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Abstract

Productive humoral responses require that naïve B cells and their differentiated progeny move 

among distinct micro-environments. In this review, we discuss how studies are beginning to 

address the nature of these niches as well as the interplay between cellular signaling, metabolic 

programming, and adaptation to the locale. Recent work adds evidence to the expectation that B 

cells at distinct stages of development or functional subsets are influenced by the altered profiles 

of nutrients and metabolic by-products that distinguish these sites. Moreover, emerging findings 

reveal a cross-talk among the external milieu, signal transduction pathways, and transcription 

factors that direct B cell fate in the periphery.

eTOC

The metabolic needs of cells of the B lineage differ dramatically, spanning the quiescent naive and 

memory states, antigen-driven germinal center B cell stages and terminal differentiation state as 

antibody-producing cells. Boothby and Rickert outline the metabolic inputs and corresponding 

pathways that impact peripheral B cell differentiation in distinct microenvironments.
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The B cell life cycle and changing microenvironments

B lymphocytes lead a semi-nomadic lifestyle due to their inherent role in surveying the body 

for foreign antigens and potential pathogens. However, activation and differentiation cues 

lead to the temporary or permanent retention of B lineage cells in anatomically and 

functionally distinct microenvironments that differ greatly in nutrient availability, oxygen 

and redox species. These components of the extracellular milieu impact B cell fate in the 

context of other signaling events by cytokines, growth factors and antigen. Here we focus on 

the metabolic control of peripheral B cell fate as defined by the breakdown (catabolism) of 

carbon sources (e.g. amino acids, nucleotides, lipids and carbohydrates) and the synthesis 

(anabolism) of cellular constituents (e.g. proteins, nucleic acids and fatty acids). Unlike T 

cells, relatively little has been established regarding B cell metabolism, placing this nascent 

field as fertile ground for exploration and discovery.

B cell generation in the bone marrow (BM) involves the rapid differentiation of B cell 

precursors from common lymphoid progenitors. Expansion at these early stages is cytokine-

driven. Interleukin-7 (IL-7), stem cell factor (SCF) and FLT3 ligand enable B cell 

progenitors to undergo immunoglobulin gene V(D)J recombination and express the “pre-B 

cell receptor (BCR)” (immunoglobulin (Ig) μ heavy chain paired with surrogate light chains) 

(Melchers, 2015). Autonomous signaling by the pre-BCR drives subsequent proliferation to 

produce a large pool of resting pre-B cells. Ig light chain gene rearrangement among pre-B 

cells results in the expression of a functional BCR on immature B cells that egress to the 

periphery to become mature recirculating B cells (Melchers, 2015). Subsequent B cell 

proliferation and differentiation is antigen-driven and co-stimulated by toll-like receptor 

(TLR) ligands and T cell help to generate antibody-producing cells. In addition, a cohort of 

B cells receiving T cell help can undergo further differentiation in the germinal center (GC). 

This process results in the production of recirculating memory B cells, or plasmablasts that 

can become long-lived plasma cells in the BM (Corcoran and Tarlinton, 2016; Victora and 

Nussenzweig, 2012). Thus, the metabolic demands are high in the proliferative early B cell 

stages in the BM and lessen in the pre-B, immature, and transitional stages of the BM and 

spleen. After generation of the mature B cell repertoires, energy needs would seem to be 

relatively low in quiescent blood-borne naïve and memory B cells, but elevated during 

antigen-driven proliferation accompanied by differentiation in the secondary lymphoid 

tissues. Because of the energy and nutrient mass needed to secrete large amounts of 

glycosylated antibody molecules, metabolic demands remain high in sessile plasma cells 

(Aronov and Tirosh, 2016).

In summary, the demands of adaptive immunity require that the lymphoid lineages use cells 

that can transition between exceptionally rapid proliferation and non-cycling quiescent 

states. The resting cells (naïve B; memory B; and long-lived plasma cells) persist stably for 

periods up to years or decades and, in the case of memory B cells, may recirculate. A 

corollary is that while exposed to a variety of nutritional environments, metabolic 

programming needs to generate sufficient energy in concert with appropriately balancing 

anabolism, catabolism, and a sustainably stable economy of essential molecules of 

intermediary metabolism. Overall, signaling and transcription regulation are harnessed to 
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assure that the demands of activation, differentiation, and locale can be met while balancing 

usage of molecules in energy generation and anabolism.

Basics of the energy economy

Glucose, glutamine, and fatty acids are three potential sources of carbon for growth and 

energy (Figure 1A). Glucose uptake, which increases dramatically after B cell activation 

(Caro-Maldonado et al., 2014; Cho et al., 2011; Dufort et al., 2007), provides the substrate 

for glycolysis and use of the two resultant pyruvate molecules for Krebs (citric acid) cycle 

entry. However, glucose-derived carbon is likely also needed for anabolism and a net 

increase in the mass of molecules (e.g., lipids, nucleic acids) synthesized during G1 and S 

phases. These anabolic requirements can be met in part by flux of carbon into the pentose 

phosphate pathway after glucose import. In parallel, glutamine uptake provides another 

potential source of carbons that can be used either for oxidative metabolism or anabolism 

after conversion into nucleic acid precursors and other amino acids. Thus, glutamine can 

enter mitochondria and feed the Krebs Cycle after anaplerotic conversion into α-

ketoglutarate (αKG also known as 2-oxoglutarate) via glutaminase-mediated generation of 

glutamate (Figure 1B). Alpha-ketoglutarate and its product succinate also have the potential 

to influence DNA and protein modification by methylation and demethylation events. At 

present, the balances among these varied processes (net contributions of glucose versus 

glutamine to ATP generation or to increased biomass) have not yet been quantitated for B 

lineage cells, for instance by metabolic tracing in B cell subsets ex vivo or in vivo.

In addition to the carbon economy, which is the main center of research focus, several other 

metabolic demands need to be met. First, in the phases during which B cells proliferate and 

undergo population expansion, net import of all other essential atoms and molecules (N, 

PO4, S) needs to be met to support the increase in biomass (Figure 1B). Some of these 

factors may derive from the import and subsequent conversion of amino acids (e.g., 

glutamine, asparagine & cysteine), but this part of the blueprint for building new B cells also 

awaits analysis, especially in vivo. Another feature that is critical is the capacity to balance 

both anabolic and bioenergetic processes so that sufficient cytosolic and mitochondrial pools 

of essential co-factors (e.g., NAD+ and NADH; NADP+ and NADPH) and intermediates 

(e.g., acetyl coenzyme A) are maintained. In the extremes, sustained failures to maintain the 

redox balance within viable limits lead to pruning via cell death.

Metabolic checkpoints in B cell quiescence and homeostasis

Naïve recirculating B cells are small non-cycling cells that are poised to respond to antigen, 

and are maintained by continual signaling via the BCR and the receptor for B-cell activating 

factor (BAFF)R – both of which employ the phosphatidyl inositol 3’OH kinase (PI3K) 

pathway (Henley et al., 2008; Jellusova et al., 2013; Srinivasan et al., 2009) (Figure 2A). 

There is considerable evidence indicating crosstalk between these receptors, including recent 

data showing that BAFFR may engage the PI3K pathway via CD19 (Hobeika et al., 2015; 

Jellusova et al., 2013). Consistent with these findings, inactivation of Akt1 and Akt2, or of 

phosphoinositide-dependent kinase 1 (PDK1), (Figure 2B) results in a prominent loss of 

recirculating B cells (Baracho et al., 2014; Calamito et al., 2010). While soluble BAFF is 
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non-mitogenic, it is an essential survival factor and also primes B cells for glycolytic growth 

and proliferation via PKCβ and Akt kinase activation (Figure 2B) (Patke et al., 2006; 

Woodland et al., 2008).

Cell cycle entry is marked by the release of cell cycle inhibitors (Rb, p21, p27) and the 

activation of cyclin-dependent kinases (CDK) to prepare the cell for mitosis (Figure 2B). 

Passage through the late G1 stage is a noted restriction point, since subsequent mitotic 

events can proceed in the absence of growth factor stimulation. Such a checkpoint may also 

be present to regulate the onset of anabolic growth and the steep demands of cell division in 

terms of new protein synthesis, lipogenesis and nucleotide synthesis. The late G1 restriction 

point is characterized by the phosphorylation of Rb by the CDKs, resulting in the release of 

the E2F1 transcription factor that drives the production of cell cycle proteins as well as 

mitochondrial proteins to promote oxidative phosphorylation (Blanchet et al., 2011; Lee and 

Finkel, 2013) (Figure 2B). Constitutively active glycogen synthase kinase-3 (GSK3) has 

been recently found to be a metabolic checkpoint regulator in resting B cells, promoting cell 

survival by restricting protein synthesis and cell size in the absence of antigen or growth 

factor stimulation (Jellusova et al., 2017). Consistent with maintenance of T cell quiescence 

(Yang et al., 2011), it is possible that GSK3 serves an important role in suppressing 

mTORC1 via activation of the Tuberous Sclerosisi Complex (TSC) (Inoki et al., 2006), 

although mTORC1 was not hyperactivated in stimulated GSK3-deficient B cells (Jellusova 

et al., 2017) (Figure 2B). Alternate explanations include GSK3-dependent modulation of 

E2F1 activity or c-Myc stability to prevent G1 progression (Garcia-Alvarez et al., 2007; 

Gregory et al., 2003). Although much remains to be known regarding the maintenance of B 

cell quiescence in terms of nutrient sensing and the parsing of signals by the BCR and 

BAFFR, the main attributes appear to be preservation of homeostatic mitochondrial function 

and harnessed anabolism (Adams et al., 2016).

While memory B cells share the property of quiescence with naïve B cells, important 

distinctions exist. Memory B cells are antigen-experienced, i.e., have been activated 

previously, and often express a class-switched BCR. When they arise from the GC reaction, 

memory B cells have experienced multiple productive encounters with T helper (Th) cells, 

undergone multiple rounds of cell division, and received sustained or repetitive BCR 

stimulation. The quiescent state may be imposed by the disruption of these processes upon 

reaching a tipping point in terms of antigen sequestration via rising antibody titers, altered 

migration patterns or transcriptional re-programming (see below). The memory B cell 

population is heterogeneous with respect to Ig class, propensity to form antibody producing 

cells and dependence on the GC reaction (Tarlinton and Good-Jacobson, 2013). Nonetheless, 

a fundamental distinction of memory B cells is their ability to persist in a BAFF-independent 

manner (Scholz et al., 2008). Moreover, studies of Atg7-deficient mice suggest that memory 

persistence may differ from that of naïve B cells in a requirement for autophagy (Chen et al., 

2014; Chen et al., 2015), though evidence from Atg5 loss-of-function studies provides 

indications that homeostasis and primary humoral responses may be promoted by another 

essential component of the autophagosome (Arnold et al., 2016; Clarke et al., 2015). There 

is also evidence suggesting that an IgM receptor may promote more sustainable memory B 

cell formation and/or survival than IgG (Gitlin et al., 2016; Pape et al., 2011). These 

differences may be reflective of earlier activation events, BCR (auto)specificity, and/or 
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intrinsic signaling properties of particular Ig isotypes (Davey and Pierce, 2012; Haniuda et 

al., 2016; Kometani et al., 2013; Laffleur et al., 2015; Pierce and Liu, 2013; Wienands and 

Engels, 2016; Yang et al., 2016). Likewise, the impact of BCR isotype on cellular 

bioenergetics, nutrient requirements and priming for anabolic differentiation processes 

awaits further elucidation.

Metabolic reprogramming upon B cell activation

B cell activation is crucial for antigen-specific clonal expansion and also a precondition to 

later differentiation. Activation is initiated and then guided by signals initiated at cell surface 

receptors among which the BCR, CD40, IL-4R, and TLRs are prominent for the naïve B cell 

(Figure 2A). The mix and balance among signals must be distinct as B cells are directed 

either to plasma cell fates for antibody secretion or to GC intermediaries that yield memory 

B cells or a second wave of plasma cells. The BCR complex is the centerpiece of Ag-

specific clonal expansion and directs an antibody (Ab) response to the epitopes of a new 

immune challenge. However, each of these other receptors initiates signaling through 

pathways that overlap those of the BCR. In vitro, direct engagement of the BCR promotes 

cell cycle entry, but requires costimulation with CD40, TLR ligands (CpG or LPS) or IL-4 to 

drive robust proliferation. TLR stimulation alone is sufficient to drive proliferation, class 

switch recombination (CSR) and differentiation into antibody secreting cells. However, BCR 

signaling and downstream activation of the PI3K pathway, including both mTORC1 and 

mTORC2, modulates CSR and the propensity to form plasma cells (Jones et al., 2016; 

Keating et al., 2013; Limon et al., 2014; Omori et al., 2006). In vivo, the mix, balance, and 

timing of these signals determines most outcomes such as the extent of clonal expansion, the 

capacity to breach self-tolerance, and the formation and duration of the GC response. LPS 

and CpG can drive a hapten-specific humoral response in vivo that is considered largely 

extra-follicular, consistent with a far higher fraction of progeny directed toward the plasma 

cell fate than is the case with protein-hapten conjugates. This signaling “code” (nature, 

magnitude, duration of the combined stimuli) will be further modulated by metabolic 

adaptations imposed by the microenvironment at the site of activation.

The signal transduction pathways activated by the BCR and initial costimulatory molecules 

(Figure 2B) promote metabolic reprogramming as resting B cells transition from quiescence 

to proliferation, but the new biochemical balances can in turn influence signaling. Protein 

kinase-C beta (PKCβ), which is activated both by the BCR via phospholipase C-γ2 (PLC-γ 
2), promotes anti-Ig-induced increases in glycolytic flux (Blair et al., 2012). Intriguingly, 

PKCδ-deficient B cells exhibit normal BCR-activated glycolysis (Blair et al., 2012), 

consistent with a number of findings indicating that PKCδ and β have distinct and in some 

cases opposing roles in B cell activation (Salzer et al., 2016). PKCβ also is downstream 

from PI3K, which acts through PDK1 and mTOR complex 2 (mTORC2) to enhance PKC as 

well as AKT (Das et al., 2016; Lee et al., 2010; Lee et al., 2013). mTORC1 activity depends 

on sensing of amino acid concentrations (and those of other nutrients) but feeds back to 

inhibit PI3K (Carracedo et al., 2008; Tanaka et al., 2011). Recent findings in B cells provide 

evidence that among nutrients, oxygen concentrations can modulate mTORC1 activity (Cho 

et al., 2016). As elaborated upon below, the nutrient-sensing and feedback functions of 
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mTORC1 raise the possibility of a bidirectional cross-talk between nutrients and metabolites 

on the one hand, and signal transduction on the other.

In other cell types, AMP-activated kinases (AMPK) integrate nutrient and energy status with 

cell physiology, fate, and function (Figure 2B). For B cells, this potential at present has not 

yielded evidence of an impact on antibody responses. Thus, although active AMPK inhibits 

mTORC1 by several mechanisms (Gwinn et al., 2008), and mTORC1 activity is important 

for later differentiation and Ab production after B cell activation (Aagaard-Tillery and 

Jelinek, 1994; Cho et al., 2016; Jones et al., 2016), primary antibody responses, even with a 

booster immunization, are normal in AMPKα1-null mice (Mayer et al., 2008). How much 

this finding is influenced by the caveat of persistent low-grade inflammation in these mice 

(Wang et al., 2010), or may parallel analyses of AMPK-deficient cytotoxic T cells (Rolf et 

al., 2013), will be of interest inasmuch as AMPK is so central to nutrient sensing and energy 

regulation.

Although the daunting challenge of testing the relevance and impact of nutrient - signaling 

crosstalk via more complete and robust experiments in vivo lies ahead, the concept has been 

supported by recent work both with T and B cells (Cho et al., 2016; Pollizzi et al., 2016; 

Verbist et al., 2016). Earlier work advocating a unique role for asymmetric partitioning of 

various cellular proteins between the two daughter cells and nuclei of lymphocytes (Chang 

et al., 2007) prompted investigations into potential links between this model and the nexus 

of signaling, gene regulation, and metabolism. One fulcrum in such concepts has been the 

transcriptional network centered on c-Myc, as this protein and its partners in DNA binding 

can regulate wide “suites” of metabolic genes that govern nutrient and metabolite flux 

(Wang et al., 2011). Some evidence indicates that c-Myc operates simply as an amplifier of 

the expression of any active gene (Nie et al., 2012). Nonetheless, this proto-oncogene 

promotes glycolysis and glutaminolysis along with increased hexose and amino acid uptake 

by activated T cells (Wang et al., 2011). Moreover, experiments using gene-targeted 

replacement alleles encoding GFP-cMyc fusion proteins support the concept that c-Myc 

partitions unequally in B lymphocytes as well as T cells (Lin et al., 2015; Pollizzi et al., 

2016; Verbist et al., 2016). Evidence from T cells in these models offers a mechanism 

whereby asymmetry of c-Myc protein distribution can potentially be propagated through 

time, perhaps via a threshold-based mechanism (Heinzel et al., 2017). This crucial aspect of 

“fate determination” is imputed to a feed-forward model involving increased amino acid 

import and steady-state concentrations that in turn promoted subtle increases in mTORC1 

activity and the previously established capacity of mTORC1 to promote translation of c-Myc 

mRNA (Kobayashi et al., 2003; Verbist et al., 2016; West et al., 1998). In LPS-activated B 

lymphoblasts, analogous mTORC1-dependent increases in amino acid uptake and mTORC1 

activation have been noted (Cho et al., 2016). Asymmetric partitioning of various 

constituents including c-Myc as LPS blasts divide has been reported as well (Barnett et al., 

2012; Lin et al., 2015). However, the overall role and functional importance of such 

asymmetries remain open to some question inasmuch as findings about asymmetry 

specifying outcomes have ranged from no detectable impact, in results of single-cell sorting 

experiments (Hawkins et al., 2013), to more deterministic assessments.
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Ultimately, several adaptations are effected as a result of signaling initiated by the BCR and 

collaborating cell surface receptors. Glucose uptake increases dramatically, in part via higher 

amounts of the transporter GLUT1, but likely also because of increased downstream demand 

(i.e., utilization of glucose-6-phosphate). Thus, IL-4 stimulation alone, or BCR cross-

linking, or TLR4 engagement by LPS increase glucose oxidation along with the 

enhancement of pyruvate generation (Cho et al., 2011; Dufort et al., 2007). As such, the 

degree of lactate export, as a surrogate for “aerobic glycolysis”, is less prominent than in the 

central canon of T cells – likely due to proportionately higher activity of pyruvate 

dehydrogenase (PDH) (Caro-Maldonado et al., 2014; Cho et al., 2011). Paradoxically, the 

impact of IL-4 is dependent on nuclear induction of the transcription factor STAT6 and a 

STAT6-interacting ADP-ribosyl transferase rather than on PI3K, and these effects are 

maintained even in B cells activated by IgM crosslinking (Cho et al., 2011; Dufort et al., 

2007). The coupling of glycolytic pyruvate generation to Krebs’ TCA cycle would enhance 

the efficiency of ATP generation, but perhaps the enhanced glucose uptake is used in part to 

generate more citrate that can be used by ATP-citrate lyase (ACLY) for intrinsic lipogenesis 

to supply lipids for the synthesis of new membranes needed as a B cell grows and prepares 

to divide (Dufort et al., 2014). By analogy with other recent data (Moussaieff et al., 2015; 

Wellen et al., 2009), the production of acetyl CoA from citrate may also provide for 

maintenance of protein acetylation, for instance in chromatin. While the quantitative ledger 

accounting for utilization of glucose-derived carbon remains to be determined, B cell anergy 

appears to include diminution of GLUT1-mediated glucose uptake (Caro-Maldonado et al., 

2014). Moreover, manipulation of the import capacity or glycolytic flux may suffice to 

facilitate or restrict sustained breaches of peripheral tolerance mechanisms, e.g., with 

constitutive over-expression of GLUT1 or its elimination, or with 2-deoxy-glucose treatment 

in vivo (Lee and Finkel, 2013; Yin et al., 2015).

Uptake of amino acids including glutamine also increases dramatically after B cell 

activation, and is promoted by induction of increased solute transporter proteins among 

which the accessory chain CD98hc (Slc3a2) has been shown as essential for robust B cell 

proliferation (Cantor et al., 2009), and is rapidly upregulated in a manner dependent on 

PDK1 and Akt (Kelly et al., 2007). The increases in a subset of amino acids - leucine, lysine, 

arginine, and glutamine - helps to maintain optimal capacity to have signal flux through the 

mTORC1 node of pathways downstream from PI3K (Efeyan et al., 2015; Nakaya et al., 

2014; Sancak et al., 2008; Sinclair et al., 2013). Branches of the PI3K pathway that include 

mTORC1 promote the induction of the accessory chain encoded by Slc3a2 as well as solute 

transporters that pair with it, such as Slc7a5 (LAT1, for large neutral amino acids) and 

Slc1a5 (ASCT2, for glutamine and other neutral amino acids) (Cho et al., 2016; Verbist et 

al., 2016). In addition to supporting mTORC1 activity in a positive feed-forward loop, 

glutamine can in principle provide citrate for membrane biogenesis after ACLY generation 

of acetyl-CoA, feed nucleotide synthesis, and generate energy after anaplerosis and entry of 

αKG into mitochondria (DeBerardinis and Cheng, 2010). However, there are few isotope-

tracing experiments with B cells to evaluate the programming of such uses at present (Le et 

al., 2012). In contrast to these increases, oxidative conversion of palmitate to generate 

energy appears not to be altered by activation or IL-4 stimulation (Cho et al., 2011). In 

summary, B cell activation for proliferation establishes a greater coordination of glucose 
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oxidation with glycolysis than is the case for canonical T cell metabolism but appears to be 

similar to T cells in the dramatic induction of multiple nutrient transporters so that the 

diverse building materials are available for rapid clonal expansion.

The germinal center microenvironment, metabolism and B cell selection

In contrast to B cells activated by multivalent antigens such as polysaccharides that induce 

strong BCR cross-linking, B cells activated by proteinaceous low-valency antigens have a 

substantial capacity to seed and participate in a sustained interplay with CD4+ T cells in GC 

reactions. After extensive divisions before organization of a GC (Gitlin et al., 2014; Qi et al., 

2008), initiation and prolongation of the GC reaction involves BCR-mediated uptake of 

antigen, processing and presentation of Ag-derived peptides on MHC-II glycoproteins, and 

stimulation of cognate helper T cells (Shlomchik and Weisel, 2012; Victora and 

Nussenzweig, 2012). In addition, mutual re-inforcement evolves between B and T cells via 

CD40 and CD40L, and ICOS cross-stimulation by ICOSL, along with homotypic adhesion 

molecules of the SLAM receptor family and classical integrins (Cannons et al., 2010). 

Ultimately, these signals evoke and stabilize high expression of the transcription factor Bcl6 

in both GC B cells and follicular helper T cells (Tfh). The micro-architecture of GCs 

revolves around a restricted zone of mesenchyme-derived (i.e., non-hematopoietic) follicular 

dendritic cells that capture immune complex-associated antigen and demarcate a Light Zone 

(LZ) highly enriched for the Bcl6hi “GC-Tfh” cells. B cells in this zone that, by virtue of 

having a ‘winning BCR affinity’ in the lottery, compete successfully for antigen stimulation 

and again for a limiting pool of cognate GC-Tfh cells (Allen et al., 2007; Gitlin et al., 2014; 

Shlomchik and Weisel, 2012; Tas et al., 2016; Victora and Nussenzweig, 2012; Victora et 

al., 2010), appear transiently to spike heightened PI3K activity and c-Myc protein expression 

(Calado et al., 2012; Dominguez-Sola et al., 2012). Ag-restimulated B cells then move to a 

Dark Zone (DZ), so designated originally because of the basophilia of proliferating cells. In 

the DZ, B cells cycle rapidly, and induced activation-induced cytosine deaminase (AID) 

introduces somatic point mutations into the rearranged V(D)J elements. While this sketch 

already underscores substantial non-homogeneity of the cells even within each zone (LZ, 

DZ), several broad points can be made on the relationships between metabolism and GC B 

cell differentiaiton.

First, gene expression profile analyses that compare GC-phenotype B cells to naïve follicular 

counterparts, or separate LZ and DZ cells for the analyses, show broad but not universal 

increases in mRNA encoding nutrient transporters and enzymes organized to support growth 

and intermediary metabolism (Calado et al., 2012; Dominguez-Sola et al., 2012; Victora et 

al., 2010). It might seem paradoxical that the most proliferative B cells, those actually 

needing to double their mass several times daily in the DZ, have lower mRNA for many of 

these metabolic suites than their LZ counterparts. However, this effect probably is due to a 

difference in persistence of the relevant proteins as compared to transcriptional control. In 

point of fact, much of the discourse centers on c-Myc as the transcriptional organizer of 

these metabolic transcriptional suites, but fluorescent reporter analyses reveal Myc 

expression (i.e., an amount above some limit-of-detection cut-off) only in a minority of B 

cells even in the LZ (Calado et al., 2012; Chou et al., 2016; Dominguez-Sola et al., 2012). 

Recent findings suggest that GSK3-mediated degradation of c-Myc may be critical for this 
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regulation (Jellusova et al., 2017). Thus, while c-Myc is definitely essential for GC 

organization and likely initiates an organized increase in key metabolic pathways, it may act 

only transiently. In line with the basic premise of this model, GC B cells have been found to 

have greater staining for mitochondrial mass and higher uptake of a glucose analog in vivo 
(Jellusova et al., 2017). Ultimately, elucidation of the temporal sequences in programming 

the relays to transcription factors and gene expression through signaling relays awaits the 

development and use of improved single-cell technologies to be applied in situ.

Second, consideration of the connections between metabolic programming and metabolite 

influences on cell differentiation and function leads to the fact that the concentrations of 

nutrients and metabolic byproducts (e.g., lactate) in the interstitial micro-environment are 

likely to be part of the overall equation. Early low-resolution analyses reported that some 

portions of the spleen had low oxygen tensions whereas others did not (Caldwell et al., 

2001). Consistent with this observation, recent papers have made use of chemical probes to 

investigate the presence of oxygen tensions well below the standard venous concentration, 

i.e., an imbalance between supply available for B cells and aggregate demand in and outside 

of GCs (Abbott et al., 2016; Cho et al., 2016; Jellusova et al., 2017). These analyses uncover 

evidence that the normal physiology of GCs includes an enrichment of hypoxic B cells 

localizing to the LZ. This feature of the nutrient landscape of the LZ led to stabilization of 

hypoxia-induced transcription factors (HIF) (Cho et al., 2016). The low oxygen tension 

reduced mTORC1 activity in part via HIF-mediated dampening of the PI3K-driven increases 

in amino acid transport (Cho et al., 2016). Moreover, HIF stabilization could shift 

metabolism toward increased glycolysis (Cho et al., 2016), which was observed in other 

systems tied to Myc and aerobic glycolysis (Gordan et al., 2007; Zhang et al., 2007). In 

addition to the inference that the low oxygen tension of the GC LZ contributes to setting a 

threshold for selection of B cells (Cho et al., 2016; Jellusova et al., 2017), this external 

metabolic determinant exerted complex time, isotype, and probably stimulus-dependent 

effects on activation-induced deaminase (AID) expression and antibody class switching. 

Moreover, “locked-in” states of HIF stabilization or reduced mTORC1 restricted to B cells 

interfere with GCs, antibody affinity maturation and the capacity for memory responses 

(Cho et al., 2016; Jones et al., 2016; Keating et al., 2013). Collectively, these findings 

suggest that the capacity to cope with challenges posed by low oxygen tension via HIF, 

toggling of the PI3K pathway (Jellusova and Rickert, 2016), and likely other sensors and 

signal transducers is a crucial mechanism for optimizing antibody responses.

The asymmetry model is among unsettled issues pertaining to the GC that may play into 

allocations of potential fates among death, continuation (“self-renewal”), and differentiation 

into switched or unswitched memory B cells or long-lived plasma cells. Pioneering work in 

this area observed in situ asymmetric distributions of Bcl6 and IL-21R between GC B cells 

prior to cytokinesis (Barnett et al., 2012). Investigation of such issues about GC B cells is 

hampered by the lack of a suitable in vitro model and the time (days) and extensive divisions 

that take place before Ag-activated naïve B cells are recruited to form a GC. In any case, 

follow-up work in vitro and in vivo suggests that polarity in contacts and asymmetry in 

distribution of mitochondria and other cellular constituents may influence mTOR signal 

strength and the probabilities of different outcomes for B cells (Adams et al., 2016). These 

findings, taken together with work in CD8+ T cells, suggest that the interplay of nutrient 
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supplies, especially amino acids, mTORC1, and c-Myc may be part of a contribution of 

asymmetric distribution toward overall regulation of GC outcomes.

Finally, although the principal focus of this review is on the B lineage in humoral immunity, 

the nature of the GC reaction warrants mention of the follicular T cells – both follicular 

helpers (conventional Tfh) and FoxP3-expressing CXCR5+ regulator cells in the GC (Chung 

et al., 2011; Linterman et al., 2011; Wollenberg et al., 2011). To the extent that Tfh cells are 

essential for supporting strong antibody responses, early work with T lineage-specific loss of 

function experiments show that mTOR in T cells promotes humoral immunity (Delgoffe et 

al., 2011; Lee et al., 2010). Intriguingly, the transcriptional repressor Bcl6, stably high 

expression of which is the hallmark of Tfh and GCB cells, appear directly to inhibit 

expression of glycolytic genes, but with the potential for distinct programs depending on 

expression of T-bet and antagonism of the Bcl6 effect (Oestreich et al., 2014). A spate of 

recent papers has documented requirements for mTORC1 and mTORC2 in the aggregate 

follicular CD4+ T cell populations (Ray et al., 2015; Zeng et al., 2016). Recent work 

modeling the impact of T-follicular regulatory (Tfr) cells on Tfh cells and B cells in vitro 
suggests that Tfr cells may suppress IgG1 production stemming from activated B cells by 

altering Myc expression and the mTOR pathway (Sage et al., 2016). How these will connect 

to emerging aspects of the nutrient milieu as it impacts co-localized B and T cells in the 

hypoxic Light Zone remains to be determined. Moreover, perhaps in part due to the technical 

challenges posed by the inability to propagate follicular dendritic cells in vitro, little is 

known about the relationship between metabolism and these organizers of the GC and its 

Light Zone.

Transcriptional regulation of B cell metabolism

Transcriptional regulation of early B cell differentiation is relatively well understood, 

whereas our understanding of the genetic programs that direct peripheral B cell fate 

decisions is a work in progress and often involves relationships of reciprocal antagonism. 

Initial B cell activation results in cell cycle entry, migration to T cell-rich regions and the 

induction of co-stimulatory molecules to recruit T cell help and undergo clonal expansion. 

Thus, the stages of B cell activation and differentiation in T cell-dependent responses are 

temporally and spatially distinct and involve the outcome of multiple receptor-ligand 

interactions. These stages also reflect metabolic needs that evolve depending on proliferation 

status and cell fate commitment (e.g. memory B versus plasma cell). Initial recognition of 

antigen by the BCR promotes cell cycle entry and an increase in cell biomass. Efficient 

progression through the cell cycle to drive clonal expansion in the context of the GC reaction 

or extrafollicular antibody response requires costimulation via TLRs, CD40 or cytokine 

receptors (e.g. IL-4, IL-21). The individual contributions of critical B cell transcription 

factors to metabolic regulation of peripheral B cell differentiation is described below and 

represented in Table I and Figure 3.

c-Myc is a master regulator of cell proliferation and growth, promoting transcription and 

translation of key effectors in response to nutrient uptake and mTOR activation (Stine et al., 

2015). Consistently, c-Myc is essential for B cell growth and proliferation (de Alboran et al., 

2001), including positive selection of B cells in the light zone of the GC (Calado et al., 2012; 
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Dominguez-Sola et al., 2012). c-Myc-expressing cells in the GC upregulate metabolic genes 

associated with nutrient sensing and glycolysis (Dominguez-Sola et al., 2012). c-Myc is only 

expressed in a small fraction of light zone B cells, and apparently must overcome or avoid 

repression by Bcl6 (Calado et al., 2012; Dominguez-Sola et al., 2012; Shaffer et al., 2000). 

Interestingly, c-Myc induces the transcription factor Activator Protein 4 (AP4) to maintain 

IL-21 signaling and transit to the dark zone of the GC (Chou et al., 2016). Underscoring the 

impact and regulation of c-Myc, threshold-based signaling confers c-Myc function during 

clonal expansion and fate determination (Heinzel et al., 2017).

The IRF4 transcription factor is expressed at low concentrations in resting B cells where it 

promotes survival, and is rapidly upregulated in accordance with the strength of signal 

provided by cytokines, TLR ligands or antigen stimulation. IRF4 is essential for plasma cell 

differentiation and commitment to the GC response (De Silva and Klein, 2015). While IRF4-

dependent metabolic regulation has not been directly addressed in B cells, in T cells IRF4 

has been shown to be repressed by rapamycin treatment and regulate genes that promote 

glucose uptake and the glycolytic response, while oxidative phosphorylation is not directly 

affected (Man et al., 2013; Yao et al., 2013). Many of the IRF4 target genes in this context 

bear AP1–IRF4 composite sites and thus may be co-regulated by c-Myc (Man et al., 2013). 

While IRF4 is not widely expressed in the GC, a small fraction of IRF4+ cells co-expressing 

c-Myc are present and may represent progeny of asymmetric division destined to become 

plasmablasts (Calado et al., 2012; Dominguez-Sola et al., 2012; Lin et al., 2015; Ochiai et 

al., 2013).

In M2 macrophages, IL-4 also promotes Irf4 expression and glycolysis but in an mTORC2-

dependent manner, acting in parallel with STAT6-dependent induction of Irf4 (Huang et al., 

2016). By contrast, IL-4 induces Glut1 upregulation and glycolysis in a STAT6-dependent 

but PI3K-independent manner (Baracho et al., 2014; Dufort et al., 2007). The glycolytic 

STAT6 target genes remain to be identified but could include Pkm2 (Sajic et al., 2013), 

which catalyzes the final and irreversible step of glycolysis in the production of pyruvate and 

ATP. IRF4 also collaborates with STAT3 to drive IL-21 responses and plasma cell formation 

via Prdm1 (Kwon et al., 2009), but regulation of metabolic genes has not been addressed.

Similar to IRF4, c-Rel is rapidly upregulated upon activation and in fact drives Irf4 
expression (Grumont and Gerondakis, 2000). Translocation of c-Rel is PI3K-dependent and 

forced expression of c-Rel can compensate for impaired PI3K signaling (Matsuda et al., 

2009). Recent studies have shown that c-Rel drives a broad metabolic program that is 

required to support the energetic and biosynthetic needs of rapidly proliferating GC B cells 

(Heise et al., 2014). c-Rel translocation only occurs is a small fraction of GC B cells, likely 

reflecting those receiving T cell help in the form of CD40 stimulation (Basso et al., 2004).

The recent findings that the light zone of the GC is a hypoxic environment introduces a new 

contributor to B cell selection and metabolism (Abbott et al., 2016; Cho et al., 2016; 

Jellusova et al., 2017). Hypoxia inducible factors 1 and 2, regulated by stabilization of 

HIF1α or HIF2α, respectively, drive the glycolytic program through the induction of 

aldolase A (ALDA), phosphoglycerate kinase 1 (PGK1), and the M2 isoform of pyruvate 

kinase (PKM2) (Semenza et al., 1994). Moreover, PKM2 also functions as a co-activator of 
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HIF1α to effect a positive feedback loop that amplifies the glycolytic program (Luo et al., 

2011). Anabolic growth and respiration may be restrained given that HIF expression inhibits 

mTORC1 and c-Myc activity (Cho et al., 2016; Zhang et al., 2007). With respect to the 

latter, c-Myc and HIF both drive glycolysis (Gordan et al., 2007), but HIF represses the 

Krebs cycle and respiration by inducing the expression of pyruvate dehydrogenase kinase 1 

(Kim et al., 2006), and c-Myc has the unique property of promoting mitochondrial 

biogenesis (Li et al., 2005). Hypoxia may also promote plasma cell differentiation (Abbott et 

al., 2016), which would be consistent with Irf4 being a HIF-regulated gene (Man et al., 

2013; Yao et al., 2013). These collective findings provide the first insights into the 

complexities and likely dynamic regulation of GC B cell metabolism by hypoxic versus 

normoxic conditions.

The Bcl6 transcription factor is associated with and required for GC B cell identity and the 

unique processes therein, consistent with its induction by IL-21 (Linterman et al., 2010; 

Zotos et al., 2010). It is also an obligatory target of downregulation by the transcription 

factor Blimp1 to effect the plasma cell differentiation program (Mendez and Mendoza, 

2016). Bcl6 has been noted to suppress the glycolysis pathway in macrophages (Oestreich et 

al., 2014), and thus may counter HIF activity in addition to c-Myc in the GC.

The transcription factors Bach2, Pax5 and Foxo1 act in concert with Bcl6 and antagonize 

plasma cell differentiation (Recaldin and Fear, 2016), whereas E2A and E2-2 transcription 

factors are required to drive the GC reaction as well as plasma cell differentiation (Gloury et 

al., 2016; Quong et al., 1999; Wohner et al., 2016) (Table 1). The contribution of these 

factors to cellular metabolism in B cells remains to be elucidated. That said, Pax5 has 

recently been shown to repress energy metabolism in early B cells (Chan et al., 2017), and 

Foxo1 is known to counter Myc activity in other cell types (Wilhelm et al., 2016), so 

extrapolation from these studies may be helpful in future studies of mature B cell 

metabolism.

Metabolic reprogramming of antibody producing cells

Unlike T cells, the end of the line(age) for B cells involves a fundamental self-reinvention 

from which non-cycling plasma cells arise after a transitional period as plasmablasts. This 

terminal differentiation event, programmed by the transcription factors Blimp-1 and IRF4 

along with silencing of the B cell-defining Pax5 transcription factor (Table I), restructures 

the cells and their economy for the single-minded purpose of industrial-scale secretion of 

glycosylated antibodies. With IgH and IgL transcripts constituting ~95% of their mRNA, 

these cells rich in rough endoplasmic reticulum need a reprogrammed endoplasmic 

reticulum (ER) stress response, in part through Blimp1-regulated XBP-1, a component of 

one of the trio of pathways sensing and dealing with unfolded protein. It should be noted 

that there are probably multiple programs and types of plasma cells, and the needs of 

plasmablasts (still cycling and dividing, and yet already secreting antibodies) will differ 

from those of plasma cells. Thus, beyond the challenge of elucidating what differs between 

the short- and long-lived plasma cell (SLPC and LLPC, respectively), there likely will be 

differences based on anatomic site (e.g., intestinal vs nasal or BALT vs marrow), and the 

anatomic sites or plasma cell niches may differ in their concentrations of oxygen tension and 
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other nutrients. Whatever the site, the nature of the plasma cell requires both substantial 

energy for all the glycoprotein synthesis and large supplies of carbon and amines for the 

export economy. Nonetheless, the potential implications are vast should it be that aspects of 

programming the LLPCs devoted to persistent production of pathological auto-antibodies 

differ from those that are protective against pathogens or promote a healthy relationship with 

one’s microbiome.

Inasmuch as the longevity of LLPC and the persistence of their production of protective 

antibodies are essential for the efficacy of most vaccines, what supports these qualities is a 

vital issue. In an approach analogous to work on memory lymphocytes, a complex role for 

autophagy has been inferred from loss-of-function analyses with the mouse Atg5 gene 

(Pengo et al., 2013). In the short run, this means of crippling autophagy leads to increased 

rates of antibody section from plasma cell populations, but over a longer period ATG5-

deficient LLPC exhibit a progressive decline. If analogous to findings with B cell memory, 

reduced lifespan might be attributable to a weaker capacity to perform quality-control on 

mitochondria (Chen et al., 2014; Chen et al., 2015). The involvement of autophagy in 

lysosomal generation of amino acids to provide for Rheb and mTORC1 activity might 

represent an alternative mechanism, but evidence for this possibility is lacking. A second 

mechanism, which may be metabolism-related, emerged from conditional loss-of-function 

experiments with the pro-survival Bcl2 superfamily member Mcl-1 (Peperzak et al., 2013; 

Vikstrom et al., 2010). Inasmuch as there are biochemical studies that point to regulation of 

Mcl-1 amounts by GSK3 and in turn by nutrient supply (Maurer et al., 2006; Zhao et al., 

2007), it is tempting to extrapolate a connection between Mcl-1 and the findings with GSK3 

depletion (Jellusova et al., 2017). Finally, recent work indicates that continued expression of 

Blimp-1 and IRF4 is vital for maintenance of plasma cells and Ig secretion that evolved in a 

setting devoid of T cells (Tellier et al., 2016). Intriguingly, the plasma cells remaining after 

loss of Blimp-1 expressed lower concentrations of mRNA encoding several amino acid 

transporters and less mTORC1 activity.

Finally, recent work in which mitochondrial uptake of pyruvate is crippled by inactivation of 

the Mpc2 gene encoding pyruvate carrier protein subunit also launches some metabolic 

tracing insights pertaining to durable plasma cell survival. While technical issues pose big 

challenges in the area, a new line of work provided evidence that LLPC have both greater 

mitochondrial respiration and reserve capacity than SLPC (Lam et al., 2016). LLPC also had 

higher labeling with the glucose analogue than SLPC, but metabolic tracing analyses 

indicated that most of the carbon from glucose was devoted to synthesis of the sugars needed 

for glycosylation of the antibodies produced by these cells rather than to feeding Krebs TCA 

Cycle. While glutamine utilization will be important to understand in this setting, it appears 

that fatty acid oxidation is a major component of the respiratory needs (ibid), which is not 

apparent in B cells. In summary, systematic analyses in this area are at an early part of dawn.

Challenges & future prospects

This review and its companion articles in this Issue of Immunity highlight the substantial 

evidence that external nutrient and micro-environmental conditions in concert with cell-

intrinsic (internal) reorganization of metabolism and sensor pathways condition immunity. 
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In the case of humoral immunity, the body of work with B cells is as yet far less extensive or 

developed than that with T cells. Accordingly, the simplest prospect for the future is for the 

extent of analyses with B lineage cells to be filled in as much as for T cells. First steps 

toward filling this need include tracing the flows of carbon and nitrogen in the anabolic and 

energetic economies of these cells that ultimately yield protective and pathological 

antibodies. However, the findings underscore a number of areas in which fundamental 

insights and even the tools needed to start to investigate key questions are all lacking. 

Among the foremost of the challenges is that although T cell help and GC processes are so 

powerful as determinants of the vigor of humoral immunity and of pathogenic 

autoantibodies, there is no in vitro means of truly approximating key aspects of the GC.

Following from studies in stem and cancer cells (Carey et al., 2015; Oldham et al., 2015; 

Thienpont et al., 2016), the potential for mechanistic links between intracellular metabolites 

to effect meaningful, stable, and heritable (as cells divide) changes in the transcriptional 

networks that create (meta)stable epigenetic states needs to be elucidated. Initial efforts in 

this general area are already stirring but will only intensify and become more rigorous. The 

actual (not just relative) concentrations of αKG - a cofactor enhancing activity of histone 

lysine demethylases and TET enzymes that can drive loss of CpG methylation – and the 

inhibitors succinate and stereo-isomers of 2-hydroxyglutarate (Oldham et al., 2015; 

Tannahill et al., 2013; Tyrakis et al., 2016) need to be determined. Their subcellular 

localization and net effect on the various dioxygenase enzymes that can impact immunity – 

among them, prolyl hydroxyl dioxygenases that regulate HIF stabilization as well as the 

Jumonji lysine demethylases and TET proteins – are as yet not known. Examples of the 

possibilities also include pools of acetyl-CoA for histone acetylation. For all of these 

processes, finally, it will be essential to measure the rate at which change is effected under 

physiological conditions. As noted in the previous paragraph, an added challenge is posed 

by the inability of in vitro approaches to model the cycling and regulation of GC B cells, 

since such experiments provide crucial control over environmental conditions.

As such, a second pressing need on the frontier is the unmet need to be able to measure what 

actually is the composition of extra-cellular (interstitial) and single-cell micro-environments. 

At present, single-cell technologies for analysis of nucleic acids after amplification permit 

bioinformatic estimates to correlate DNA and histone modifications with concentrations of 

RNA expressed in cells of defined phenotype. However, technical capabilities are needed for 

measurements of metabolically relevant molecules outside cells (e.g. glucose, glutamine, 

lactate, et alia) and to distinguish various micro-anatomic niches (e.g., LZ vs DZ). 

Moreover, phenotypic lag and post-translational regulation of enzyme activities highlight the 

desirability of measurements of such proteins’ functions in cells. Ironically, work far ahead 

of its time had applied cyclical amplification to measurements of enzyme activities or post-

translational modifications (Henriksson et al., 1986; Henriksson et al., 1988; Manchester et 

al., 1994). Moreover, the virtues of 2-deoxyglucose as a clinically useful probe to estimate 

regions of high glucose utilization point to the value of having further in vivo probes, 

eventually to be applied even in real time. This incomplete set of brushstrokes hints at a 

picture whose development will require substantial technological advances and high spatial 

resolution. Excitingly, though, the fact that manipulations of these processes can alter 

immune function or pathology indicates that we are only at the beginnings of the story even 
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after starting the second hundred years of immunology as an organized discipline whose 

findings illuminate work in most areas of human health and disease.
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Figure 1. The carbon economy – fuel and build
A schematic of the concepts and salient details outlined in the main text. (A) Both during 

quiescence and after activation and during growth, B cells need to balance the utilization of 

nutrients so as to generate ATP while also using portions of the uptake supply to provide 

building blocks for new molecule synthesis. As discussed in the text, the energy and atoms 

also get used for regulatory modifications such as histone post-translational modification by 

acetylation or methylation, or as cofactors of dioxygenases involved in HIF stabilization or 

the editing of chromatin methylation. Anabolic processes require both energy (ATP and GTP 

used in glycosylation as well as protein, lipid, and nucleic acid synthesis and the importation 

of sufficient building blocks. (B) Three major categories of fuel source are shown, along 

with some (but not all) of the branch points in their utilization. The plasma membrane is 

symbolized by an intermittent dotted line, in which nutrient importers are shown in 

simplified form (For instance, many can operate bi-directionally; some operate with export 

coupled to the import process shown). The mitochondrion is shown as a blue-bordered box, 

with only the Krebs cycle shown from among its many functions. Abbreviations: MCT, 

monocarboxylate transporter; LDH, lactate dehydrogenase; G6P, glucose-6-phosphate; 

ACLY, ATP-citrate lyase; PDH, pyruvate dehydrogenase; Ac-CoA, acetyl-Coenzyme A; 

αKG, alpha-ketoglutarate, also known as 2-oxoglutarate; TCA, tricarboxylic acid; GLS, 

glutaminase; ASCT2, Alanine, serine, cysteine-preferring transporter 2 (SLC1A5); LAT1, L-

type amino acid transporter 1 (SLC7A5); NEAA, non-essential amino acids.
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Figure 2. (A) A simplified view of cell surface receptors mediating B cell homeostasis and 
activation
For convenience, the PI 3-kinase activation is highlighted, as naïve & activated B cells are 

combined, along with helper T cells. Collaboration of BAFF-R, BCR and CD19, as noted in 

the text, are schematized. (B) A simplified diagram of signaling pathways linking surface 
receptors and metabolism in B cells. At the top level, multiple inputs into the 

phosphoinositide 3-kinase (PI3K) pathway from antigen (Ag) receptor, costimulators, and 

cytokine receptors are shown, along with PTEN conversion of phosphatidylinositol 4, 5-

biphosphate (PIP2) to phosphatidylinositol 3, 4, 5-triphosphate (PIP3). The dual lipid-

protein phosphatase PTEN (Phosphatase and tensin homolog) restrains the pathway. Antigen 

receptor signaling also includes activation of protein kinases C (PKC). PDK1, phospho-

inositide-dependent kinase 1; TSC, tuberous sclerosis complex; GSK, glycogen synthase 

kinase; WNT, Wingless-related integration site; AMPK, AMP-activated kinase.
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Figure 3. Transcriptional regulation of B cell metabolism
Schematic shows initial B cell activation by antigen and T cell help leading to the 

upregulation (green) and downregulation of key transcription factors. Events in the germinal 

center are dynamic as B cell traverse between selection in the hypoxic light zone (LZ) and 

proliferation in the dark zone (DZ). In the LZ, B cells retrieve antigen from follicular 

dendritic cell-bound antigen for presentation to TFH cells that reciprocate by providing 

cytokine support in the form of CD40L, IL-4 and IL-21. These cytokines induce the 

expression of select transcription factors that drive aspects of the metabolic program. The 

transcription factors c-Myc, HIF and STAT6 promote expression of glycolytic genes, 

whereas Bcl6 suppressed the transcription of some of the same target genes. HIF inhibits c-

Myc activity which, among other events, would impair transcription of AP4 target genes.
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