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Abstract

It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the 

study of engagement has been stymied by a lack of valid and efficient measures. We introduce the 

advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained 

temporal resolutions. The AAA measurement approach is grounded in embodied theories of 

cognition and affect, which advocate a close coupling between thought and action. It uses 

machine-learned computational models to automatically infer mental states associated with 

engagement (e.g., interest, flow) from machine-readable behavioral and physiological signals (e.g., 

facial expressions, eye tracking, click-stream data) and from aspects of the environmental context. 

We present15 case studies that illustrate the potential of the AAA approach for measuring 

engagement in digital learning environments. We discuss strengths and weaknesses of the AAA 

approach, concluding that it has significant promise to catalyze engagement research.
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In the popular 1999 Hollywood film The Matrix, the character Trinity learns to fly a 

helicopter in a matter of seconds by downloading the training program directly into her 

brain. Another character, Neo, learns Kung-Fu in much the same way. If only learning could 

be this efficient and effortless. Alas, most meaningful learning takes considerable time and 

effort (but see Shibata, Watanabe, Sasaki, and Kawato (2011) who appear to have made 

initial progress towards Matrix-style learning). It also requires sustained engagement, a point 

widely recognized by researchers, practitioners, and policy-makers (Loveless, 2015; PISA, 

2012). Researchers have also made significant advances in conceptualizing student 
engagement or academic engagement as a complex multi-componential, multitemporal 

construct involving a diverse range of phenomena, such as momentary affective states of 
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interest and enjoyment to long-term dispositions about school (Christenson, Reschly, & 

Wylie, 2012; Linnenbrink-Garcia & Pekrun, 2011; Sinatra, Heddy, & Lombardi, 2015). 

Unfortunately, methodological advances have lagged theoretical developments (Azevedo, 

2015; Sinatra et al., 2015). Traditional measures of engagement include self-report 

questionnaires, experience-sampling methods, online observations, video coding, teacher 

ratings, and discourse analysis (Fredricks & McColskey, 2012; Henrie, Halverson, & 

Graham, 2015). Methodological advances have so far been limited to iterative refinement of 

traditional measures or combining methods (Greene, 2015). In our view, radical 

improvements require a qualitatively different measurement approach.

The digital revolution has fundamentally transformed how students engage in learning. In 

parallel, a new and exciting digital measurement approach is emerging as a viable 

complement to traditional measures. This approach uses advanced computational techniques 

for the analytic measurement of fine-grained components of engagement in a fully 

automated fashion. This advanced, analytic, and automated (AAA) measurement approach is 

theoretically-grounded in the embodied affective and cognitive sciences, while its 

methodological footing stems from the fields of digital signal processing and machine 

learning. The AAA approach espouses measures that are fine-grained and contextually 

coupled with unfolding learning events, so these measures can answer questions about why a 

learner is engaged, what an engaged interaction looks like, and how engagement changes 

over time. This information, in turn, can be used to develop interventions that dynamically 

respond to periods of waning engagement, thereby facilitating change in tandem with 

measurement.

We believe that AAA-based measures fill a critical gap in educational measurement. 

Contributors to a recent special issue of Educational Psychologist on “The Challenges of 

Defining and Measuring Student Engagement in Science” highlighted the need for new and 

innovative measures of engagement, especially micro-level measures to complement existing 

macro-level measures. For example, in their introductory article, the guest editors Sinatra et 

al. (2015) noted, “Also absent [from the special issue] are studies using more micro-level 

analyses of engagement such as eye tracking, physiology measures, and even brain imaging 

work” (p. 15). Such measures have been in development for over a decade in specialized 

research areas (e.g., affective computing and augmented cognition) that might be unfamiliar 

to most educational psychologists. However, an interdisciplinary approach is precisely what 

is needed to catalyze innovation in measurement of a complex construct like engagement. 

This point is aptly made by Azevedo (2015) in his commentary on the special issue and his 

perspective on the future of the field: “It is important to explicitly highlight that the first path 

[to develop an overarching and unifying theoretical framework to account for the majority of 

critical elements of the construct] is challenging and that many researchers may not be 

willing to pursue it for a variety of reasons (…). Such a challenge will require 

interdisciplinary research efforts currently witnessed in several fields” (p. 88). We respond to 

this call to action by providing an accessible introduction, selective review, and analysis of 

the AAA measurement approach that has emerged at the intersection of the psychological 

and computing sciences.
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What is Engagement?

A scientific definition of engagement remains elusive. Reschly and Christenson (2012) note 

that the term engagement has been used to describe diverse behaviors, thoughts, perceptions, 

feelings, and attitudes, and at the same time, diverse terms have been used by different 

authors to refer to similar constructs. Theorists generally agree that engagement is a 

multidimensional construct, although the number and nature of the dimensions are unclear. 

Fredricks, Blumenfeld, and Paris (2004) proposed three components of engagement. 

Emotional engagement encompasses feelings and attitudes about the learning task or 

learning context, such as feelings of interest towards a particular subject, teacher (Renninger 

& Bachrach, 2015), or general satisfaction about school. Behavioral engagement broadly 

refers to learners’ participation in learning, including effort, persistence, and concentration. 

Cognitive engagement pertains to learners’ investment in the learning task, such as how they 

allocate effort toward learning, and their understanding and mastery of the material.

Reeve and Tseng (2011) recently suggested a fourth dimension: agentic engagement, 

characterized by learners proactively contributing to the learning process. Alternatively, 

Pekrun and Linnenbrink-Garcia (2012) proposed a five component model that includes 

cognitive (e.g., attention and memory processes), motivational (e.g., intrinsic and extrinsic 

motivation), behavioral (e.g., effort and persistence), social-behavioral (e.g., participating 

with peers), and cognitive-behavioral (e.g., strategy use and self-regulation) aspects of 

engagement.

We can trace the diverse components of engagement to different theoretical traditions. 

Theories of motivation, including self-determination theory (Deci & Ryan, 1985; Ryan & 

Deci, 2000), expectancy-value theory (Eccles & Wigfield, 2002), and self-efficacy theory 

(Bandura, 1986, 1997; Schunk & Pajares, 2005), focus on precursors of engagement, such as 

self-efficacy, interest in and value of a learning activity, autonomy, and the alignment 

between skill and challenge. Cognitive theories focus instead on the extent to which the 

learning activity engages the cognitive system (Eastwood, Frischen, Fenske, & Smilek, 

2012). For example, the Interactive-Constructive-Active-Passive (ICAP) framework 

proposes four levels of cognitive engagement based on the level of interactivity afforded by 

the learning activity (Chi & Wylie, 2014). The levels, in decreasing order of expected 

engagement and learning, are Interactive (e.g., reciprocal teaching), Constructive (e.g., self-

explanation), Active (e.g., verbatim note taking), and Passive (e.g., viewing a lecture). 

Author (year) extend ICAP to ICAP-A (attention) by suggesting that attentional control 

follows a similar pattern in that learners will maximally attend to interactive tasks and 

minimally to passive tasks (i.e., I > C > A > P). Finally, affective theories, including the 

control-value theory of academic emotions (Pekrun & Linnenbrink-Garcia, 2012), the 

assimilation-accommodation framework (Fiedler & Beier, 2014), and discrepancy-

interruption and goal appraisal theories (Author, year; Mandler, 1990; Stein & Levine, 1991) 

emphasize the role of physiological arousal and cognitive appraisal in triggering emotions 

during learning and on the influence of affect on cognition and instrumental action.

Thus, engagement has emerged as a broad and complex construct pertaining to diverse 

aspects of the educational experience (e.g., showing up, completing homework, feelings of 
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belongingness, graduating) and across multiple time scales (e.g., momentary affective 

episodes, stable dispositions such as general disengagement with school, and life-altering 

outcomes like dropping out of school). As Eccles and Wang (2012) note, these broad all-

encompassing definitions make the construct more accessible for policy-makers and the 

educated lay person, but less useful for scientific research where precise definitions are of 

greater value, especially when it comes to elucidating cause and effect relationships. Thus, 

measuring “general” engagement might be as theoretically diffuse as measuring “cognition” 

or “emotion.” It may be more fruitful to study specific aspects of this complex construct 

with an eye for broader assimilation across measures.

In this vein, Sinatra et al. (2015) conceptualize engagement along a continuum, anchored by 

person-oriented perspectives at one extreme, context-oriented at the other, and person-in-

context in between. Person-oriented perspectives focus on the cognitive, affective, and 

motivational states of the student at the moment of learning and are best captured with fine-

grained physiological and behavioral measures (e.g., electrodermal activity, facial 

expressions, actions). The context-oriented perspective emphasizes the environmental 

context as the analytic unit. Here, the focus is on macro-level structures like teachers, 

classrooms, schools, and the community, rather than the individual student. Finally, the 

intermediate-grain size, person-in-context perspective conceptualizes engagement at the 

level of the interaction between student and context (e.g., how students interact with each 

other or with technology).

We adopt a multi-componential perspective. For this we operationalize engagement in terms 

of affective states, cognitive states, and behaviors that arise from interactions with the 

learning environment. We conceptualize engagement as a goal-directed state of active and 

focused involvement in a learning activity. It is temporally constrained in that we are 

concerned with the state (not trait) of engagement across micro-level time scales ranging 

from seconds to minutes. Thus, our operationalization of engagement, and the AAA 

measurement approach derived from it, aligns with the person-oriented level of analysis of 

Sinatra et al. (2015). We should clarify that the term person-oriented does not imply that 

engagement is stable over time; rather, it refers to a micro-level analysis centered on the 

thoughts, feelings, and behaviors that emerge from a person’s interaction with his or her 

environment. It is also distinct from a person-in-context level of analysis because the focus 

is on the person rather than his or her interaction with the environment.

Contemporary Engagement Measures

The most widely used measures of engagement are self-report questionnaires; see Fredricks 

and McColskey (2012); Greene (2015); Henrie et al. (2015) for reviews. Although relatively 

inexpensive, easy to administer, and generally reliable, questionnaires have well-known 

limitations (Author, year; Krosnick, 1999). For instance, when endorsing items, respondents 

must compare the target (e.g., a teacher rating a student, a student rating himself or herself) 

to some implicit standard, and standards may vary from respondent to respondent. To one 

student, “I am a hard worker” may be exemplified by doing five hours of homework each 

day; for others, the same statement may be exemplified by simply showing up for class. For 

both informant-report and self-report questionnaires, biases that arise from heterogeneous 
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frames of reference reduce validity (Heine, Lehman, Peng, & Greenholtz, 2002). For self-

report questionnaires, social desirability bias is another important limitation (Krosnick, 

1999), both when respondents aim to appear admirable to others and also when they inflate 

responses to preserve their own self-esteem. Likewise, memory recall limitations and 

acquiescence bias can influence self-reports, and halo effects can influence informant-

reports (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).

Several non-questionnaire engagement measures have also been developed. Examples 

include experience-sampling methods (ESM) (Csikszentmihalyi & Larson, 1987), day 

reconstruction (Kahneman, Krueger, Schkade, Schwarz, & Stone, 2004), and interviews 

(Turner & Meyer, 2000). However, because they still rely on self- and informer-reports, they 

are subject to similar biases as questionnaires.

Observational methods are an attractive alternative to self- and informer-reports because 

they are arguably more objective (Nystrand & Gamoran, 1991; Pianta, Hamre, & Allen, 

2012; Renninger & Bachrach, 2015; Ryu & Lombardi, 2015; Volpe, DiPerna, Hintze, & 

Shapiro, 2005). Unfortunately, these methods entail considerable human effort, which might 

not be a major limitation for small scale studies, but poses a significant challenge for 

repeated long-term measurement at scale. Further, observations cannot be conducted in some 

learning contexts, such as students’ homes.

Researchers have attempted to circumvent some of the limitations of observational methods 

by combining automated data collection with semi-automated or manual data coding. For 

example, the Electronically Activated Recorder (EAR) is a device that randomly samples 

audio clips in naturalistic environments (Mehl, Pennebaker, Crow, Dabbs, & Price, 2001). 

Data collection with the EAR is efficient and cost-effective; however, the data still need to 

be transcribed and coded by humans, which increases cost and reduces scalability. Similarly, 

engagement can be coded from videos by researchers (Author, year) or even teachers 

(Author, year), but video coding is a labor- and time-intensive effort.

Finally, engagement can be adduced from academic and behavior records, such as 

homework completion, absences, achievement test scores, and teacher ratings of classroom 

conduct (Lehr, Sinclair, & Christenson, 2004; Skinner & Belmont, 1993), but these 

measures are limited in what they can reveal about engagement at the micro-analytic level 

espoused here.

The Advanced, Analytic, Automated (AAA) Measurement Approach

An AAA-based measure provides continual assessments of person-oriented components of 

engagement at a fine-grained temporal resolution, all with no human involvement. These 

measures have several advantages over counterparts. They are uniquely suited to track 

person-oriented components of engagement since they operate at fine-grained time scales 

ranging from seconds to a few minutes. They are more objective because computers provide 

the measurements, thereby partially obviating reference, social desirability, acquiescence, 

and other biases associated with self- and observer-reports. AAA-based measures are also 

unaffected by momentary lapses in attention or by fatigue, as can occur with humans. They 
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vastly reduce time and effort, which is a limitation of ESM, day-reconstruction, video 

coding, and observations.

In this paper we introduce the theoretical and methodological foundation of the AAA 

approach, highlight exemplary AAA-based measures, and analyze the approach and 

measures derived from it. To keep the scope manageable, we emphasize measures that are 

nonintrusive, cost-effective, and are usable in the near-term. These include analyzing 

machine-readable aspects of a learning session, such as log files recorded during interactions 

with digital learning environments, facial features, eye gaze, and physiology. Several of 

these signals have a long history in the psychological sciences, including the measurement 

of cognitive engagement (Miller, 2015). However, they have mainly been used as passive 

data sources that humans analyze offline. The AAA approach stands apart because it 

combines machine-sensing and machine-analysis to provide measurement that is real-time 

and fully-automated.

Theoretical and Methodological Foundations

We ground the AAA measurement approach in the aforementioned person-oriented 

operationalization of engagement as the momentary affective and cognitive states that arise 

throughout the learning process. Embodied theories of cognition and affect posit that these 

mental states manifest in the body in multiple ways because cognition and affect are in the 

service of action and bodies are the agents of action (Barsalou, 2008; deVega, Glenberg, & 

Graesser, 2008; Ekman, 1992; Niedenthal, 2007; Russell, Bachorowski, & Fernandez-Dols, 

2003). For example, there is increased activation in the sympathetic nervous system during 

fight or flight responses (Larsen, Berntson, Poehlmann, Ito, & Cacioppo, 2008). Similarly, 

there are well-known relationships between facial expressions and affective states (Ekman, 

1984; Keltner & Ekman, 2000; Matsumoto, Keltner, Shiota, O’Sullivan, & Frank, 2008), for 

example the furrowed brow during experiences of confusion (Author, year; Darwin, 1872). 

Researchers have also identified bodily/physiological correlates of cognitive states like 

attention and cognitive load. Eye movements are an invaluable tool to investigate visual 

attention due to the so called eye-mind link (Deubel & Schneider, 1996; Hoffman & 

Subramaniam, 1995; Rayner, 1998), while electroencephalography (EEG) can index mental 

workload via a brain-mind link (Berka et al., 2007). The mind-body link suggests that 

observable bodily responses can be used to infer unobservable mental states, which is at the 

heart of the AAA measurement approach.

Here’s the basic assumption: cognitive and affective states reflecting different components 

of engagement are associated with responses at multiple levels (neurobiological, 

physiological, bodily expressions, overt actions, metacognitive, and subjective), which in 

turn influence the states themselves in a form of circular causality (Lewis, 2005). Some of 

these responses are implicit (e.g., neurobiological, some physiological changes) in that they 

occur outside of conscious awareness, while others are more explicit (e.g., metacognitive 

reflections, subjective feelings). The states are modulated by individual differences as well 

as contextual, social, and cultural influences (Elfenbein & Ambady, 2002; Kappas, 2013; 

Mesquita & Boiger, 2014).
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Some of these responses are detectable by machine sensors and human observers, but others 

are only accessible to the self. In particular, external observers only have access to visible 

behaviors (e.g., facial expressions, gestures, actions), information on the environmental 

context, and physiological changes (e.g., respiration rate), and must rely more heavily on 

inference to decode a person’s mental state (Mehu & Scherer, 2012). In contrast, the self has 

privileged access to subjective feelings, memories, meta-cognitive reflections, and some 

physiological changes, but not to other responses (e.g., involuntary expressions and 

neurobiological changes).. Machine sensors can measure neurobiological, bodily, 

physiological, and action-oriented responses beyond what is available to humans (e.g., 

thermal cameras, electroencephalogram), but they cannot infer the mental state from the 

measurements nor can they interpret contextual cues on par with humans. Thus, the core 

problem faced by machines is to infer the latent mental states associated with engagement 

(e.g., concentration, interest) from machine-readable signals and from aspects of the 

environmental context.

AAA measurement begins when sensors record low-level signals. Signals are then processed 

to obtain high-level abstractions, called features. For instance, a video is the signal recorded 

from a web-cam (the sensor). Sample features, computed by applying computer vision 

techniques to video, include activations of specific facial muscles (also called action units, 

such as inner brow raise or lip pucker (Ekman & Friesen, 1978)), facial textures, and head 

position and orientation (Pantic & Patras, 2006; Valstar, Mehu, Jiang, Pantic, & Scherer, 

2012). Similarly, digital signal processing techniques in the speech domain (Eyben, 

Wöllmer, & Schuller, 2010) are used to extract paralinguistic (also called acoustic-prosodic) 

features such as pitch and amplitude from an audio signal recorded with microphones (the 

sensor). Researchers can also use this paradigm to analyze spoken content; in this case 

they’ll leverage automatic speech recognition and natural language understanding 

techniques. In general, signal processing methods (denoising, filtering, smoothing, feature 

extraction, etc.) are required to compute features from the raw signals (see Author, year; St. 

John, Kobus, Morrison, and Schmorrow (2004) for details on these methods).

The next step in the AAA measurement approach entails inferring mental states from the 

corresponding features. This is done with machine learning, which prescribes methods to 

learn a program (or computational model) from data (Domingos, 2012). Machine learning 

has many subfields, of which supervised learning is most widely used in the AAA approach. 

Supervised learning (see Figure 1) requires training data, consisting of features (extracted 

from signals recorded by sensors as noted above) along with temporally synchronized 

annotations of mental states (e.g., from self-reports or observer judgments), collected at 

multiple points in a learning session. In a training phase, supervised learning methods 

automatically model (learn) the relationship between the features and human annotations to 

yield a computational model. The degree of overlap between the model-generated and 

human-provided annotations is assessed in a validation phase. The model can then take 

sensor data collected at some future time and/or from a new set of students and 

automatically generate estimates of mental states without needing human annotations.

The computational model can take on many forms depending on the supervised learning 

method. Selecting a computational model is a design decision with multiple tradeoffs - 

D’Mello et al. Page 7

Educ Psychol. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separability of feature space (i.e., data), transparency of internal representations, accuracy, 

generalizability, computational efficiency, robustness to noisy data, and others not discussed 

here. Hence, in contemplating the question of how to select an appropriate computational 
model? it is prudent to first ask, appropriate for what purpose?

One important factor involves the linear separability of the data; i.e., whether the different 

classes (e.g., bored vs. curious vs. confused) as represented in feature space can be 

discriminated by linear functions, such as lines for two-dimensional data or hyperplanes for 

higher-dimensional data. Linear models are attractive in their simplicity, but are ineffective 

when the data is non-linearly separable, which is usually the case. These situations require 

more sophisticated models; for example, support vector machines transform a non-linearly 

separable feature space into a linearly separable space by projecting it into higher 

dimensions (Cortes & Vapnik, 1995).

The added sophistication does incur a price, especially for some of the more complex 

models which have internal representations that are not inspectable. This so called “black 

box” problem is a frequent critique of machine learning. Although the concerns are valid for 

some models (e.g., neural networks), other models are much more transparent - for instance, 

models that operate by rule induction (e.g., If blink rate is high and heart rate is low then 

Boredom = high), organize rules into decision trees, or compute conditional probabilities of 

mental states given features (e.g., Probability [Boredom | {Blink rate = high and Heart rate = 

low]).

In most cases, it is sufficient to select models with inspectable representations and with 

sufficient performance. However, priorities might shift when models are intended for real-

time measurement, such as to trigger technological interventions aimed at re-engaging a 

bored learner (Author, year). Here, computational efficiency (both in terms of clock time and 

computational resources) and robustness (in the face of noisy or missing data) might take 

precedence over transparency and performance.

This leads to another issue: how to quantify performance. Given that the goal is to use the 

model to provide accurate estimates of engagement on unseen data, two key performance 

metrics are accuracy and generalizability. Accuracy (similar to convergent validity) is 

measured as the alignment between automated estimates and an external standard, typically 

self- or observer-annotations. The alignment can be quantified by a number of standard 

metrics (e.g., recognition rate, kappa, correlation). Although it is difficult to specify exact 

bounds on what constitutes “good” accuracy (as discussed in detail later on), at a minimum 

it should exceed random guessing (chance).

Generalizability is concerned with the robustness of the model when applied to data beyond 

what was used to train the model. It is usually established by dividing the data into two sets 

(A and B), training the model on one set (A or B), and testing it on its complement (B or A). 

Cross-validation is a widely used variant of this procedure in which each set serves as 

training and testing sets across multiple folds. For example, in 3-fold cross-validation, the 

data is divided into three sets A, B, and C, and folds are created as follows: Fold 1: train A 
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and B, test C; Fold 2: train A and C, test B; Fold 3: train B and C, test A. This method 

ensures that every data point is tested at least once.

The level of generalizability achieved depends on the data and how the folds are constructed. 

Instance-level validation ensures that individual cases are either in the training or testing set, 

but data points (albeit different ones) from the same person can be in both sets. The resulting 

model risks over-fitting to individual characteristics and may not generalize to new people. 

In contrast, person- or student-level validation ensures that data from the same person are 

either in the training or testing set but never both. This provides more confidence that the 

model will generalize to new people with similar characteristics. In population-level 
validation, the data are split on some population characteristic (e.g., gender) and tested on its 

complement (e.g., train males and test females, and vice versa).

Case Studies

We now discuss representative case studies featuring the AAA approach to measure person-

oriented components of engagement during learning with technology. We have selected 15 

studies to emphasize key dimensions of the measurement approach, including sensor-free vs. 

sensor-based measurement, annotations by the self vs. external observers, unimodal vs. 

multimodal sensing, lab vs. classroom research, learning activities with varying levels of 

interactivity, and different validation methods. We prioritized studies that can be considered 

as pioneering in the field, such as the first study showcasing multimodal engagement 

measurement in real-world classrooms (Arroyo et al., 2009), the first study emphasizing 

generalizability beyond the individual (Ocumpaugh, Baker, Gowda, Heffernan, & Heffernan, 

2014), or the first person-independent automated measure of mind wandering (Author, year). 

We acknowledge that our choice of case studies is both subjective and incomplete, but our 

goal is to provide an overview of a promising new approach rather than review a well-

established paradigm. We hope that the studies covered here will pique interest and inspire 

further inquiry into AAA-based measures.

Table 1 provides an overview of the studies. Despite the considerable variability, each study 

followed the basic approach discussed above and summarized in Figure 1. Step 1 consists of 

recording signals (video, physiology, log files, etc.) as students complete a learning activity 

within a particular learning context (Step 1a) followed by computing features from the raw 

signals (Step 1b). In Step 2, annotations of mental states reflecting various components of 

engagement are obtained, from the students themselves, from external observers, or via 

some other method (see Author (year) for a review of methods to annotate mental states in 

learning contexts). In Step 3, supervised learning methods computationally model the 

relationship between the features and temporally synchronized annotations. In Step 4, the 

resulting model produces computer-generated engagement estimates that are compared to 

human-provided annotations for validation.

In the interest of brevity, we discuss eight case studies below and present the remaining 

seven in Supplementary Material A. We organize the case studies by sensors used. Sensor-
free measures analyze digital traces recorded in log-files while sensor-based measures use 

physical sensors. We further categorize the sensor-based measures as sensor-light if they use 
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sensors that are readily available in contemporary digital devices (e.g., webcams, 

microphones) or sensor-heavy if they require nonstandard sensors like eye trackers, pressure 

pads, and physiological sensors (see Figure 2).

Accuracy metrics varied considerably across studies. Several studies reported recognition 

rate (RR), which is the proportion of cases where computer estimates match the human-

provided annotations and is highly flawed when there is class skew (i.e., uneven division 

among categories being discriminated) (Hayes & Krippendorff, 2007). Some studies that 

made binary discriminations (e.g., mind wandering or not) reported the area under the 

receiver operating characteristic curve as the accuracy metric (Hanley & McNeil, 1982) (AU 

ROC or AUC or A-prime, or 2AFC [two-alternative forced choice]). The ROC curve is 

obtained by plotting true-positives vs. false-positives at various decision thresholds ranging 

from 100% true positives to 100% false positives (Hanley & McNeil, 1982). The AUC 

ranges from 0.5 (chance model) to 1.0 (perfect discrimination). Studies that attempted 

categorical discriminations (e.g., focused, anxious, neutral) reported recognition rate and/or 

Cohen’s kappa, a chance-corrected metric ranging from 0 (chance) to 1 (perfect accuracy) 

(Cohen, 1960). To ameliorate these differences, we provide the percent improvement in 
accuracy above chance as a rough metric that permits comparison and aggregation across 

studies (see footnote in Table 1).

Sensor-free Measures

A person interacting with a digital learning environment leaves a rich digital trace stored in 

log-files. The logs reflect student actions in response to system queries, system feedback, 

content covered, student preferences, and so on. Sensor-free measures analyze these log-files 

without utilizing sensors beyond standard input devices (e.g., keyboard, computer mouse, 

trackpad).

Interaction patterns and contextual cues from AutoTutor—Author (year) 

developed one of the first sensor-free measures of affective engagement. They collected 

training data in a lab study where 28 students completed a 32-minute tutoring session on 

computer literacy with a natural language intelligent tutoring system (ITS) called AutoTutor 

(Graesser, Chipman, Haynes, & Olney, 2005). AutoTutor mimics human tutors by posing 

challenging questions, using hints and prompts to elicit student responses, providing 

feedback and elaborations on their responses, and summarizing answers. Students type their 

responses in conversational English. AutoTutor uses natural language processing techniques 

to analyze the response and adapts the tutorial dialog based on its assessment of student 

progress.

The researchers used an offline video-coding procedure to identify momentary episodes of 

boredom, flow, confusion, frustration, delight, and neutral (no affect). Soon after the 

AutoTutor session, students viewed videos of their faces and computer screens recorded 

during the session and self-reported their affective states at 20-second intervals indexed into 

the videos. At a later time, an untrained peer and two trained human judges assessed student 

affect at the same points in the video. Agreement between the different judges varied widely 
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(Author, year), so a majority vote was taken to reflect the affective state at each judgment 

point.

AutoTutor maintains a log file that captures the student’s response, assessments of the 

response, the feedback provided, the tutor’s next move, reaction and response times, and so 

on. The researchers computed 17 features from the log files after temporally aligning the 

logs with the affect judgments. They built supervised learning models to discriminate each 

affective state from neutral (no affect). The models were validated using 10-fold instance-

level cross-validation and achieved a mean recognition rate of 0.71, equivalent to a 41% 

improvement over chance.

This early study demonstrated the potential for measuring affective engagement from log-

file data. However, the use of instance-level cross-validation and the lab-based data 

collection protocol reduced generalizability of the measure.

Interaction patterns from ASSISTments—ASSISTments is an ITS for middle- and 

high-school mathematics used by approximately 50,000 students in the Northeast U.S. 

(Razzaq et al., 2005). Pardos, Baker, San Pedro, and Gowda (2013) developed an AAA-

based measure of cognitive and affective engagement for ASSISTments. They collected 

training data from 229 students who used ASSISTments in their school computer lab as part 

of their mathematics classes. Researchers made online observations (annotations) of 

students’ boredom, frustration, engaged concentration, and confusion using the Baker-

Rodrigo Observation Method Protocol (BROMP) (Ocumpaugh, Baker, & Rodrigo, 2012), 

recently renamed the Baker-Rodrigo Observation Monitoring Protocol (Ocumpaugh, Baker, 

& Rodrigo, 2015). The observations were based on explicit actions towards the interface, 

interactions with peers and teachers, body movements, gestures, and facial expressions. 

Observers had to achieve a minimum kappa of 0.6 with a BROMP expert prior to making the 

observations.

The researchers focused on discriminating each affective state from the others (e.g., 

boredom vs. engaged concentration, confusion, and frustration) using features distilled from 

ASSISTments log files (e.g., performance on problems, hints, timing information). They 

achieved a 30% above-chance accuracy after averaging across the four affective states (mean 

of 0.68 measured with A-prime metric) using 5-fold student-level cross-validation.

Student-level cross-validation ensures generalizability to new students with similar 
demographics as those in the training set. Ocumpaugh et al. (2014) studied the measure’s 

ability to generalize to new students with different demographics by retraining the models on 

a more diverse data set encompassing urban, suburban, and rural students. The models 

yielded mean above-chance improvements of 18%, 16%, and 6% when tested on 

independent samples of urban, suburban, and rural students, respectively. Thus, the model 

appeared to generalize to urban and suburban, but not to rural students.

The team also provided some evidence of the models’ predictive validity. Pardos et al. 

(2013) showed that model-generated engagement estimates, obtained from log files of a 

different set of 1,393 students collected during the 2004–2006 school years (several years 
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before the models were even developed), correlated with standardized achievement test 

scores. Subsequently, San Pedro, Baker, Bowers, and Heffernan (2013) showed that model-

based estimates of confusion and boredom obtained from the log files of 3,707 students who 

used ASSISTments in the 2004 to 2009 years predicted college enrollment (as recorded in 

the National Student Clearinghouse (NSC, 2016)) several years later.

The ASSISTments studies are significant because they provide evidence that their AAA-

based measure has a degree of population generalizability and predictive validity. They also 

demonstrate that it is feasible to retrospectively measure affective and cognitive components 

of engagement from log files collected years before the measures even existed.

Interaction patterns from Inq-ITS—Gobert, Baker, and Wixon (2015) developed an 

AAA-based measure for Inq-ITS, a computer-based learning environment to help students 

develop scientific inquiry skills. In Inq-ITS, students generate hypotheses of scientific 

phenomena, collect data via simulated experiments embedded in micro-worlds, and evaluate 

their hypotheses in light of collected data. Students have considerable agency in how they 

interact with Inq-ITS, which sometimes leads to unproductive behaviors that the researchers 

term disengaged from the task goal (DTG). They define DTG as “engaging with the task, but 

in a fashion unrelated to the learning task’s design goals or incentive structure” (p. 48). For 

example, running an unusually large number of simulations with identical parameters would 

be considered DTG as each simulation would produce an identical result.

Researchers collected training data from 144 middle-school U.S. students who used Inq-ITS 

as part of their science classes. Two humans coded DTG from human-readable excerpts 

(called clips) of Inq-ITS log files which were presented in sequence to preserve contextual 

information. The coders achieved a kappa of .66 (deemed “acceptable agreement” by the 

authors) in classifying each clip as being an instance of DTG or not.

Features, such as the total number of actions, time between actions, duration of the longest 

pause, and number of simulations run, were computed from each clip. Using 6-fold student-

level cross validation, the researchers obtained a 41% improvement above chance accuracy 

(A-prime [similar to AUC as noted above] of .81) in discriminating DTG from non-DTG 

clips. This study is significant for its nuanced conceptualization of disengagement as DTG 

rather than being merely distracted or off-task.

Sensor-based Measures

The measures below used one or more physical sensors in isolation or in tandem with 

interaction logs to measure specific components of engagement.

Facial features during cognitive skills training—Whitehill, Serpell, Lin, Foster, and 

Movellan (2014) automatically measured behavioral engagement from videos. They 

collected training data from 34 undergraduate students who interacted with an in-house 

cognitive skills training software system on an Apple iPad. The researchers recorded video 

with a commercial webcam aimed directly at students’ faces and used computer vision 

techniques to detect facial expressions (Littlewort et al., 2011) and facial textures. Trained 

coders annotated the videos for behavioral engagement using the following ordinal scale: (1) 
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not engaged at all (2) nominally engaged (3) engaged in tasks and (4) very engaged. 

Machine-learned models that discriminated each engagement level from the others (e.g., 

level 4 vs. levels 1, 2, and 3) using the facial features yielded an average 31% above-chance 

accuracy (2AFC [two-alternative forced-choice] of .73) using 4-fold student-level cross-

validation.

The model’s estimate of behavioral engagement (level 4 vs. levels 1, 2, and 3) correlated (r = 

0.27) with performance gains assessed before and after training, providing some evidence 

for its predictive validity. Further, the researchers tested the model’s population 

generalizability by retraining on the 26 African American students who were recruited from 

a historically Black College/University and testing on the eight Asian-American or 

Caucasian-American students. This yielded an average 23% above-chance improvement, 

which implies some, but not severe, degradation compared to training and testing on the 

combined sample (above-chance improvement of 31%).

Body movements and posture while playing Fripples Place—Mota and Picard 

(2003) developed a measure of interest (an affective component of engagement) while ten 8–

11-year-old children interacted with a challenging constraint satisfaction game called 

Fripples Place. They tracked body movements with the Tekscan™ Body Pressure 

Measurement System (BPMS), which consists of a thin-film pressure pad (or mat) that can 

be mounted on a variety of surfaces. Videos of the children’s faces and computer screens 

were also recorded. Three teachers annotated the videos for high, medium, or low interest, 

taking a break, bored, and “other,” and achieved an average kappa of .79. Due to insufficient 

bored and other annotations and difficulties in discriminating medium interest from high or 

low interest, the researchers focused on discriminating among high interest, low interest, and 

taking a break.

They first used a neural network to classify each pressure map into one of nine static 

postures (e.g., leaning back, sitting upright), achieving an accuracy of 87.6%. Next, Hidden 

Markov Models discriminated among the interest levels from 3-second sequences of static 

postures. Validating the model on two held-out students (student-level validation) yielded a 

recognition rate of 0.77 (above-chance improvement of 61%). Although replication with a 

larger sample is warranted, the finding that interest can be detected from posture alone is 

significant.

Eye gaze and contextual cues during computerized reading—Mind wandering 

(or zoning out) occurs when attention drifts away from the learning task to task-unrelated 

thoughts (Smallwood, McSpadden, & Schooler, 2008). It is a critical indicator of cognitive 

engagement, but poses a unique challenge for the AAA approach as it is a deeply internal 

state that might not be perceivable by observers.

Author (year) addressed this challenge by using eye gaze to measure mind wandering during 

computerized reading. They collected data in a lab study where 178 undergraduate students 

from two U.S. universities read four instructional texts on scientific research methods. 

Participants’ eye gaze was recorded with Tobii T60 and TX 300 eye trackers (one at each 

university). Participants self-reported mind wandering by responding “yes” or “no” to an 
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auditory probe (i.e., a beep) triggered on pseudo-random pages (screen of text), 4 to 12 

seconds from the time the page appeared.

The researchers extracted two sets of gaze features across windows of variable length (3 

seconds, 5 seconds, etc.) immediately preceding each thought probe. Global features were 

independent of the words read and focused instead on general eye gaze patterns, such as the 

number of fixations, fixation durations, variability in fixation durations, and saccade lengths. 

Local features were sensitive to the words read, such as the length of fixations of certain 

types (e.g., first fixation on a word vs. re-fixating on a word previously read). The gaze 

features were complemented by contextual features that encoded general information about 

the reading context, such as the current page being read, reading time, and text difficulty.

Supervised learning models discriminated the presence or absence of mind wandering from 

the gaze and context features. When validated by randomly sampling students into training 

and testing sets (student-level validation), the models yielded a mean recognition rate of 0.70 

(25% improvement over chance). Interestingly, the model-based mind wandering rates more 

strongly correlated with learning (Spearman’s rho = −.33) and transfer (rho = −.21) than 

self-reported mind wandering (rhos of −.07 and −.12, respectively) after controlling for prior 

knowledge.

Author (year) used a variant of the model to trigger real-time interventions based on 

predicted mind wandering. When evaluated on a new sample of 104 participants, model-

predicted mind wandering rates negatively correlated with performance on comprehension 

questions interspersed during reading (r = −.30) as well as on a subsequent posttest (r = −.

32). These results suggest the possibility of objectively measuring a highly internal 

component of attentional engagement in real-time and in a manner that generalizes to new 

students.

Interaction features, facial features, skin conductance, mouse pressure, and 
body movement during learning with Wayang Outpost—Arroyo et al. (2009) 

developed the first sensor-based engagement measure for use in computer-enabled 

classrooms. They collected interaction features from log files, facial features from video, 

body movements from pressure pads, skin conductance from a wrist sensor, and pressure 

exerted on a pressure-sensitive mouse. These data streams were collected from 38 high-

school and 29 female undergraduate students (potential elementary school teachers) who 

used the Wayang Outpost geometry ITS as part of regular mathematics instruction over the 

course of 4–5 days (Arroyo, Beal, Murray, Walles, & Woolf, 2004). Students were prompted 

to self-report levels of interest, confidence, excitement, and frustration on 1 to 5 point scales 

at 5-minute intervals and after completing each problem.

The researchers extracted a number of features from their sensor suite. Examples include 

facial expressions and head movements, postures such as leaning forward and movement 

variability, amount of physiological arousal, and pressure exerted on the mouse sensor. The 

sensor-based features were supplemented with interaction features, such as number of hints 

viewed and time spent interacting with the tutor. Multiple linear regression models were 

used to predict self-reported levels of each state from different combinations of features. The 
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best results (average R2 of 0.47) were obtained by combining the facial and interaction 

features.

This result should be interpreted with some caution. Models were trained on very small 

samples (between 20 to 36 cases) because valid data were only obtained for about 50% of 

the students due to complications with the use of sensors in classrooms. Further, 

generalizability is unclear as the models were not validated with a separate testing set. 

Despite these caveats, this study is pioneering because it incorporated sensors in an authentic 

classroom environment.

Facial features, body moments, and interaction patterns while playing Physics 
Playground—Author (year) also developed an AAA-based measure for use in computer-

enabled classrooms. They collected training data from 137 8th and 9th grade U.S. students 

during interactions with a physics educational game called Physics Playground (Shute, 

Ventura, & Kim, 2013). Students played the game in two 55-minute sessions across two 

days. Trained observers performed live annotations of boredom, engaged concentration, 

confusion, frustration, and delight using the BROMP field observation protocol as in the 

ASSISTments study discussed above (Pardos et al., 2013). The researchers also recorded 

videos of students’ faces and upper bodies, which were synchronized with the affect 

annotations.

The videos were processed using FACET, a computer-vision program (Emotient, 2014) that 

estimates the likelihood of 19 facial action units along with head pose and position. Body 

movement was also estimated from the videos using motion filtering algorithms (Author, 

year). Supervised learning models were trained to discriminate each affective state from the 

others (e.g., boredom vs. confusion, frustration, engaged concentration, and delight), and 

were validated by randomly sampling students into training and testing sets (student-level 

validation). The models yielded an average accuracy of 0.69 (measured with the AUC 

metric), which reflects an approximate 37% improvement above chance. Follow-up 

validation analyses confirmed that the models generalized across multiple days (i.e., training 

on subset of students from day 1 testing on different students from day 2 and vice versa), 

class periods (i.e., training on a random five of the seven class periods, testing on the 

remaining two, and repeating across multiple iterations), genders (i.e., training on males, 

testing on females and vice versa), and perceived ethnicity (i.e., coded by humans as no 

demographics were available).

Measures derived from video-based facial feature tracking are limited in that they can only 

be used when the face can be automatically detected in the video. This was about 65% of the 

time in the current study due to occlusions, gestures that mask the face, poor lighting, and 

other complicating factors. To address this, Author, (year) developed a second AAA measure 

that utilized contextual and interaction features stored in log files, such as the difficulty of 

the current game level, students’ actions, the feedback received, and response times. Then, 

logistic regression models were trained to adjudicate between the estimates of the face- and 

interaction-models, essentially weighting their relative influence on the final outcome. The 

multimodal models were almost as accurate as the video-based models but could be used 

98% of the time (compared to 65% for face-only models). This is notable given the noisy 
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nature of the classroom environment with students incessantly fidgeting, talking with one 

another, and occasionally using their cellphones despite it being against classroom policy.

General Discussion

Advancing the scientific study of engagement requires advancing measurement. We propose 

an advanced, analytic, automated (AAA) approach that capitalizes on the proliferation of 

digital learning environments. In Supplementary Materials B, we compare the AAA 

approach with self-report questionnaires and online observations as these are two of the 

most popular traditional measurement approaches. In what follows, we analyze the AAA 

approach beginning with how engagement has been defined.

How have the AAA-based measures defined engagement?

The lack of consensus on how to define engagement within educational psychology 

(Reschly & Christenson, 2012) is mirrored in the AAA-based measures. The case studies 

reviewed operationalized engagement in a myriad of ways, including engaged concentration, 

engagement/flow, zone-outs, mind wandering, interest, boredom, focus, and disengagement 

from task goals. Zone-outs and mind wandering align with the cognitive component of 

engagement, positive affect and interest with the affective component, on-task behaviors 

with the behavioral component, while engagement/flow and engaged concentration are more 

holistic amalgamations. Several studies also considered affective states that are associated 

with cognitive engagement (e.g., confusion and frustration) or lack thereof (e.g., 

disengagement from task goals). While the approach has been to focus on individual 

components, future work should consider modeling multiple components (e.g., interest, 

mind wandering, on-task behaviors) in order to investigate interdependencies and to more 

accurately capture an inherently multicomponential construct.

Relatedly, while the AAA-based measures tended to focus on the presence (1) or absence (0) 

of the mental states at each time point, their fine-grained temporal resolution affords a 

process-level account of engagement, disengagement, and re-engagement. For example, 

binary interest (1) or disinterest (0) estimates obtained every 10 seconds could be aggregated 

across longer time periods (i.e., every two minutes) to construct time series that reflect 

moments where interest was first captured, periods of maintained interest, when interest 

appears to diminish, when it is re-captured, and so on (Hidi & Renninger, 2006; Renninger 

& Bachrach, 2015). When multiple components are modeled, time series analyses can 

illustrate how individual components interact over time. For example, cross-correlational 

analyses of interest and mind wandering over time can provide an array of insights: lag-lead 

relationships among the two, how these relationships unfold over time, and how they 

influence behaviors and other mental states. Thus, when coupled with multi-componential 

measurement, the fine-grained temporal resolution of AAA-based measures holds 

considerable promise to model engagement as a dynamic process with components that 

interact over time.
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How accurate are the AAA-based measures?

Convergent validity is assessed by computing agreement between computer-generated and 

human-provided estimates of engagement components. The measures we reviewed yielded 

an average 39% improvement in agreement over chance (95% confidence interval of 31% to 

47%). To put this score in context, recall that the goal is to infer covert mental states from 

overt bodily signals and aspects of the environmental context. The inference process is rife 

with ambiguity at multiple levels. First, there are weak relationships between mental states 

and bodily signals; for example, reviews and meta-analyses on correlations between facial 

expressions and self-reported emotions have yielded small to medium sized effects for 

spontaneous expressions (Camras & Shutter, 2010; Ruch, 1995; Russell et al., 2003). 

Second, other than the rare case of extreme or prototypical emotions, there are weak 

relationships among the various bodily signals, perhaps because different situations demand 

different bodily responses (Barrett, 2006; Larsen et al., 2008; Russell, 2003). Third, the 

machine learning approach relies on supervision in the form of annotations provided by 

humans, which introduces additional errors that permeate the learned models and 

computation of accuracy metrics.

On account of these factors, there is unlikely to be a magical device that can “read-out” 

covert mental states from behavior and physiology. Contrary to popular belief, humans are 

not all that accurate. In fact, the average 39% above-chance improvement obtained by the 

AAA-based measures is identical to the average 39% above-chance inter-rater agreement 

reported in an analysis of 14 studies involving fine-grained coding of affective (and some 

cognitive) states by external observers (Author, year). Further, agreement between external 

observers and self-reports is very low (Author, year) and frame-of-reference training 

(Bernardin & Buckley, 1981) increases agreement between observers but not between the 

self and an observer (Author, year).

To summarize, measuring mental states associated with engagement involves inference, and 

inference involving complex psychological constructs involves a degree of error. This is 

irrespective of whether the inference is performed by a human or a computer, and in some 

cases the computer even outperforms humans (Bartlett, Littlewort, Frank, & Lee, 2014). 

Researchers increasingly appreciate that the underlying cognitive-affective-bodily system is 

not a rigid, deterministic machine that unfailingly produces the same outputs for a given set 

of inputs; rather, the system is loosely coupled and dynamic, and it rapidly self-organizes to 

external influences (Author, year; Camras & Witherington, 2005; Coan, 2010; Lewis, 2005). 

If the system itself produces “beyond-chance probabilistic” output (Roseman, 2011 p., 440), 

then so will attempts to computationally model it.

What are some key limitations of AAA-based measures?

The measures have a few key limitations. First, the supervised learning method used to 

develop the measures requires mental state annotations from learners themselves or external 

observers. The two sources (self vs. observers) have access to different types of information 

and are influenced by different biases (see Introduction), resulting in low agreement (Afzal 

& Robinson, 2011; Author, year). This in turn leads to less reliable measures as well as 

reduced confidence in their validation. The best approach would be to incorporate 
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annotations from multiple sources to reduce error, but most studies rely on either the self or 

observers–seldom both.

Second, validity of AAA-based measures needs to be established more precisely. 

Researchers have focused on convergent validity at the expense of other forms of validity. 

Discriminant validity of AAA-based measures is not well studied, nor is predictive and 

external validity (generalizability). In only three of the case studies (Author, year; 

Ocumpaugh et al., 2014; Whitehill et al., 2014) did researchers show that the measures 

predict meaningful outcomes, such as learning gains and college enrollment. Similarly, 

although 11 of the studies addressed generalizability to new students, only three (Author, 

year; Pardos et al., 2013; Whitehill et al., 2014) considered additional forms of 

generalizability, such as generalizability across time and across student demographics.

Third, because the underlying computational techniques are compromised by noisy data, 

robustness is another aspect that needs more attention. For example, changes in background 

illumination complicate face detection, seemingly benign behaviors like face-occluding 

gestures or chewing gum pose a challenge for facial feature tracking, glasses or contact 

lenses reduce precision of some eye-trackers, and speech and background noise hinder 

automatic speech recognition. Robustness to noise has received insufficient attention 

because missing or noisy data are usually discarded prior to the modeling process (e.g., 

Author (year)). A different approach is needed for measures intended for real-time use in 

ecological settings, where noisy data is more the norm than the exception (Arroyo et al., 

2009; Author, year). Robustness to noisy data needs to be a fundamental design constraint 

rather than an afterthought, and in some cases systematically modeling rather than 

discarding noisy data can improve measurement accuracy (Author, year).

Fourth, there are privacy concerns for measures that use biometric signals (e.g., an image of 

a face, an audio sample). Some sensors can also inadvertently record compromising 

background information, as in the recent “WebcamGate” scandal (Martin, 2010). An 

effective strategy to protect privacy is to only retain non-identifiable features from the 

signals while discarding the signals themselves. There are also ethical concerns with respect 

to how the measures are used. We strongly recommend against their use for teacher or 

student evaluation since the measures are imperfect and engagement is influenced by factors 

out of the control of teachers and students. At this time, the measures are best suited for 

basic and applied research on engagement. They can also be used to improve learning 

technologies, either by passively measuring periods of sustained disengagement for 

retrospective review and refinement (e.g., Miller, Petsche, Baker, Labrum, & Wagner, 2014) 

or by dynamically re-engaging disengaged students (Author, year).

Finally, whereas self-report questionnaires can be used at scale assuming computer-based 

administration and scoring, the scalability of the AAA-based measures varies as a function 

of equipment cost, the sensors used, availability of computer/internet access for students, 

privacy/ethical considerations, and technical expertise needed to deploy the measures with 

sufficient fidelity. Sensor-based measures are currently limited to small-scale IRB-approved 

research studies conducted by interdisciplinary teams of psychologists, computer scientists, 

and education researchers (e.g., Author, year; Wang et al., 2014). We anticipate that these 

D’Mello et al. Page 18

Educ Psychol. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measures will be more scalable as computing becomes increasingly ubiquitous, wearable, 

and cost-effective, safeguards to protect privacy are established, and interdisciplinary 

collaborations between education and computer science researchers increase. In the near 

term, sensor-free measures can be (and have been) applied at scale when digital technologies 

are integrated in the curriculum. For example, Baker and Ocumpaugh (2014) report that the 

engagement measure developed for ASSISTments (Pardos et al., 2013) has been applied to 

231,543 hours of tutoring data from 54,401 students. They estimate a measuring cost of 

$0.28 per student/hour after factoring the costs required to develop the measure.

What are some future developments in AAA-based measurement?

We see many opportunities moving forward. For one, the rapid advent of cost-effective 

consumer-off-the-shelf (COTS) devices (e.g., Fitbit, Apple Watch, EyeTribe) that afford 

wearable and wireless sensing, coupled with pervasive computing via smartphones and 

tablets, has ushered forth exciting new opportunities. For example, Hutt et al. (in review) 

used multiple COTS eye tracker to collect eye gaze data as entire classes (14 to 30 at a time) 

of high-school students interacted with an intelligent tutoring system in their regular 

classroom. To further ameliorate sensing costs, researchers have been replacing sensors with 

scalable proxies (aka soft sensors or virtual sensors). Webcams are an ideal “proxy” sensor 

due to their widespread availability in contemporary computing devices. They have been 

used to estimate bodily movement Author (year), eye gaze (Sewell & Komogortsev, 2010), 

and peripheral physiological signals like heart rate, respiratory rate, cardiac R-R intervals, 

and blood oxygen saturation (Poh, McDuff, & Picard, 2011; Scully et al., 2012).

We also see considerable potential in multilevel measurement. Aside from a few exceptions 

(Arroyo et al., 2009; Author, year; Kapoor & Picard, 2005), extant studies have either 

focused on low-level bodily/physiological signals or higher-level interaction/contextual cues. 

Physiological/bodily responses reflect rapid internal changes, but the responses are 

nonspecific (e.g., an increase in autonomic arousal can signal a range of affective states) or 

are subject to social masking (Ekman, 2002) and cannot be taken at face value. Interaction/

contextual approaches can help resolve ambiguity in these responses, though they might not 

be sufficiently diagnostic in and of themselves. Thus, there is much to be gained by 

combining top-down predictive models derived from interactional/contextual features with 

bottom-up diagnostic models based on physiological/bodily signals (Conati, 2002).

Multimodal measurement is another promising area. Although such measures are not 

guaranteed to improve measurement accuracy (Author, year), they have other advantages. 

From a practical perspective, a secondary modality can compensate when the primary is 

unavailable (e.g., the speech signal is unavailable when the person is silent) or unusable 

(e.g., the face is occluded). From a theoretical perspective, the assumption that engagement 

is a multi-componential construct necessitates multimodal measurement as different 

modalities optimally index specific components. In particular, eye gaze and central 

physiology are best suited for cognitive engagement (Berka et al., 2007; Deubel & 

Schneider, 1996; Hoffman & Subramaniam, 1995; Marshall, 2005; Rayner, 1998), facial 

features and peripheral physiology for affective engagement (Ekman, 1984; Keltner & 

Ekman, 2000; Larsen et al., 2008; Matsumoto et al., 2008), and interaction features for 
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behavioral engagement (Baker & Ocumpaugh, 2015; Baker & Rossi, 2013; Bulger, Mayer, 

Almeroth, & Blau, 2008; Gobert et al., 2015). Multimodal measures that operate across 

multiple timescales ranging from milliseconds (physiological signals), milliseconds to 

seconds (bodily responses), and seconds to minutes (interaction patterns) would likely 

improve modeling of mental states that manifest across different timescales (Author, year).

Finally, successful re-engagement strategies require identifying causes of disengagement, 

which is a complicated prospect. For instance, boredom can stem from multiple factors, 

including understimulation, a sense that effort is coerced, underchallenge, excess challenge, 

lack of interest, lack of value, and dislike of teacher (Daschmann, Goetz, & Stupnisky, 2011; 

Pekrun, Goetz, Daniels, Stupnisky, & Perry, 2010). Re-engaging a bored learner requires 

going beyond merely measuring boredom: it requires assessing what led to each boredom 

episode. Thus, the ability to model the antecedents of (dis)engagement is an important future 

challenge.

Concluding Remarks

Unlike the fictitious characters Trinity and Neo from the 1999 Hollywood film The Matrix, 

who learn by directly downloading knowledge/skills directly into their brains, learning still 

requires engagement. A student who is engaged is primed to learn; a student who is 

disengaged is not. The last decade has produced a flurry of theoretical and empirical 

research aimed at defining engagement, identifying its causes and effects, and devising 

interventions to re-engage disengaged learners. The digital revolution can catalyze similar 

advances on the measurement front. We are very optimistic about the potential for AAA-

based measures to complement traditional measures, especially for micro-level measurement 

of person-oriented components of engagement. The AAA approach goes beyond 

measurement alone, because its fine-grained, contextually-coupled, person-oriented foci 

afford dynamic interventions to re-engage disengaged learners. Developing effective 

interventions that promote engagement so that learning is enjoyable, efficient, and effective 

is the next frontier.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Major steps involved in building an automated engagement measure
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Figure 2. 
Sensors and signals (output)
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