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Abstract
In this paper, we present data for the lognormal distributions of spike rates,
synaptic weights and intrinsic excitability (gain) for neurons in various brain
areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum,
midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically
lognormal, distributions for rates, weights and gains in all brain areas
examined. The difference between strongly recurrent and feed-forward
connectivity (cortex vs. striatum and cerebellum), neurotransmitter (GABA
(striatum) or glutamate (cortex)) or the level of activation (low in cortex, high in
Purkinje cells and midbrain nuclei) turns out to be irrelevant for this feature.
Logarithmic scale distribution of weights and gains appears to be a general,
functional property in all cases analyzed. We then created a generic neural
model to investigate adaptive learning rules that create and maintain lognormal
distributions. We conclusively demonstrate that not only weights, but also
intrinsic gains, need to have strong Hebbian learning in order to produce and
maintain the experimentally attested distributions. This provides a solution to
the long-standing question about the type of plasticity exhibited by intrinsic
excitability.
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            Amendments from Version 1

Thanks to the reviewers for the thorough review and many 
thoughtful comments. I made two major revisions:

1.  �I added a few sentences to explain why a lognormal 
distribution can be considered to be the best fit to 
the data in the Results section 3.1. I also added a 
sentence about how differences in bursting and 
irregularity, do not affect spike rate distribution 
(Mochizuki et al., 2016)

2.  �Considerably more material and references on 
Hebbian learning is now included in the Introduction 
(last but one paragraph), including many new 
references, including Peterson and Berg’s 2016 paper

I decided to leave the Methods section intact; the data analysis 
is tedious, and it disrupts the flow of an essentially simple 
argument. Therefore, I leave it in the Methods section available 
for those who want to dig deeper.

I also made a few minor word changes in the Abstract and 
Introduction, and improved the colouring in Figure 10 for better 
visibility.
See referee reports

REVISED

1 Introduction
Individual neurons have very different, but mostly stable, mean 
spike rates under a variety of conditions1,2. To report on behavio-
ral results, spike counts are often normalized with respect to the  
mean for each neuron. But this obscures an important question: 
Why do neurons within a tissue operate at radically different  
levels of output frequency? In order to answer this question our 
approach is twofold: (a) we try to document this phenomenon 
for different neural tissues and behavioral conditions. We also  
examine neural properties for their distribution, namely intrinsic 
gains and synaptic weights; (b) we build a very generic neural 
model to explore the conditions for generating and maintaining 
these distributions. First, we give examples for the distribution of 
mean spike rates for principal neurons under spontaneous condi-
tions, as well as in response to stimuli. We furthermore document 
distributions for intrinsic excitability3–5 for cortical and striatal  
neurons, as well as synaptic weight distributions6–11.

With the current data, we show that the distribution of spike  
rates within any neural tissue follows a power-law distribution,  

i.e. a distribution with a ‘heavy tail’. There is also a small number 
of very low-frequency neurons, so that we have a lognormal  
distribution2. This lognormal distribution is present in spontane-
ous spike rates as well as under behavioral stimulation. For each  
neuron, the deviation from the mean rate attributable to a stimu-
lus is small (CV = 0.3–1, standard deviation = 1–4 spikes/s), when 
compared to the variability in mean spike rate over the whole  
population (5-7-fold), cf. Table 1 and Table 3.

This work refers back to data initially reported in 1. At the time, 
we only had data on spike rates of cortical neurons available, plus  
independent evidence on intrinsic properties of striatal neurons.  
The observation on cortical data was taken up by2,12, and led to a 
number of papers13,14 focusing on the power-law distribution of  
spike rates as a cortical phenomenon, seeking explanations in 
the recurrent excitatory connectivity of cortical tissue2,13,15,16. 
However, we find the same spike rate distributions for midbrain 
nuclei, medium striatal neurons and cerebellar Purkinje cells,  
which do not have this kind of connectivity. It has even been 
found in the spinal motor networks of turtles17. We then extended 
the data search for intrinsic excitability and found that lognormal  
distributions are ubiquitous there as well, at least in cortical  
as well as in striatal tissues. Finally, lognormal distributions  
have also been found for synaptic weights6–11,18. The explanation  
for this universal phenomenon must lie elsewhere.

For this purpose we constructed a generic model for neuronal 
populations with adaptable weights and gains. We initialized both 
weights and gains with uniform, Gaussian or lognormal distribu-
tions. We then employed either Hebbian or homeostatic adapta-
tion rules on both. Under a variety of conditions we could show 
that lognormal distributions develop from any initial distribution 
only with Hebbian (positive) adaptivity. Additional homeostatic  
adaptation stabilized learning but erased the lognormal distribu-
tions if it was stronger than Hebbian adaptation. We could even 
show that the widths of the distributions from the model match  
with the experimental data for rates, weights, and gains (Table 1  
and Table 3) that we have available. Lognormal distributions can 
only be maintained by positive, Hebbian-type learning rules15, 
while homeostatic plasticity alone destroys lognormal distribu-
tions19. There are a number of different learning rules and vari-
ants which all follow the ’Hebbian’ principle: strong activation  
leads to strengthening, weak activation leads to weakening20.  
STDP rules are a variant of Hebbian learning for spiking neurons,  

Table 1. Statistics of spike rate distributions in different tissues.

Tissue Mean 
μ

Median 
μ*

Variance 
σ 2

Width 
σ *

Mode 
eμ−σ2 n

IT cortex39 1.5 4.50 0.71 2.32 2.2 100

A1 cortex2 1.6 4.95 0.47 1.98 3.1 145

A1 cortex40 3.3 27.11 0.69 2.29 13.6 263

Purkinje in vitro42 3.46 31.82 0.14 1.46 27.6 106

Purkinje in vitro41 3.44 31.19 0.198 1.56 30.0 34

Purkinje in vivo43 3.5 33.12 0.47 1.98 20.7 319

Inferior colliculus45 3.31 27.39 0.90 2.58 11.13 30
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which emphasize temporal sequence, but have the same posi-
tive learning effect21–23. It has been noticed that positive learning  
rules lead to run-away activation and unstable network behavior, 
and that they need to be counteracted by homeostatic processes24,25. 
We present a generalized model of synaptic learning which  
consists of both Hebbian (positive) and homeostatic (negative) 
adaptation rules24, and show that positive (Hebbian) learning is  
necessary to establish a lognormal synaptic weight distribution.

For intrinsic learning it has often been assumed that it may  
implement purely homeostatic adaptation26–30, but see also31. 
Experimental results are often inconsistent4,32–38. We will present 
results for a lognormal gain distribution in a number of tissues. It 
will be shown by simulation that the same principle holds: only a  
Hebbian, positive learning rule is capable of maintaining lognor-
mal distributions, while homeostatic adaptation serves to estab-
lish stability. This finally answers the question that experimental 
researchers have investigated for some time: Is intrinsic plasticity  
mostly homeostatic, i.e. adjusts values inversely to use, or is there 
Hebbian, positive learning involved: when a neuron fires, does 
its gain increase? The answer is that the attested distribution of  
intrinsic gain can only derive from a Hebbian style adjustment 
rule, even though additional homeostatic adaptation is possible.  
Intrinsic plasticity is Hebbian.

2 Methods
In this section we report on data collection for spike rates, intrin-
sic properties and synaptic weights. Secondly, we explain the  
simulation model we constructed to explore the generation and  
persistence of the attested distributions.

2.1 Experimental data
We analyze five data sets for spike rates from principal neurons 
under behavioral activation:

1.   �inferior temporal (IT) cortex from monkeys39

2.   �primary auditory cortex (A1) from monkeys40

3.   �primary auditory cortex (A1) of rats2

4.   �Purkinje cells in cerebellum41–44

5.   �midbrain principal cells from inferior colliculus (IC) from 
the guinea pig45

In monkey IT, single unit activity was recorded over 200ms for  
passive viewing of 77 different natural stimuli for 100 neurons,  
each stimulus shown 10 times39. This yielded 770 spike rate 
response data points per neuron. For these data, we show mean 
spike rate, standard deviation, max-min values, coefficient of  
variation (CV) and Fano factor (FF) (Figure 1), (cf. 1). What 
is remarkable is that the dispersion for each neuron (variance  
related to mean, FF) is fairly constant, and not related to the rank 
of a neuron as high or low-frequency. In other words, neurons 
have roughly similar behavioral responses relative to their average  
spike rate. For this reason, many behavioral experiments have 
reported percentage of increase/decrease of spiking as the relevant 
parameter.

Additionally, we show data from primary auditory cortex (A1) 
from awake monkeys, which were recorded for spike responses  
to a 50ms, 100ms, or 200ms pure tone (40, Figure 2A and B) and 
data for spike rates from the primary auditory cortex of rats for  
four different conditions, which were recorded as cell-attached  
in vivo recordings (2, Figure 2C).

For midbrain nuclei neurons (IC), we re-analyzed spike rates in 
response to tones (for 200ms after stimulus onset) under varia-
tions of binaural correlation45. The frequency ranking of neurons 
by mean spike rate, standard deviation, min-max values, CV and 
FF are shown in (Figure 3A–C). CV and FF are similar to the cor-
tical data. Data from GABAergic cerebellar Purkinje cells offer 
some difficulty for this analysis since they have regular single  
spikes at high frequencies, and in addition, calcium-based complex 
spikes43. Complex spike rates however are low (< 1Hz). This can 
therefore be regarded as a form of multiplexing, with two sepa-
rate codes, where single spike rates can be separately assessed 
in their distribution. Here we report data for single spikes from  
in vivo recordings in anesthetized rats43 (Figure 4A) and data  
from spontaneous spiking (in the absence of synaptic stimulation) 
under in vitro conditions (41, 42, Figure 4B and C).

Figure 1. Spike rate data for neurons from inferotemporal cortex (IT) in monkeys39. 100 neurons, passive viewing of 77 stimuli, 10 trials 
(770 data points per neuron), data collected over 200ms. The data are shown for each neuron, where neurons are sorted by mean spike 
count. A: Mean spike rates (blue), standard deviation (red), and minimum/maximum absolute values (green). B: Mean spike rates histogram 
shows a lognormal distribution (σ*=2.32). C: Distributions of standard deviation (green) and CV (blue) have linear slopes, with small variation. 
The Fano factor (red), measuring the dispersion for each neuron, is nearly constant at about 2.
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Figure 2. Responses to pure tones in primary auditory cortex from awake monkeys40 and firing rates from primary auditory cortex in 
rats2. A: Distribution of spike rates to a 50ms tone (n = 119, red) 100ms tone (n = 115, blue), or 200ms tone (n = 23, green) in primary auditory 
cortex in monkeys40. B: Histogram for spike rate distribution for the 100ms tone response (n = 115) fitted by an exponential (red) or lognormal 
(blue) distribution40. C: Spontaneous spike rate distribution from primary auditory cortex in unanesthetized rats2 fitted by an exponential 
(red) or lognormal (blue) distribution. Note that the spontaneous firing rates are much lower and narrower distributed than evoked spikes in 
response to stimuli at short time scales (B), but that they still follow a lognormal distribution.

Figure 3. Neuronal response to binaural stimulation for inferior colliculus of the guinea pig45 (n = 30), data collected over 100 ms, 
200–500 trials. The data are shown for each neuron, with neurons sorted by mean spike count. A: Mean spike rates (blue), standard deviation 
(red), and minimum/maximum absolute values (green). B: Mean spike rates histogram shows a lognormal distribution. C: Distributions of 
standard deviation (green), CV (blue) and FF (red). Again, the dispersion is fairly constant.

In order to show values for standard deviation and variance, data 
for two Purkinje cells from a behavioral experiment,44, i.e. single 
spike rates during arm movements from monkeys, have been added 
to the ranking of spontaneously firing neurons by mean spike rate 
from 41 (Figure 4D).

The logarithmic (heavy-tailed) distribution of spike rates is evident 
under all conditions.

The distribution of spike rates for neurons spiking in the absence 
of synaptic input shows that there are differences in the intrinsic 
excitability of neurons. To further explore this we looked at three 
additional datasets, which report the action potential firing of a cell 
due to injected current, such as by a constant pulse. This can be 
defined as the neuronal gain parameter (spike rate divided by cur-
rent, [Hz/nA]).

1.   �medium striatal neurons in slices from rat dorsal striatum 
and nucleus accumbens shell (NAcb shell)3, cf. 1, Figure 5.

2.   �cortical neurons in cat area 17 in vivo46, Figure 6A and B

3.   �striatal neurons from globus pallidus (GP) from awake  
rats5, Figure 6C

In 1, we already presented the data from striatum, which show 
that the spike response to a constant current follows a heavy-tailed 
distribution3. Figure 5A shows the spike rate in response to cur-
rent pulses of different magnitude in two different areas, nucleus 
accumbens (NAcb) shell and dorsal striatum. Figure 5B and C  
show the distribution of rheobase (current-to-threshold) for  
dorsal striatal and NAcb shell neurons. Distributions appear  
mostly lognormal, with the exception of the 200pA current pulse 
response and the data in Figure 5C, which appear normally  
distributed.

We extend this dataset by recordings from different types of corti-
cal neurons in cat area 17 in vivo (46, Figure 6A and B) and from  
GP in awake rats (5, Figure 6C).

A lognormal distribution of intrinsic gain is clearly apparent, 
except for fast-spiking interneurons, which, however, may be a  
sampling error (n=33).

Synaptic weight distributions have been investigated starting 
with 10 in hippocampus by measuring EPSC magnitude6,47–50  
(Figure 7). There is also a review paper available51 to summarize  
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Figure 4. Spike rates for cerebellar Purkinje cells from rats41–44. A: Data for single spikes for Purkinje cells recorded from anesthetized 
rats (spontaneous in vivo)43 (n = 346). B: Data for spike frequencies of isolated cell bodies of mouse Purkinje cells in vitro41 (n = 34).  
C: Spontaneous spike rates for Purkinje cells in slices (n = 106)42. D: Spike counts per neuron from 41 (n = 34), together with variability data 
from 44 (n = 2).

Figure 5. Spike rate and gain distributions in basal ganglia3. A: Spike rate in response to a 300ms constant current pulse at 180pA (blue), 
200pA (green), and 220pA (red) for neurons in dorsal striatum (n = 28, solid lines) and nucleus accumbens shell (n = 24, dashed lines).  
B: Gain (Hz/nA) for neurons in dorsal striatum (n = 28). C: Gain (Hz/nA) for neurons in NAcb shell (n = 24).
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Figure 6. Gain [Hz/nA] for cortical and striatal neurons. A: Gain for all types of cortical neurons in vivo (n = 220)46. B: Gain for fast spiking 
cortical neurons only (n = 33)46. C: Gain for neurons in globus pallidus (GP) in response to a +100pA current pulse (n = 145)5.

Figure 7. Strengths of EPSPs in cortex, hippocampus and cerebellum6,10,47,49,50. A: Cortex: Deep-layer (L5) pyramidal-pyramidal 
cell connections6,47. B: Cortex: Deep-layer (L5) pyramidal-pyramidal cell connections49. C: Hippocampus: CA1 to CA3 connections10.  
D: Cerebellum: Granule cells to Purkinje cells50.
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the findings. Recently, the expression of AMPA receptor subu-
nit GluA1, which is correlated with spine size, has also been  
measured52, Figure 8. We used five datasets from cortex,  
hippocampus and cerebellum:

1.   �EPSPs for deep-layer pyramidal-pyramidal cell connec-
tions in rat visual cortex6,47

2.   �EPSP amplitudes for deep-layer excitatory neuron connec-
tions in somatosensory cortical slices of juvenile rats49

3.   �EPSP amplitudes for CA1 to CA3 connections in guinea 
pig hippocampal slices10

4.   �EPSCs for granule cells to Purkinje cells in adult rat cer-
ebellar slices50

5.   �labeled GluA1 AMPA receptor subunit in mouse somato-
sensory barrel cortex52

In 6, EPSP magnitude was measured for L5 pyramidal neurons in 
slices from rat visual cortex, averaged over 45–60 responses, and 
peak amplitude recorded, (Figure 7A). Similar data were used  
in 49 for slices from a single barrel column in rats (Figure 7B). 
A 30-fold variation of coupling strength was noted. In 10, EPSPs 
between CA3 and CA1 in hippocampal slices were recorded, by 
detecting somatic membrane potential changes in response to 
presynaptic neuron stimulation (Figure 7C). There are also synap-
tic weight data on granule cell to Purkinje cell connections11,50,51, 
which show a similar distribution, but have an order of magnitude  
weaker connections than cortical connections (Figure 7D). Finally, 
a different type of evidence was obtained in 52, namely labe-
ling for a subunit of AMPA receptors in layer 2/3 mouse barrel  
cortex in vivo both before and after whisker stimulation. The  
AMPA intensity is distributed lognormally over the spines, cor-
responding to the observations on the strengths of EPSPs. It is 
noticeable that stimulation leads to increase of on average 200% 
(two-fold) in about 30% of spines52. Yet as we know, over time  
the overall distribution of synaptic strengths remains stable. 

For synaptic weights, just as for intrinsic gains and spike rates,  
lognormal distributions have been found for both EPSPs and  
AMPA receptor distribution in a highly consistent manner.

In many cases, the data were only available in the form of histo-
grams. The parameters of the lognormal distribution were then 
obtained by fitting the data using a Nelder-Mead optimization 
method. A number of parameters were derived from these fits and 
reproduced in Table 1–Table 3, cf. 3.2.

2.2 Simulation model
Given are two neuron populations I, J each with n = 1000 neu-
rons and variable random connectivity C between I and J. C deter-
mines the density between I and J. The input population I always  
has excitatory output onto J. Inhibitory input to J is modeled 
by a population H with n = 200. The output neuron population  
J may also have recurrent excitatory connectivity. Figure 9 shows 
the architecture for the generic neural network used. The model 
(GNN) was programmed in Matlab, and is available in the public 
repository github (https://github.com/gscheler/GNN, DOI: https://
doi.org/10.5281/zenodo.829949).

The input population I is modeled according to2 for pyramidal corti-
cal neurons with a spike rate distribution of µ* = 4.95 and σ* = 1.98 
(Table 1). The goal is to generate a spike rate distribution RJ for J, 
given a gain distribution G for the target neurons, and the weight 
distribution W

IJ
 such that RJ is similar to RI.

For each neuron j in J the spike rate r
j
 is calculated by applying its 

gain g
j
 to the weighted sum of its connected excitatory inputs and 

its inhibition. C
j
 is the set of neurons from I that have excitatory 

connections to neuron j.

                               ( )H
j j ij ji

i Cj

r g w r r
∈

= −∑                                 (1)

where the rate r
i
 is taken from the distribution RI, H

jr  from RH, w
ij
 

from W
IJ
, and g

j
 from G. g

j
 is modeled as a factor for a linear gain 

Figure 8. AMPA subunit distribution as a marker of synaptic weight. A: Expression of labeled GluA1 AMPA receptor subunit in layer 2/3 
mouse barrel cortex in vivo follows a lognormal distribution (σ∗ = 2.59, µ∗ = 0.32, n = 560). B: GluA1 density for control (black) and after 1 
hour whisker stimulation (red). Stimulation leads to an increase of GluA1 in ≈ 30% of neurons52.
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Figure 9. Generic neural network model with neuron populations I, J (excitatory, blue arrows) and H (inhibitory, red arrows). Lognormal 
distributions occur for gain G, rates RI, RJ, RH, and weight distributions WIJ. J may have recurrent connectivity.

Table 2. Statistics of intrinsic excitability (gain) in different tissues.

Tissue Peak 
[Hz/nA]

Mean 
µ[Hz/nA]

Median 
µ*

Variance 
σ 2

Width 
σ *

Mode 
eµ–σ2 n

Dorsal striatum3 48 4.24 69.41 0.36 1.82 48.3 28

NAcb shell3 65 4.67 106.70 0.49 2.01 65.4 24

GP in vivo5 6.6 3.4 29.96 1.54 3.46 6.4 146

GP model5 37 4.0 54.60 0.40 1.88 36.6 10000

Cortical46 105 4.96 142.59 0.31 1.75 104.6 220

Table 3. Statistics of synaptic weight distributions in different tissues.

Tissue Mean 
µ

Median 
µ*

Variance 
σ 2

Width 
σ *

Mode 
eµ−σ2 n

Cortex L237 -0.99 0.37 0.76 2.39 0.17 48

Cortex L238 0.25 1.28 1.41 3.28 0.31 35

Cortex L239 -0.94 0.39 1.54 3.46 0.08 61

Cortex L547 -0.56 0.57 1.47 3.36 0.13 1004

Cortex L549 -0.31 0.73 0.58 2.14 0.41 26

Hippocampus10 -2.61 0.07 0.43 1.93 0.05 71

Cerebellum GC-PC11 -2.70 0.07 1.82 3.85 0.01 104

Cortex in vivo52 -1.14 0.32 0.90 2.59 0.13 560
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function. It is possible to use a sigmoidal gain function instead, 
but this makes no difference for the conclusions from the model  
(Section 3.3). The output RJ may be used as input to I with a matrix 
W

I,J
 for tests of the adaptation rules.

For the adaptation of weights W
IJ
 and gains G, we use Hebbian or 

homeostatic rules, as described in Section 3.3. The system described 
in this way is sufficient for all the calculations on the shape of distri-
butions used in this paper.

3 Results
3.1 Universality of lognormal distributions
We have documented the distribution of spike rates, gains, and 
weights for different types of neurons (Figure 1–Figure 8). The 
distribution in all cases follows a lognormal shape. In some cases, 
we had data on the variability of spike rates and analyzed them 
for dispersion (CV, FF) under behavioral stimulation. While the  
fold-change from low spiking neurons to high spiking  
neurons is high, 5- to 7-fold, the variability for each neuron is 
comparatively low. It also seems to be adequately described by a 
percentage change over the whole population. This means that a 
low spiking neuron never reaches the same rate as a high spiking 
neuron, even when fully activated.

The similarities across neural systems are striking. For instance, 
in a midbrain nucleus (inferior colliculus) which is essentially an 
’output’ site for auditory and somatosensory cortex, spike rates 
are high overall45, nonetheless the distribution of mean spike rate, 
and the variability are comparable to cortical data (Figure 3).  
Hippocampus, cerebellum and cortex vary in degree of burst-
ing and spike irregularity53, but the rate distribution is constant.  
The distribution of mean spike rate is also essentially the same 
under spontaneous and under behavioral conditions.

Lognormal distributions were obtained by fit to the histograms 
obtained from data (goodness of linear fit, mean ≈ 0.92, s.  
Figure 1–Figure 8). The lognormal distribution is a very simple 
statistical distribution54, almost as simple and as universal in the 
description of natural processes as a Gaussian distribution (with 
which it is identical for small σ*). Even though the datasets were 
occasionally fairly small, and more data could be added to obtain 
greater precision, the conclusion seems warranted that the underlying 
natural process is as simple and general as the multiplication of inde-
pendent variables55, rather than assuming more complex processes 
which may lead to other exponential-family distributions.

Lognormal rate distributions appear to be an essential property 
of neural tissues that occur in areas with very different neuron 
types and connectivity, and different absolute spike frequencies.  
They are present during spontaneous activity, and under activation 
of a network, in vivo as well as in vitro. They have a counterpart 
in a lognormal distribution of intrinsic excitability, and lognor-
mal synaptic connectivity. This type of distribution seems to be an  
essential component of the functional structure of a mature  
network, which is not altered by learning, plasticity, or processing 
of information.

3.2 Data analysis for distributions
A lognormal distribution is characterized by parameters µ* and 
σ*. µ* = eµ is the median, a scale parameter, which determines 
the height of the distribution. σ* = eσ is the multiplicative stand-
ard deviation, a shape parameter which determines the width of 
the distribution. For distributions with small σ*(approximately  
σ* < 1.2 or σ < 0.182) a lognormal distribution is essentially 
identical to a normal distribution. (The coefficient of variation  
CV ~ σ* − 1, so that for CV < 0.18, a lognormal equals normal 
distribution.) We collected data on spike rate, gain and synaptic  
weight distribution for a number of tissues in different experimen-
tal conditions (Table 1–Table 3). For the height of the spike rate  
distribution, there are known differences, e.g. with lower val-
ues for cortex (µ∗ ≈ 4.5) and higher values for Purkinje cell  
(µ∗ ≈ 30) and midbrain nuclei (cf. Table 1). In other words, spike 
rates differ between brain areas such as cortex and cerebellum  
by a factor of 10.

In contrast to that, the width of spike rate distributions is more simi-
lar, with an average at σ∗ ≈ 2.2, with one outlier. The gain has a 
smaller σ∗, i.e. a more normal, less heavy-tailed distribution than 
the spike rate. Minus the outlier (3.46), the mean for σ∗ is only 
1.86, considerably lower than the width of the spike rate distribu-
tion (Table 2). For weight distributions (Table 3), the width σ∗ is 
consistently larger, with an average of almost 3 (2.91). The synaptic 
strength (µ∗) varies over at least one order of magnitude between 
cortex and cerebellum.

It turns out that σ∗ values are significantly different for rates, 
gains and weights, lowest for gains (σ∗ ≈ 1.8), higher for rates  
(σ∗ ≈ 2.2) and highest,(σ∗ ≈ 3), for weights. The data that we 
have are not precise enough to draw quantitative conclusions, but 
no large distinctions are apparent between the tissues (Table 1 –  
Table 3). We use a generic neural network to recreate lognor-
mal distributions by adaptation rules and we will also show that  
distribution widths are structural properties which follow from  
general network properties.

3.3 Generating lognormal distributions with generic neural 
networks
Since not only mean spike rates but also both components, intrinsic 
excitability and synaptic weights, have lognormal distribution, this 
raises the question of how the functional system that we observe 
is generated. It is obvious, if the data are accurate, that these are 
basic parameters of any simulation and need to be reproduced in 
any model to make it biologically realistic.

We set up a generic neural network model (cf. Section 2.2) to 
explore the mechanisms of generating and maintaining rate,  
weight and gain distributions. The model consists of a source 
neuron group I, a target group J, a population of inhibitory  
neurons H, which are connected with J, and potentially recur-
rent excitation in the target group J. The spike rate distribution RI  
acts through a weight distribution W onto a gain distribution G, 
where inhibition H is subtracted, and a spike rate output distribu-
tion RJ is produced (Figure 9).
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In the simplest case, we look at two sets of neurons, the source and 
the target. The source sends excitatory connections to the target, 
and exhibits variable weights at outgoing synapses. The input that a 
target neuron receives is fed through a linear filter G to produce an 
output rate RJ according to Eq (1). The distribution for RJ depends 
on G and W as well as on RI. The system is sufficient for calcula-
tions on the shape of distributions, as well as the effects of Hebbian 
and homeostatic plasticity.

We have explored the dependencies between gain, weight and 
rate distributions in simulations. First, we found that the width of 
the output spike rate distribution RJ depends heavily on the gain 
distribution, but only slightly on the input weight distribution  
(Figure 10). It does depend on the overall connectivity C, 
where *

JR
σ  is wider for lower connectivity, but not very much  

(Figure 10). Secondly, the width of the output distribution RJ does 
not depend on RI or RH either (Figure 11). The most important  
factor for a spike rate distribution remains the gain *

Gσ .

3.4 Adaptation
We may now ask, where do lognormal spike rate distributions come 
from? How is the system set up, i.e. what rules of adaptation gener-
ate lognormal distributions in weights and gains?

In the case of cortical networks, there are excitatory recurrent  
interactions that constitute a significant part of total input. In 
the case of cerebellar or striatal neurons, there are no recurrent  
excitatory interactions, only inhibitory interneurons and excita-
tory input. The generation of lognormal distributions must there-
fore be independent of recurrent excitation. It requires a system  
where continuous input shapes the weights and gains of a target 
network J. We start with the system that we described before, with 
random assignment of weights and gains. We employ adaptiv-
ity for weights, and also for gains, by positive Hebbian learning, 

Figure 10. The width of the rate distribution for J, *
JR

σ , depends 
heavily on the gain *

Gσ , but not on the weight distribution  
*
Wσ . There is a slight effect of connectivity (upper sheet C=5%, 

lower sheet C=10%). (μ*
W = 0.7, μ*

G = 30, N = 1000, *
IR

σ  = 2.74,  
μ*

RI = 4.5.)

Figure 11. The width of the rate distribution for J, *
JR

σ , does 
not depend on RI or RH. (μ*

W = 0.7, μ*
G = 30, C = 10%, N = 1000,  

μ*
RI = 4.5.)

or by negative homeostatic learning. The output of I is fed into J,  
and W and G are adaptive. Additionally, J may have excita-
tory recurrent connectivity, and learning takes place within the  
network J.

From any given initial spike rate distribution (Gaussian, uniform, 
lognormal) for I, we calculate W assuming a positive learning  
(Hebbian) adjustment rule, which is dependent on input and output 
frequencies. Each individual weight w

ij
 is updated by

( )I J
ij ij ij i jw w w r r′ = − λ − µ ( )I J

ij ij i jw w w r r′= + λ − µ

We use parameters λ and µ, such that the generated spike rate output 
RJ is compatible in strength with the input rate RI.

Using Hebbian learning, we generate a weight distribution W that 
is lognormally distributed, independent of the initial configura-
tion or the distribution of the gains in the system (Figure 12). The  
lognormal distribution also develops independently of the rate 
distribution of the inputs, it only develops faster with lognormal  
rather than normally distributed spike rate input (not shown). It 
makes no difference whether we use a recurrent system J, or a 
non-recurrent population J with input from a population I with 
a spike rate distribution, as long as we use a Hebbian weight  
adaptation rule. For the shape of the distribution, it also does not 
matter whether we route the output of J back to I, or whether we 
use local or no recurrence. To show the effect of the adaptation rule, 
we also used homeostatic synaptic plasticity to adjust the weights. 
This means that the weight is adjusted inversely to the spike rate of 
input and output neurons.

( )I J
ij ij ij i jw w w r r′ = − λ − µ

In this case, it is very clear that with any input or initial configura-
tion and any gain distribution, only a normal distribution of weights 
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Figure 12. Hebbian learning results in lognormal weight distribution independent of gain distribution. Given is a lognormal input rate  
σ *

RI = 2, μ*
RI = 4.95�. A: Initial weight configurations: Gaussian (grey) or uniform (blue). B: After Hebbian learning using Gaussian gain distribution 

(grey, blue as before). C: After Hebbian learning using uniform gain distribution (grey, blue as before). D: After Hebbian learning using 
lognormal gain distribution. ( *

Gσ  = 1.37, μ*
G = 32.7) (grey, blue as before).

results (Figure 13). Again, a lognormal input spike rate slows the 
process of adaptation, but the end result is the same, a normal dis-
tribution.

Since gain distributions are also lognormal, we may ask in the same 
way how they develop and are maintained by plasticity rules. We 
adapt the linear gain G by either Hebbian or homeostatic learning. 
Each gain can be adjusted by a Hebbian rule

( )J
j j j jg g g r′ = + λ − µ

or a homeostatic rule
( )J

j j j jg g g r′ = − λ − µ

with parameters λ and µ.

We start with uniform or normally distributed G in an environ-
ment where W is lognormal, normal or uniform, and RI is normal or  
lognormal. If we adapt only G for any initial configuration, using 
any distribution for RI, including the lognormal distribution, 
and a lognormal or normal weight distribution, we arrive at a  
normal distribution for G with homeostatic learning and a lognor-
mal distribution with Hebbian learning (Figure 14).

Lognormal distributions develop from Hebbian plasticity, and 
homeostatic plasticity generates only normal distributions. The 
explanation lies in the nature of random statistical events, which 
generate normal distributions when the underlying mechanisms 
are sums of many small events, but lognormal distributions when 
the underlying mechanisms are multiplicative54. We also wanted 
to understand the observed widths of the distributions. We hypoth-
esized that the differences for σ∗  between W, R and G result 
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Figure 13. Homeostatic learning results in Gaussian weight distributions, independent of gain distribution. Given is a lognormal 
input rate σ *

RI = 2, μ*
RI = 4.95��. A: Initial Configuration: Gaussian (grey) or uniform (blue). B: Homeostatic weight learning using Gaussian gain 

distribution (grey, blue as before). C: Homeostatic weight learning using uniform gain distribution (grey, blue as before). D: Homeostatic 
weight learning using lognormal gain distribution ( *

Gσ =1.37,μ*
G=32.7) (grey, blue as before).

from the network structure. Accordingly we started a simulation 
with initial uniform values for G and W and Hebbian update rules  
using the same learning rate λ for both (Figure 15). We find that 
gain, rate and weight distributions match the experimental values, 
and that this is true for any tested constellation. We also found that 
Hebbian learning alone quickly escalates values, which develop 
exponentially, and that additional rounds of homeostatic adaptation 
are required to stabilize the system. Homeostatic learning pushes 
the system back towards a normal distribution.

Our data, in the most general way, allowing for various  
conditions and architectures, show that Hebbian learning is  
required both for intrinsic gain and for weights in order to  
generate the attested lognormal distributions. This is an interest-
ing result, because it shows that we need prominent Hebbian  
intrinsic learning to explain the gain distributions that we  
find experimentally. Intrinsic learning is not just homeostatic  
adaptation, it follows the same rules as synaptic weight  
learning.
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Figure 14. Hebbian or homeostatic gain learning determine lognormal or Gaussian outcome. Given is a lognormal input rate σ *
RI = 2,  

μ*
RI = 4.95��. A: Initial Configuration: Gaussian (grey) or uniform (blue). B and C: Hebbian learning using lognormal or Gaussian weights, 

resulting gain distribution is lognormal. D and E: Homeostatic learning using lognormal or Gaussian weights, resulting gain distribution is 
Gaussian.

Figure 15. Experimental and generated distribution widths for 
spike rates, gains and weights. Grey, experimental measurements 
(s. Tables); red, generated with 100% Hebbian learning; or blue, 
80% Hebbian and 20% homeostatic learning combined. The 
basic distinction in distribution width for gains, rates, weights is 
reproduced with Hebbian learning, additional homeostatic learning 
matches experimental values best.

4 Discussion
4.1 Universality of lognormal distributions
Spike rates of neurons seem to be universally distributed accord-
ing to a lognormal distribution, with many neurons at low spike 
rates, and a small number at successively higher spike rates  
(heavy-tail)1. The same distributions are found for synaptic weights6, 
and intrinsic properties associated with excitability (gain)1. The 
neurons that we reported on are of very different types, and they 
are embedded in different kinds of connectivity. Medium spiny  
neurons and Purkinje cells are GABAergic (inhibitory), while cor-
tical and IC neurons are glutamatergic (excitatory), but this is not 
reflected in a distinct spike rate distribution. They also fire with 
very different average spike rates. IC neurons operate at very  
high frequencies, and Purkinje neurons at much higher frequen-
cies than cortical or striatal projection neurons. But they all have 
the same spike rate distribution. It has been suggested2 that log-
normal spike distributions are a feature of cortical tissue and arise 
from strong excitatory recurrent connectivity, but this is experi-
mentally not substantiated nor is it theoretically necessary. While  
cortical pyramidal neurons exist in a heavily excitatory recurrent 
environment, medium spiny neurons, cerebellar Purkinje cells 
and IC neurons act mostly in a feed-forward way, i.e. they don’t  
have significant recurrent excitatory (glutamatergic) connectivity.
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Beyond spike rate distribution, we also gathered data on weight 
and gain distributions. Again the observation of lognormal dis-
tributions is ubiquitous. We find synaptic weight distributions for  
cortex6 and cerebellum that are lognormal, with characteristic 
width of distributions. For intrinsic properties, striatal projection  
neurons and cortical neurons46 show responses to constant cur-
rent and current-to-threshold (gain) distributions, which again 
appear lognormally distributed, with smaller widths than spike rate  
distributions.

Our models show that lognormal distributions arise even in a  
purely input-output environment, and that they are a result of  
Hebbian learning of weights and gains, quite independent of the 
overall magnitude of the spike rates.

4.2 Generating lognormal distributions
Mean spike rates, as well as intrinsic excitability and synaptic 
weights, have lognormal distributions.

It has often been assumed that variability in intrinsic excitability 
is a source of noise in neural computation56, even though others 
have argued that intrinsic variability contributes to neural coding57,58 
and that intrinsic plasticity follows certain rules19. An excellent  
overview of the experimentally attested forms of intrinsic plastic-
ity is contained in 35, cf. 59–61. Many other detailed observations  
are contained in 36–38,62.

Recently, Mahon and Charpier4 have shown that intrinsic excit-
ability is stable in individual neurons under control conditions, 
while stimulation protocols (e.g. in barrel cortex of anesthetized 
rats) change intrinsic excitability by at least 50–100%. However, 
the conclusions drawn from the experimental research are often 
contradictory. Intrinsic plasticity is sometimes assumed to act in 
a negative, homeostatic way, i.e. opposite to synaptic plasticity4, 
but sometimes in a ’Hebbian’, positive way, i.e. cooperative with 
synaptic plasticity38,63. There is evidence for (short-term) negative 
or homeostatic plasticity, which has been previously investigated4.

Our work has now shown that any kind of neural system with linear 
gains requires positive, Hebbian intrinsic plasticity to produce and 
maintain a lognormal distribution of gains. We also could show that 
the observed widths of the distributions, i.e. the differences for σ∗ 
between W, R and G, naturally result from the network structure 
and are built into the system simply by Hebbian adaptation. 

Lognormal distributions may arise as stable properties of the  
system during early development (the set-up of the system), 
i.e. before actual pattern storage or event memory develops, and  
they are maintained during processing by a Hebbian type of  
positive adaptation events. Homeostatic plasticity consists in down-
regulating gains or weights with increases in firing rates. Purely 
homeostatic learning results in normal distributions, and erases 
existing lognormal distributions. By combining homeostatic and 
Hebbian adaptation we can achieve and maintain stable lognormal 
distributions.

4.3 Why logarithmic coding schemes
A lognormal distribution means that values are normally distributed 
on a logarithmic scale. From an engineering perspective, basic Heb-
bian plasticity for synapses and intrinsic properties is sufficient to 
generate stable logarithmic distributions. If there is random varia-
tion of multiplicative events, as in Hebbian plasticity, a lognormal 
distribution will be the result54.

This is related to principles of sensory coding, where logarithmic 
scale signal processing enhances perception of weak signals, while 
also being able to respond to large signals - effectively increas-
ing the perceptual range compared to linear coding14. In an inter-
connected network logarithmic coding may turn into a property  
for the access of representations. Feature clusters, or event 
traces could be accessed by targeted connections to the top-level  
neurons, which then activate lower level neurons in their imme-
diate vicinity. By accessing high frequency neurons preferen-
tially, a whole feature area can be reached, and local diffusion will  
provide any additional computation. Similarly, the results of a local 
computation can be efficiently distributed by high frequency neu-
rons to other areas. Fast point-to-point communication using only 
high frequency neurons may be sufficient for fast responses in 
many cases. Scale-free networks in general support synchroniza-
tion, which is also a useful feature for rapid information transfer 
and access64.

Recently, publications65,66 have shown that there is indeed a differ-
ence between high-frequency and low-frequency neurons in their 
connectivity: high-frequency neurons have short delays, strong 
connections, and directed targets, while low-frequency neurons 
have long delays, weak connections and diffuse targets.

The lognormal distribution of spike rates has significant implica-
tions for neural coding. Logarithmic spike rates are coupled with 
linear variance for responses to behavioral stimulation. In other 
words, the greatest part of the coding results already from the fre-
quency rank of the neuron itself, such that high frequency neurons 
have the largest impact. A fixed mean rate for each neuron allows 
stable expectation values for network computations. 

Logarithmic, hierarchical coding does not need to be sparse. The 
low frequency neurons may matter the most in terms of input 
response. With lognormal synaptic weight distributions, if strong 
synapses are kept stable, they may transmit an input neuron’s mean 
firing rate to targets and in this way provide stability to the system. 
All other synapses could be arbitrary. This would allow for contin-
ued pattern learning to be implemented by the bulk of low weight 
synapses, while the framework of neuronal interactions, e.g., the 
ensemble structure, could be unchanged. Such a division of labor 
between strong synapses and weaker ones could have many advan-
tages in a complex, modular network.

Experimental data have often shown that sampling of neuronal 
responses from a large population (105 or more neurons), which 
become activated at 30% or more, yields accuracy for a stimulus 
already for small samples (100–200 neurons or 1–2%) (e.g., 67). 
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We may suggest that this happens when we sample from a highly 
modular structure, and we have been able to replicate the effect with 
lognormal networks68.

5 Conclusions
In our earlier work1, we found that intrinsic excitability mani-
fested by spike response to current injection and rheobase in vitro  
for dorsal striatal and nucleus accumbens neurons seems to have 
the same distribution as the firing rate in cortex under in vivo  
conditions. Approximately at the same time6, had observed a  
heavy-tailed distribution of synaptic weights in cortical tissue.

In this article, we have done three things: (a) collected data to show 
that rate, weight and gain distributions in different brain areas all 
follow a heavy-tailed, specifically a lognormal distribution; (b) cre-
ated a generic neural network model to show that these distribu-
tions arise from Hebbian learning, and specifically that intrinsic 
plasticity must be Hebbian as well; and (c) shown that the width 
of the distributions, as experimentally attested, arise naturally from 
the network structure and the role of its components, in a very 
robust way. We have also discussed what the lognormal distribution 
means for neural coding: a division of labor between fast trans-
mission by high-frequency neurons and low-level computation by  

low-frequency neurons in a modular structure, and possibly  
a division of labor between stable components (strong synapses, 
high-frequency neurons) and more variable components (weak  
synapses, low-frequency neurons).

6 Software and data availability
The GNN simulation software was programmed in Matlab, and is 
available in GitHub: https://github.com/gscheler/GNN/tree/v0.1

Archived source code as at time of publication: https://doi.
org/10.5281/zenodo.82994949

OSS approved license: Apache 2.0.

All the data required for re-analysis of the study have been refer-
enced throughout the manuscript.
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In the manuscript the author documents various instances of lognormal distributions of several neuronal
parameters across brain areas. The description then serves as motivation for an intriguing investigation of
possible underlying mechanisms responsible for creating such distributions. In particular, combination of
Hebbian learning with homeostatic adaptation in a simple model is sufficient to recreate the observed
distributions of firing rates, synaptic weights, and gains.

The presented combination of data and modeling is interesting. The model itself is presented in sufficient
detail. However, some statements throughout the text seem to be too strong given the evidence. I suggest
rephrasing the strong statements and conclusions to better reflect the presented data and model. After
minor changes the manuscript certainly will be of interest to experimenters as well as modelers.
 
Comments:
 
1. Strong statements
 
Many a strong statement is sprinkled throughout the manuscript. I suggest modifying such statements to

reflect evidence presented in the manuscript itself and the cited literature.
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reflect evidence presented in the manuscript itself and the cited literature.
 
For example:
Abstract: "Logarithmic scale distribution of weights and gains appears as a functional property that is
present everywhere." The author probably meant to say "everywhere we looked."
 
Introduction: "...lognormal distributions can only be maintained by Hebbian-style, not homeostatic
adaptation." There might be a plethora of other mechanisms (not studied in the manuscript) that could
lead to lognormal distributions. The fact that Hebbian learning is sufficient does not mean it is also
necessary.
 
Similarly, here: "The answer is that the attested distribution of intrinsic gain can only derive from a
Hebbian style adjustment rule, even though additional homeostatic adaptation is possible. Intrinsic
plasticity is Hebbian".
 

2. Methods section
 
The Methods section presents a mix of Methods, Introduction, and Results. I suggest refining the section
and moving some results into Results. For example, descriptions of various datasets could be easily
incorporated into Results, especially when they actually contain new data - "We extend this dataset by
recordings from different types of cortical
neurons..." (p. 3).
 

3. Lognormal fits
 
Presented distributions of various neuronal parameters do appear lognormal, with a few exceptions, as
correctly pointed out in the text. It is also unlikely that exponential distribution would provide a better fit to
any of presented examples. There are, however, other distributions which  , or might not, fit the datamight
better? Was the goodness-of-fit evaluated in any way, or were other types of distributions considered? A
brief statement along these lines would further improve this interesting manuscript.
 

4. Minor comments
 
p. 3 - "The distribution of spike rates for neurons spiking in the absence of synaptic input...". I believe it is
highly unlikely that spontaneous rates in-vivo arise in the absence of synaptic inputs. Unless
controlled---such as in slices, in neuronal cultures, etc.---neurons will receive barrages of input activity
even in the absence of experimental stimulation.
 
p. 7 - "...populations I, J with each n = 1000 neurons..." should be "...populations I, J each with n = 1000
neurons..."
 
p. 8 - "The output R^J may BE used as input..."
 

5. Minor changes to figures
 

Fig. 9 caption needs description of color arrows. A simple statement, such as "J (excitatory, blue arrows)
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Fig. 9 caption needs description of color arrows. A simple statement, such as "J (excitatory, blue arrows)
and H (inhibitory, red arrows)", would suffice.
 
What is the meaning of colors in Figs. 10 and 11? If there is any, please state so in the caption. If there
isn't, please state so as well. The two 'sheets' in Fig. 10 are almost indistinguishable. If colors have no
results-related meaning, it might be helpful to plot the bottom sheet (for example) in slightly different
colors.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 29 August 2017Referee Report

doi:10.5256/f1000research.13128.r25048

   Rune W Berg
Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark

In this study the author investigate various distributions of neuronal networks, and suggest that
lognormality is ubiquitous. The author constructs a Hebbian model to better understand the mechanisms
behind these distributions. The analyses are detailed, well-done and interesting. The manuscript is not so
well--organized and the writing can be improved. There are many statements, which are stronger than the
data can support. I suggest a thorough rewrite - incorporating the issues below.

Major concerns:
Methods section is full of results, discussions and conclusions. I suggest a thorough rewrite of the
manuscript to better separate out the methods, results and discussion.

From the discussion:
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From the discussion:
“Again the observation of lognormal distributions is ubiquitous. We find synaptic weight distributions for
cortex  and cerebellum that are lognormal, with characteristic width of distributions. For intrinsic
properties, striatal projection neurons and cortical neurons  show responses to constant current and
current- to-threshold (gain) distributions, which again appear lognormally distributed, with smaller widths
than spike rate distributions. “

The author keeps stating that she documents lognormal distributions. But I did not find any statistical test.
It should be clear how this has been assessed. Do we know it is not e.g. a gamma distribution?

Conclusion:
“(b) created a generic neural network model to show that these distributions arise from Hebbian learning,
and specifically that intrinsic plasticity must be Hebbian as well; “

This "Hebbian finding" has been repeated many times in the manuscript, and generally there is a problem
with the logic. Just because Hebbian learning results in lognormal distributions, it does not imply that
neuronal networks must be Hebbian. Other types of learning may also result in lognormal distribution. Can
we really make such an exclusive statement based on this model? I suggest a milder version of the
manuscript, where it is suggested that Hebbian learning could explain the lognormality seen in real
networks.

Minor issues:

Abstract:

“In this paper, we document lognormal distributions for spike rates,… “  -> In this paper, we investigate
distributions for spike rates,… 

Regarding the statement:
“Secondly, we created a generic neural model to show that Hebbian learning will create and maintain
lognormal distributions.”
If there is a “secondly…” there should also be a “Firstly,…” Maybe put that before “The difference
between….”?
I also suggest the replacement:  “Secondly, we created a generic neural model to test whether Hebbian
learning will create and maintain lognormal distributions.”

I also suggest replacing:
“We could prove with the model that not only weights, but also intrinsic gains, need to have strong
Hebbian learning in order to produce and maintain the experimentally attested distributions. This settles a
long-standing question about the type of plasticity exhibited by intrinsic excitability. 
“
with
“In our model we found that not only weights, but also intrinsic gains, need to have strong Hebbian
learning in order to produce and maintain the experimentally attested distributions. This suggest a
solution to a long-standing question about the type of plasticity exhibited by intrinsic excitability. “

Introduction:
In the first paragraph I suggest citing

Wohrer, A., Humphries, M. D., and Machens, C. K. (2013). Population-wide distributions of neural activity
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Wohrer, A., Humphries, M. D., and Machens, C. K. (2013). Population-wide distributions of neural activity
during perceptual decision-making. Prog Neurobiol, 103, 156–193.

because they discuss exactly this issue of distributions and mean of spiking.

Regarding:
“With the current data, we show that the distribution of spike rates within any neural tissue follows a
power-law distribution, i.e. a dis- tribution with a ‘heavy tail’. There is also a small number of very
low-frequency neurons, so that we have a lognormal distribution . This lognormal distribution is present in
spontaneous spike rates as well as under behavioral stimulation. For each neuron, the devia- tion from the
mean rate attributable to a stimulus is small (CV = 0.3–1, standard deviation = 1–4 spikes/s), when
compared to the variability in mean spike rate over the whole population (5-7-fold), cf. Table 1 and Table
3. “
First I suggest replacing “any neural tissue” with “many neural tissues”, since no one has looked at all
tissue in the nervous system. 

Further I suggest including the reference: 
Petersen, P. C. and Berg, R. W. (2016). Lognormal firing rate distribution reveals prominent
fluctuation-driven regime in spinal motor networks. eLife, 5, e18805.
since this will make the statement stronger.

Another relevant paper which should be discussed and included is:
Ikegaya Y, Sasaki T, Ishikawa D, Honma N, Tao K, Takahashi N, Minamisawa G, Ujita S, Matsuki N.
2013. Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cerebral
Cortex 23:293– 304 
And also the detailed analysis of firing rate versus irregularity for different brain regions and animals
should be included: http://www.jneurosci.org/content/36/21/5736

Regarding this statement:
“We have constructed a generic model for neuronal populations with adaptable weights and gains. “
I suggest writing a sentence before that giving a motivation for constructing a model, which seem to come
out of the blue as it is. Perhaps something like this: “In order to understand these lognormal distributions
we constructed a model….”

Discussion:
Suggest modifying: 
“It has been suggested that lognormal spike distributions are only a feature of cortical tissue and arise
from the strong excitatory recurrent connectivity, but this is neither experimentally nor theoretically
correct. “
->
“It has been suggested that lognormal spike distributions are only a feature of cortical tissue and arise
from the strong excitatory recurrent connectivity, but this has not been substantiated neither
experimentally nor theoretically. “

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
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Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly
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