fisher-transformed correlation matrix based on the 116 predefined 

regions of interest (ROI) defined by the automated anatomical labeling (AAL) template [30] 

and used it as a resting-state fMRI connectivity network. See Figure 1 for the networks of 

two randomly selected subjects, which have been visualized with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) [32]. Thus, our networks consist of 116 nodes (brain 

regions) and the weighted edges between them (Fisher-transformed correlations between 

time courses). We are interested in understanding the modular structure of these functional 

brain networks, which we address by formulating a Bayesian random graph mixture model 

to detect the latent community structure in each network and estimate the modularity 

parameters governing the edge weights.

Two major classes of community detection methods include optimization algorithms and 

model-based methods. The typical approach to model-based community detection is via the 

stochastic block model (SBM), which summarizes the network characteristics through a low 

dimensional latent space, while partitioning the network into blocks of nodes with similar 

connectivity characteristics [20, 17, 18]. The SBM can be seen as an extension of the well-

known Erdős-Rényi random graph model for binary graphs [6]. While much of the focus has 

been on binary graphs (e.g. Nowicki and Snijders [20], Choi, Wolfe and Airoldi [4], Vu, 

Hunter and Schweinberger [31], Schweinberger and Handcock [24]), versions of the SBM 

have been proposed to estimate the community structure of random weighted graphs [17]. 

However, calculating unknown parameters in these SBMs represents major computational 

challenges. For instance, maximum likelihood estimation is only possible for small graphs 

due to the intractable summation in the EM algorithm for the SBM likelihood [27]. 

Alternatively, Bayesian methods based on Markov chain Monte Carlo (MCMC) sampling 

and variational algorithms have been developed for the calculation of posterior estimates for 

the SBM [17, 12, 1]. Moreover, other approximating methods, such as the use of a 

composite likelihood and moment estimators, have been proposed to compute parameter 

estimates for some versions of the SBM [2].

In this paper, we develop a fully Bayesian framework for the weighted SBM as a 

hierarchical random graph mixture model (RGMM), in order to estimate the latent class 

network (LCN) structure in functional brain networks. We propose conjugate priors for the 

unknown parameters in order to achieve efficient estimation and use the more parsimonious 

affiliation version of the SBM to avoid a well-known nonidentifiability issue. We develop an 

efficient Markov chain Monte Carlo (MCMC) algorithm to draw random samples from the 

desired posterior distribution. Our MCMC algorithm can handle graphs with thousands of 
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nodes or relatively few nodes without having to rely on any asymptotic assumptions or 

approximations. Our simulations demonstrate that our estimation approach outperforms 

several existing methods for the weighted SBM in terms of both classification accuracy and 

accuracy in estimating the modularity parameters, and we apply our method to the sample of 

functional brain networks and examine the patterns of estimated latent community structure 

across children from different ADHD diagnosis groups.

The rest of the article is organized as follows. Section 2 introduces the formulation of our 

random graph mixture model and its associated MCMC sampling algorithm. In Section 3, 

we compare our method to several competing methods using simulated data. Then in Section 

4, we apply our method to the functional brain network dataset discussed above. In Section 

5, we present some concluding remarks.

2. Methodology

2.1 Random graph mixture model

Let Y = (Yij) denote an observed undirected graph with n nodes, where Yij denotes the 

weighted edge value between node i and node j. We assume that the n nodes each fall into 

one of Q latent classes, with the unobserved class label of node i given by the random vector 

Zi = (Zi1,… ZiQ), where Ziq = 1 indicates that node i is in the q–th group. Following the 

version of the SBM in [2], our RGMM consists of:

i. A latent class model for characterizing the class label Zi for each node i = 1,… n.

ii. A measurement model for characterizing the conditional distribution of Yij given 

{Zi, Zj}.

We assume that the latent classes {Zi} are independently and identically distributed as 

Multinomial random variables with the probability vector π = (π1, … πQ) such that 0 ≤ πq 

≤ 1 and Σq πq = 1. The measurement model is a two-component mixture model: we assume 

that Yij conditional on {Zi}1≤i≤n are independent and the conditional distribution of Yij given 

Zic · Zjd = 1 is given by

where f(·; θcd) is a prefixed probability distribution with an unknown parameter vector θcd 

and δ0(·) denotes the Dirac measure at zero accounting for non-present edges. By assuming 

that the edge values are conditionally independent given the latent classes of the nodes, the 

(marginal) dependencies of the graph are fully determined by the latent community 

structure.

Furthermore, we impose the affiliation SBM by reducing the Q · (Q + 1) parameters in 

{pcd}1≤c≤d≤Q and {θcd}1≤c≤d≤Q to:
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Use of this parameterization allows us to avoid the typical problem of label switching/

swapping in Bayesian mixture modeling. When non-symmetric priors are used for the group 

proportions, the nonidentifiability of the order of the latent classes of nodes can lead to the 

class labels changing between successive MCMC samples and make posterior inference 

difficult. The affiliation SBM does not have class-specific parameters, so the sampler 

arbitrarily sets the order in the initialization step and then sampling proceeds without label 

swapping.

This framework is flexible and can model directed graphs by utilizing a bivariate distribution 

for f(Yij, Yji) and allowing pcd ≠ pdc and θcd ≠ θdc. Here we focus on Gaussian-weighted 

edges, such that θ = (θin, θout) = (μin, τin, μout, τout), but we can easily incorporate different 

distributions for the edge distribution f(·). We can also adapt the model for more complex 

latent structures such as the overlapping SBM and correlated latent groups by alterations 

within this hierarchical formulation.

2.2 Prior distributions

Priors are chosen to preserve conjugacy to allow for efficient MCMC estimation as follows:

where Ga(a, b) is a gamma distribution with shape a and rate b. To achieve relatively flat 

priors, we set the hyperparameters to be: a1,… aQ = 1, μ0,in = μ0,out = 0, , 

and α0,in = α0,out = β0,in = β0,out =0.01.

2.3 Estimation

We utilize a Gibbs sampler for posterior computation, with all full conditional posterior 

distributions given in the Appendix. The Gibbs sampler involves sampling from a series of 

conditional distributions while each of the components is updated in turn. Our Gibbs 

sampler starts as follows:

• Initialize  for q = 1,… Q.

• Sample  from Dirichlet(π(0)) for i = 1,… n.

•
Initialize , , .

Then for t = 1,… N, we sequentially update all parameters as follows:
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• Sample π(t) from P(π|Q, Y, Z(t−1)).

• For i = 1,… n, sample  from

• Sample  from  and  from 

.

• Sample  from  and  from .

• Sample  from P(pin|Y, Z(t)) and  from P(pout|Y, Z(t)).

To improve sampling performance, we run multiple MCMC chains and use the Integrated 

Completed Likelihood (ICL) criterion to automatically select the chain that maximizes ICL 

[17, 5]. For a graph with n nodes, the ICL criterion is given by:

(1)

where Ẑ denotes the predictions for the latent Z and PQ denotes the number of independent 

parameters. In this case, we have θ = (pin, pout, μin, μout, τin, τout) and PQ = 6. Moreover, we 

plug in the univariate mode of each parameter into ICLQ. This amounts to maximizing the 

observed data likelihood when comparing two MCMC chains with Q and n fixed.

To achieve better sampling performance for large graphs, we propose using spectral 

clustering to estimate the initial value of the latent structure Z(0); we can use the k-means 

clustering algorithm [11] to cluster all n nodes into Q groups according to the first Q 
eigenvectors of a graph. Moreover, the diagnostic tools in the coda R package [22] can be 

used to assess posterior convergence.

3. Simulations

We carried out simulations to examine the finite sample performance of the LCN RGMM in 

detecting the community structure of simulated networks and quantify their network 

modularity.

3.1 Setup

We simulated networks as follows: for a given Q*, π was randomly generated from 

Dirichlet(a1,… aQ*), and then each Zi for i = 1,… n was independently generated from 

Multinomial(π1,… πQ*). The data Yij were generated from a mixture of zero-valued edges, 

randomly drawn from either Bernoulli(1−pin) or Bernoulli(1−pout) distributions and either 

Normal(μin, ) or Normal(μout, ), depending on whether nodes i and j are in the same 
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latent class. We set hyper-parameters  and  to one. The parameters pin, pout, μin, 

μout, τin, and τout, were fixed at various values in order to examine the finite sample 

performance of LCN and the associated MCMC algorithm as modularity measures change.

We considered six schemes and simulated 200 independent graphs for each scheme. 

Simulation schemes are listed in Table 1. Scheme 1 is an example of a relatively easy 

community detection problem with pin ≫ pout and μin ≫ μout. Scheme 2 is a much harder 

problem with decreased distance between mixture distributions and fully dense graphs (no 

zero edges). Schemes 3 and 5 were designed to test performance when the number of latent 

groups is misspecified. Scheme 4 represents a scenario with a large number of nodes. 

Scheme 6 is a scenario with a relatively large number of smaller latent groups.

For each graph, we ran two independent chains of the Gibbs sampler and then used ICL to 

choose the best chain as described previously. We also compared our method with several 

methods for community detection in weighted graphs: the approximating method of 

Ambroise and Matias based on a composite likelihood [2] (AM), the Bayesian 

implementation of the original SBM of Nowicki and Snijders in the hergm R package [20, 

28, 25] (HERGM), the spin-glass model of [23] (SPIN) [19, 29], and a simple spectral 

clustering algorithm, using k-means [11] on the eigenvectors of the adjacency matrix 

(SPEC). To deal with the label switching phenomenon seen in the hergm output, MCMC 

samples were relabeled with the use of the loss function from Carvalho (2013) [21], which is 

included in the R function hergm.postprocess.

3.2 Results

Classification is typically accurate under all of the simulation schemes, as shown via box 

plots of the misclassification rates in Figure 2, though expectedly less so with more similar 

mixture distributions. The most probable classes were estimated from the 10,000 MCMC 

samples for each simulation, and the misclassification rate was estimated as the sum of false 

positives (nodes estimated to be in the same community when they are not) and false 

negatives (nodes estimated to be in different communities when they are in the same) 

divided by the total number of possible latent connections (n · (n − 1)/2). Most 

misclassification occurred in MCMC chains that did not converge to the true posterior 

distribution, which is seen in the tails of the box plots – many of these incorrectly estimated 

a single latent class containing all the nodes.

The methods mostly do well for the “easy” community detection problem (Scheme 1). Our 

method outperformed the other methods for the selection of the true number of groups when 

more groups were specified (Schemes 3 and 5). The approximating method of Ambroise and 

Matias (AM) fares well with a large number of nodes (Scheme 4), but it is not as accurate 

for smaller graphs (Schemes 2 and 6). The Bayesian method (HERGM) [20, 28, 25] is 

approximately exact, but it involves a computationally intensive algorithm for solving the 

label switching problem, which adds another level of error in estimating the latent structure, 

especially in the difficult Scheme 2. The spin-glass method (SPIN) [19, 29], which is based 

on extension of modularity maximization to networks with positive and negative weights, 

tends to be accurate in classification but less so in Scheme 6, where there are a greater 
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number of smaller groups; it has been shown previously that modularity optimization 

methods can fail to detect communities that are smaller than a value which depends on the 

total network size and the connectedness of separate communities [8]. The simple spectral 

clustering algorithm (SPEC) only performs well in Scheme 4, where the simulated networks 

are larger than in the other schemes.

In our estimation method, when the MCMC chain converges to the true distribution, 

estimation of the other parameters is accurate. Figure 3 shows the absolute deviation from 

between the posterior median and the true parameter value, scaled by the magnitude of the 

parameter. For the edge parameters (μin, μout, τin, τout) estimated in both our formulation and 

the parameterization used in [2], our approach typically has less estimation error. Figure 4 

gives coverage of the 95% highest posterior density (HPD) regions for the edge parameters; 

coverage is near 95% for most edge parameters, except for pin and pout in Scheme 2 − in 

which the parameters are on the boundary of the parameter space. For large graphs such as 

in Scheme 4, decreasing HPD widths indicate efficient estimation of the edge parameters.

4. ADHD-200 Resting-State FMRI Networks

The resting state fMRI scans were acquired using a Siemens Allegra 3T scanner for six 

minutes (voxel size = 3 × 3 × 4mm, slice thickness = 4mm, number of slices=33, TR=2s, 

TE=15ms, flip angle=90°, field of view=240mm). The Athena pipeline was applied for data 

preprocessing and the images were band-pass filtered within a frequency range of (0.009, 

0.08) hz. We deleted the scans showing movement artifacts or other problems based on the 

quality control information given in the phenotypic dataset and then, for the subjects with at 

least one scan passing quality control, we selected a single scan for calculation of that 

subject's connectivity network.

The automated anatomical labeling (AAL) template [30] was used to split patients' brains 

into 116 non-overlapping regions of interest (ROIs); blood-oxygen-level dependent (BOLD) 

contrast signals were averaged within each region for each of 172 time points, and a Pearson 

correlation matrix was estimated for each subject's 116 ROI × 172 time point matrix. 

Subsequently, the elements in each 116 × 116 matrix were transformed to approximate 

normality via the Fisher transformation, . Additionally, the Fisher-

transformed correlation matrices were thresholded at ± 0.1 (which corresponds to r ∼ ±0.1) 

to allow for some level of sparsity.

We applied our RGMM to each subject's weighted network as follows: two parallel MCMC 

chains of our Gibbs sampling algorithm were run for each of Q = 3, 6, 9, and 12, and then 

ICL was used to choose the best of the 8 chains, which allowed for anywhere between 1 and 

12 latent classes for each subject. Figure 1 shows the estimated latent classes of the 116 

ROIs for two randomly selected subjects as the color of nodes in the networks; subject 1 (L) 

has 7 latent classes of regions and subject 2 (R) has 8 latent classes of regions. To assess the 

overlap of the community structures of the two subjects, the adjusted Rand Index [13] 

between the two clusterings was estimated to be 0.182, which is significantly different from 

zero (which would indicate no overlap at all) via permutation testing (10,000 permutations 
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of the class labels, p < 0.001). So, while the latent community structure for these two 

subjects is different, there is significant overlap between them, which suggests that there 

may be a shared latent structure and individual deviations from this structure.

Figure 6 shows the estimated number of latent classes across the 185 subjects, with values 

ranging from 2 to 9; more than half of the subjects have either 4 or 5 estimated latent classes 

of ROIs. In Figure 7, the overlap of the latent structures of all 185 subjects is shown; the 

node pairs in red are those that are in the same latent class in most networks, while the node 

pairs in green are in different latent classes in most networks. The functional overlap 

between these node pairs could be considered as the shared latent functional brain structure, 

while other groups of node pairs are in the same latent classes in only a subset of the 

subjects (see the node pairs in black, which have been estimated to be in the same latent 

class in approximately 50% of subjects). Additionally, the posterior distributions of the 

modularity parameters appear to vary across many of the subjects, indicating heterogeneity 

in latent community structure even beyond the latent class membership of the 116 ROIs. See 

Figure 5 for posterior samples of the modularity parameters of the two subjects from Figure 

1.

5. Discussion

We have developed the weighted affiliation SBM as a Bayesian RGMM. Our RGMM 

utilizes an intuitive hierarchical parametric framework that accurately captures the affiliation 

community structure in simulated data. The benefits of using this fully Bayesian framework 

include incorporation of prior data, the ability to characterize the entirety of the posterior 

distribution, as well as the validity of estimates and accurate classification with smaller 

graphs. Additionally, this approach yields estimates of the modularity of the network as 

parameters in the model. For highly modular graphs, in which nodes in one latent class have 

considerably more connections and different weights as compared to nodes in different 

classes, our estimation method performs well with minimal misclassification and accurate 

estimates of the parameters.

Within the 185 functional brain networks from the ADHD-200 sample, subjects were 

estimated to have between 2 and 9 latent classes of brain regions, but considerable overlap in 

the latent structure is seen between some subjects. The commonalities between subjects 

appear to include some level of symmetry in the latent classes across the left and right 

hemispheres, as well as the functional overlap in the regions of the occipital lobe (see the red 

region near the center of the diagnoal of Figure 7) and several other groups of ROIs. While 

the SBM is unrealistic as a model of the true data-generating process in fMRI studies, it is 

nonetheless a useful and principled statistical tool for uncovering the large-scale structure in 

correlation between ROI time courses, which can help inform future studies in functional 

brain connectivity.

This framework allows the flexibility to utilize different distributions for the edge weights, 

detect overlapping communities, and estimate the community structure in directed graphs, 

all by straightforward alterations to the model. Current work is focused on extending this 

model to allow for groups of subjects that share a common structure, which appear plausible 
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based on our analyses of the resting-state fMRI networks from the ADHD-200 sample. 

Additionally, we are working to incorporate regression and hypothesis testing to assess the 

differences in functional brain structure associated with changes in covariates.

APPENDIX A. ROI LABELS

Table 2
ROI labels for Figure 7 (From Left (1) to Right (116) 
and Top (1) to Bottom (116))

Label ROI

1 Precentral_L

2 Precentral_R

3 Frontal_Sup_L

4 Frontal_Sup_R

5 Frontal_Sup_Orb_L

6 Frontal_Sup_Orb_R

7 Frontal_Mid_L

8 Frontal_Mid_R

9 Frontal_Mid_Orb_L

10 Frontal_Mid_Orb_R

11 Frontal_Inf_Oper_L

12 Frontal_Inf_Oper_R

13 Frontal_Inf_Tri_L

14 Frontal_Inf_Tri_R

15 Frontal_Inf_Orb_L

16 Frontal_Inf_Orb_R

17 Rolandic_Oper_L

18 Rolandic_Oper_R

19 Supp_Motor_Area_L

20 Supp_Motor_Area_R

21 Olfactory_L

22 Olfactory_R

23 Frontal_Sup_Medial_L

24 Frontal_Sup_Medial_R

25 Frontal_Med_Orb_L

26 Frontal_Med_Orb_R

27 Rectus_L

28 Rectus_R

29 Insula_L

30 Insula_R

31 Cingulum_Ant_L

32 Cingulum_Ant_R

33 Cingulum_Mid_L

34 Cingulum_Mid_R
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Label ROI

35 Cingulum_Post_L

36 Cingulum_Post_R

37 Hippocampus_L

38 Hippocampus_R

39 ParaHippocampal_L

40 ParaHippocampal_R

41 Amygdala_L

42 Amygdala_R

43 Calcarine_L

44 Calcarine_R

45 Cuneus_L

46 Cuneus_R

47 Lingual_L

48 Lingual_R

49 Occipital_Sup_L

50 Occipital_Sup_R

51 Occipital_Mid_L

52 Occipital_Mid_R

53 Occipital_Inf_L

54 Occipital_Inf_R

55 Fusiform_L

56 Fusiform_R

57 Postcentral_L

58 Postcentral_R

59 Parietal_Sup_L

60 Parietal_Sup_R

61 Parietal_Inf_L

62 Parietal_Inf_R

63 SupraMarginal_L

64 SupraMarginal_R

65 Angular_L

66 Angular_R

67 Precuneus_L

68 Precuneus_R

69 Paracentral_Lobule_L

70 Paracentral_Lobule_R

71 Caudate_L

72 Caudate_R

73 Putamen_L

74 Putamen_R

75 Pallidum_L

76 Pallidum_R
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Label ROI

77 Thalamus_L

78 Thalamus_R

79 Heschl_L

80 Heschl_R

81 Temporal_Sup_L

82 Temporal_Sup_R

83 Temporal_Pole_Sup_L

84 Temporal_Pole_Sup_R

85 Temporal_Mid_L

86 Temporal_Mid_R

87 Temporal_Pole_Mid_L

88 Temporal_Pole_Mid_R

89 Temporal_Inf_L

90 Temporal_Inf_R

91 Cerebelum_Crus1_L

92 Cerebelum_Crus1_R

93 Cerebelum_Crus2_L

94 Cerebelum_Crus2_R

95 Cerebelum_3_L

96 Cerebelum_3_R

97 Cerebelum_4_5_L

98 Cerebelum_4_5_R

99 Cerebelum_6_L

100 Cerebelum_6_R

101 Cerebelum_7b_L

102 Cerebelum_7b_R

103 Cerebelum_8_L

104 Cerebelum_8_R

105 Cerebelum_9_L

106 Cerebelum_9_R

107 Cerebelum_10_L

108 Cerebelum_10_R

109 Vermis_1_2

110 Vermis_3

111 Vermis_4_5

112 Vermis_6

113 Vermis_7

114 Vermis_8

115 Vermis_9

116 Vermis_10
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Appendix B. Distributions

Prior and sampling distributions are listed as follows: The latent class for each node i is 

distributed as

P(Y|Z, π, Q, θ, p) is given by

where

and A, B, C, and D satisfy

Moreover, we set
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Then, the full conditional distributions are derived as follows:

First, we have

Therefore, the full conditional distribution of Zi given all others is proportional to

Thus, we have Zi| … ∼ Multinomial (πî1,… π̂
iQ), where π̂

iq is given by

The full conditional distribution of π is given by

which implies that
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The full conditional distribution of pin is given by

so pin| … ∼ Beta(nA + 1, nC + 1), where nA = |A| and nB = |B|. Similarly, we have

where nC = |C| and nD = |D|.

The full conditional distribution of μin is given by

which implies that

Similarly, we have

The full conditional distribution of τin is given by
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which implies that

where

and

Similarly, we have

with

and
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Figure 1. 
Functional brain networks for subject 1 (L) and subject 2 (R). There are 116 brain regions in 

each image. Different colored nodes indicate different estimated latent classes, but colors are 

not comparable between subjects.
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Figure 2. 
Boxplots of misclassification rates by simulation scheme. The 6 schemes, each with 200 

simulated datasets, are listed in Table 1. Misclassification rate is defined as the sum of the 

false positives and false negatives divided by the total number of possible node pairs.
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Figure 3. 
Absolute deviation between the posterior median of each parameter and the true value, 

scaled by the true value, from each of the 6 schemes listed in Table 1. For the edge 

parameters μin, μout, τin, τout, results from our Bayesian random graph model (A – on the left 

of each panel) are compared to the method of Ambroise and Matias (B – on right).
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Figure 4. 
Percent of the 95% HPD intervals containing the true value, across 200 simulations in each 

scheme. Simulation schemes are listed in Table 1. The horizontal line indicates 95%.
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Figure 5. 
Posterior estimates of modularity parameters (Sparsity: pin and pout, edge weights: μin, μout, 

τin, τout) for subject 1 (Blue) and subject 2 (Red). First 100 samples were dropped, 9900 

samples of each parameter shown.
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Figure 6. 
Number of latent classes of brain regions selected across 185 subjects from the ADHD-200 

sample.
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Figure 7. 
Overlap of the latent class structure across 185 subjects from the ADHD-200 sample. Each 

element of the matrix is the proportion of all 185 subjects in whom the corresponding two 

nodes fall in the same estimated latent class. The list of ROIs is given in Table 2 in the 

Appendix.
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