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Abstract

Membrane trafficking is highly organized to maintain cellular homeostasis in any organisms.

Membrane-embedded transporters are targeted to various organelles to execute appropri-

ate partition and allocation of their substrates, such as ions or sugars. To ensure the fidelity

of targeting and sorting, membrane proteins including transporters have sorting signals that

specify the subcellular destination and the trafficking pathway by which the destination is to

be reached. Here, we have identified a novel sorting signal (called the tri-aromatic motif)

which contains three aromatic residues, two tryptophans and one histidine, for the plasma

membrane localization of sugar transporters in the STP family in Arabidopsis. We firstly

found that a C-terminal deletion disrupted the sugar uptake activity of STP1 in yeast cells.

Additional deletion and mutation analyses demonstrated that the three aromatic residues in

the C-terminus, conserved among all Arabidopsis STP transporters, were critical for sugar

uptake by not only STP1 but also another STP transporter STP13. We observed that, when

the tri-aromatic motif was mutated, STP1 was largely localized at the endomembrane com-

partments in yeast cells, indicating that this improper subcellular localization led to the loss

of sugar absorption. Importantly, our further analyses uncovered that mutations of the tri-

aromatic motif resulted in the endoplasmic reticulum (ER) retention of STP1 and STP13 in

plant cells, suggesting that this motif is involved at the step of ER exit of STP transporters to

facilitate their plasma membrane localization. Together, we here identified a novel ER

export signal, and showed that appropriate sorting via the tri-aromatic motif is important for

sugar absorption by STP transporters.

Introduction

Solute transport is crucial for maintaining cellular homeostasis. Transporters are embedded in

biological membranes and are required to transfer substrates across membranes at the subcel-

lular level and the tissue level for long-distance transport [1,2]. Long-distance transport of sug-

ars occurs via bulk flow within the phloem, and sugar transporters are responsible for loading

and unloading the phloem. Because sugars have multiple functions as energy sources and
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signaling molecules, sugar transporter activity is increased or repressed by transcriptional and

post-translational mechanisms to respond to changing environments. For example, as shown

in our previous reports, the Arabidopsis sugar transporters ESL1 and STP13 are transcription-

ally activated in response to environmental stress, such as cold, drought and high salinity

stresses [3,4]. Tonoplast-localized ESL1 may export monosaccharides to the cytoplasm from

the vacuole to increase cytoplasmic osmotic pressure [3]. Plasma membrane-localized STP13,

which is expressed in root endodermal cells, retrieves monosaccharides that leak from dead

epidermal and cortex cells when plants are exposed to high salinity stress [4]. Furthermore,

STP13 is phosphorylated by the plasma membrane-localized receptor kinase BAK1 in leaves

when the defense response is activated following the perception of microbial molecules. This

phosphorylation enhances the sugar uptake activity of STP13 to restrict sugar acquisition by

the pathogen [5]. In addition, the tonoplast-localized sugar transporter TST1, which was previ-

ously designated TMT1, is reported to be phosphorylated under cold conditions [6]. The mito-

gen-activated triple kinase-like kinase VIK1 has been identified as a kinase that phosphorylates

TST1 [7]. Co-incubation of isolated vacuoles with VIK1 facilitates glucose import, suggesting

that VIK1-mediated phosphorylation promotes TST1 activity [7].

In addition to transcriptional and post-translational regulation, membrane trafficking

through the secretory pathway is also a critical determinant of transporter functions in physio-

logical contexts. Transporters play a major role in nutrient uptake from soils. Radical nutrient

transport from the root surface to the xylem requires at least two transport events: import into

epidermal, cortical or endodermal cells and export to the xylem. For example, the boron chan-

nel NIP5;1 and the boron transporter BOR1 are predominantly involved in boron import and

export, respectively, in Arabidopsis [8]. NIP5;1 is localized to the distal side of the plasma

membrane, whereas BOR1 is localized to the proximal side. Their polarized localization is reg-

ulated by endocytosis [9] and facilitates radical boron transport from the root surface to the

xylem. In addition, endocytosis-mediated BOR1 degradation occurs under high-boron condi-

tions to prevent growth defects due to the toxicity of excess boron [10].

Membrane proteins are sorted to the membranes of various organelles after synthesis in the

endoplasmic reticulum (ER). Numerous studies have shown that the first crucial step in secre-

tory trafficking is the exit from the ER to the Golgi apparatus, which is mediated by COPII ves-

icles [11,12]. ER export signals reside in cytosolic regions of membrane proteins. Various ER

export signals have been identified, including the di-acidic motif (DxE, x indicates any residue)

of the vesicular stomatitis virus glycoprotein [13], the di-phenylalanine motif (FF) of the

ER-Golgi intermediate compartment protein ERGIC-53 [14], and the di-hydrophobic and

tyrosine-based motif (FVxxxY) of the Arabidopsis endomembrane protein EMP12 [15]. Mem-

brane proteins are recruited into COPII vesicles through the recognition of their ER export

signals. The plant potassium channel KAT1 interacts with Sec24, a component of the COPII

coat, at the ER via the di-acidic motif [16]. Therefore, mutations of this motif in KAT1 resulted

in reduced potassium import in cultured mammalian cells, likely due to the disruption of the

normal subcellular localization of this protein [17]. Sorting to the vacuole has also been investi-

gated. At least two transport routes to the tonoplast have been identified. The tonoplast locali-

zation of the Arabidopsis sucrose transporter SUC4 depends on the AP-3 adapter complex,

although the localization of ESL1 and the myo-inositol transporter INT1 does not [18]. ESL1

and INT1 contain di-leucine motifs, which are required for the tonoplast localization, at their

N-terminus and C-terminus, respectively [3,18]. When these di-leucine motifs are mutated,

the proteins are mis-sorted to the plasma membrane in plant cells [3,18]. Mutated ESL1, which

is located at the plasma membrane, takes up sugars from the media in tobacco BY-2 cells, but

tonoplast-localized ESL1 does not [3]. In the case of transporters, the subcellular localization is

coupled with the enzymatic activity to properly move substrates across membranes. Therefore,
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their sorting to appropriate subcellular compartments should be highly organized to maintain

cellular homeostasis.

Here, we identified a novel sorting signal for the plasma membrane, the tri-aromatic motif

(WxxHxxW), in the C-terminal cytoplasmic tails of Arabidopsis STP transporters. STP trans-

porter variants devoid of this motif failed to complement the glucose uptake activity of multi-

ple monosaccharide transporter-deficient yeast cells. We found that mutants lacking the tri-

aromatic motif accumulated at the ER, while functional transporters were localized at the

plasma membrane. These results indicate that the tri-aromatic motif promotes the plasma

membrane localization of STP transporters as an ER export signal. Based on these findings, we

here reported a novel ER export signal, and provided the insight in which regulation of appro-

priate sorting by the tri-aromatic motif is important for sugar uptake of STP transporters.

Material and methods

Plasmid construction

The STP1 or STP13 cDNAs were inserted into the pVT-102U vector along with the mGFP4

fragment [4]. C-terminal deletion mutants and tri-aromatic motif mutants were constructed

as previously described [19]. In addition, each fragment was also inserted to the pRI 35S GFP

vector [5] using an In-Fusion HD Cloning Kit (TaKaRa, Shiga, Japan). The primers used to

construct the plasmids are listed in S1 Table.

Yeast complementation assay

Constructs were introduced into the hexose uptake-deficient yeast strain EBY.S7 [20]. Trans-

formants were grown on minimal media containing 2% maltose. For complementation assays,

liquid-cultured yeast cells were washed with water, and their optical densities at 600 nm

(OD600) were adjusted to 1.0, 0.1 and 0.01. The cells were dropped on minimal media con-

taining 10 mM glucose and incubated at 30˚C for 3 days.

RT-PCR analysis

Total RNA was isolated from the plant samples using RNAiso reagent (TaKaRa) according to

the manufacturer’s instructions, and reverse-transcribed using a PrimeScript RT reagent kit

(Perfect Real Time) (TaKaRa) with an oligo(dT) primer and a random primer. The RT-PCR

analysis was performed using the primers listed in S1 Table.

Transient gene expression in Nicotiana benthamiana

Transient gene expression experiments in Nicotiana benthamiana were performed according

to a previously described method [21]. Agrobacterium tumefaciens GV3101 strains were grown

in YEP media (10 g/l bactopeptone, 10 g/l yeast extract, 5 g/l NaCl, 2 mM MgCl2) with appro-

priate antibiotics. Cultures were pelleted by centrifugation, resuspended in infiltration buffer

(10 mM MgCl2, 10 mM MES-KOH pH 5.5) to an OD600 of 0.1, and then infiltrated into N.

benthamiana leaves using a syringe. Leaves were harvested 2 days after inoculation.

Establishment of stable transgenic Arabidopsis plants

pRI 35S STP1-GFP and pRI 35S STP1 (WHW/AAA)-GFP constructs were transformed in

Arabidopsis thaliana (Col-0) via Agrobacterium-mediated transformation.

A novel ER export signal of STP transporters
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Results

C-terminal deletion disrupts sugar uptake by STP1

As shown in our previous study, stp1-1 plants, which contain a T-DNA insert in the STP1
locus of the Arabidopsis genome, exhibited reduced sugar uptake [4, 5]. However, we won-

dered whether the STP1 protein in stp1-1 plants is surely non-functional because the T-DNA

is inserted at the 3’-end of the STP1 coding sequence (Fig 1A). Previously, the accumulation of

the full-length STP1 mRNA was not detected in stp1-1 plants [4]. The abnormal STP1 mRNA

containing the T-DNA insertion may be degraded immediately, causing the loss-of-STP1 phe-

notype in stp1-1 plants. We first attempted to amplify 5’ and 3’ fragments of STP1 in the stp1-1
plants to investigate this hypothesis. We observed comparable accumulation of the 5’ fragment

of STP1 in wild-type (WT) and stp1-1 plants, whereas the 3’ fragment of STP1, the region con-

taining the T-DNA insert, was not detected in stp1-1 plants (Fig 1B). Thus, these data sug-

gested that the C-terminally truncated STP1 protein is expressed in stp1-1 plants but does not

function in sugar absorption.

We expressed the STP1ΔC protein (Fig 2A), which lacked the C-terminal region beginning

at the 11th transmembrane domain, in yeast cells to investigate the functionality of the C-ter-

minally truncated STP1 protein. A similarly truncated STP1 variant is expected to be expressed

in stp1-1 plants; however, the STP1 protein expressed in stp1-1 plants should contain several

additional residues from the T-DNA sequence compared with STP1ΔC. The EBY.S7 yeast

strain used in this study is not able to grow on media containing glucose as the sole carbon

source because it lacks multiple monosaccharide transporters [20]. Consistent with our previ-

ous report [4], the introduction of STP1-GFP complemented yeast growth on glucose media

(Fig 2B). However, the introduction of STP1ΔC-GFP did not affect yeast growth (Fig 2B).

These results suggested that the C-terminally truncated STP1 protein expressed in spt1-1
plants is not functional for sugar absorption.

The tri-aromatic motif (WxxHxxW) is required for sugar uptake by STP

transporters

These findings prompted us to explore the region required for sugar uptake by STP1. First, we

hypothesized that the lack of two transmembrane domains disrupted the three-dimensional

structure of STP1, resulting in the loss of the sugar transporter activity of STP1. Thus, we

established the STP1Δ50 variant, which lacks only the C-terminal tail (Fig 2C). However, the

introduction of STP1Δ50-GFP also failed to complement the growth of monosaccharide trans-

porter-deficient yeast cells on glucose media (Fig 2B). We next generated the STP1Δ36 variant

to investigate the importance of the sugar transporter conserved sequence in the C-terminal

tail (Fig 2C), but its introduction did not promote yeast growth either (Fig 2B). However, the

STP1Δ23 variant complemented yeast growth on glucose media (Fig 2B), indicating that the

13 amino acids from STP1Δ23 but not STP1Δ36 are important for sugar absorption. An

Fig 1. The 5’ fragment of STP1 that was expressed in stp1-1 plants. (A) A schematic view of the T-DNA inserted into the stp1-1 mutant

and positions of the primers used in (B). (B) RT-PCR analysis of STP1 expression in wild-type and stp1-1 plants. Similar results were

obtained in three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g001
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alignment analysis of the C-terminal tails of 14 Arabidopsis STP transporters revealed that this

region is highly conserved among Arabidopsis STP transporters (Fig 2D). Because we identi-

fied three completely conserved aromatic residues, two tryptophan residues (W) and one histi-

dine residue (H), in this region, we designated this sequence (WxxHxxW) the tri-aromatic

motif in this study (Fig 2D).

To further investigate the importance of the tri-aromatic motif in other STP transporters,

we established the STP13Δ42 variant which does not contain the tri-aromatic motif (Fig 2C).

The introduction of STP13Δ42-GFP did not promote the yeast growth, whereas the introduc-

tion of STP13-GFP or the GFP-fused STP13 variants containing the tri-aromatic motif allowed

the yeast cells to grow on glucose media (Fig 2E).

Fig 2. The C-terminal aromatic residues are required for the glucose uptake by STP1 and STP13. (A) Schematic view of the predicted

structure of STP1. STP1ΔC, a C-terminally truncated variant, is expected to be expressed in stp1-1 plants. Circles and gray rectangles

indicate amino acid residues and transmembrane domains, respectively. (B and E) Complementation assays for glucose uptake in yeast

cells. Transformed yeast cells were grown on medium containing 2% maltose (control) or 10 mM glucose for 3 days. (C) Sequences of the

C-terminally truncated or amino acid-substituted STP1 and STP13 mutants. Substituted amino acids are highlighted in red. (D) Alignment of

the C-terminal regions of Arabidopsis STP transporters. Similar results were obtained in three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g002
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Next, we established STP1 (WHW/AAA) and STP13 (WHW/AAA) variants, in which the

W and H residues in the tri-aromatic motif were substituted with alanine (A) residues, to

investigate the importance of these three residues in the tri-aromatic motif (Fig 2C). As

expected, we did not observe an increase in yeast growth when STP1 (WHW/AAA)-GFP or

STP13 (WHW/AAA)-GFP was introduced (Fig 2B and 2E). Taken together, these data dem-

onstrated that the three aromatic resides in the tri-aromatic motif are critical for sugar uptake

by STP transporters.

The tri-aromatic motif functions as an ER export signal of STP

transporters

We explored how the tri-aromatic motif affects sugar uptake activities of STP transporters. We

observed GFP signals from a series of STP1-GFP mutants in yeast cells to determine whether

the C-terminal deletions affect the behavior of STP1. GFP signals from the non-functional var-

iants STP1ΔC-GFP, STP1Δ50-GFP and STP1Δ36-GFP were observed in the endomembrane

compartments in yeast cells, but the fluorescent signals from the functional STP1Δ23-GFP var-

iant and STP1-GFP were detected at the plasma membrane (Fig 3). Furthermore, we also

detected the endomembrane localization of STP1 (WHW/AAA)-GFP in yeast cells (Fig 3).

Thus, their localization at the endomembrane compartments likely resulted in the loss of sugar

absorption from the extracellular spaces in yeast cells (Fig 2B).

We next introduced these STP1 variants into Nicotiana benthamiana leaves via agro-infil-

tration to determine whether the tri-aromatic motif also contributed to the plasma membrane

localization of STP transporters in plant cells. GFP signals from the non-functional variants

STP1Δ36-GFP and STP1 (WHW/AAA)-GFP were strongly observed at the perinuclear

regions. We here noticed that GFP signals from the non-functional STP1 variants were also

detected at the perinuclear regions of yeast cells (Fig 3). This fluorescent pattern suggested

the ER localization of non-functional STP1 variants. Therefore, we next co-expressed an

mCherry-fused ER marker protein [22] with a series of GFP-fused STP1 variants in N.

Fig 3. The tri-aromatic motif is important for STP1 trafficking to the plasma membrane in yeast cells.

GFP signals were observed in yeast cells expressing STP1-GFP variants. Similar results were obtained in

three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g003
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benthamiana to investigate their ER localization. As expected, the mCherry signal was also

observed at the perinuclear region, and merged with GFP signals from STP1Δ36-GFP and

STP1 (WHW/AAA)-GFP (Fig 4A), indicating that these STP1 variants were localized at the

ER. In contrast, GFP signals from STP1-GFP and the functional variant STP1Δ23-GFP were

Fig 4. Disruption of the tri-aromatic motif causes ER retention of STP1 and STP13 in N. benthamiana

leaves. (A and B) GFP and mCherry signals were observed for STP1 and STP13 variants and an ER marker,

respectively, expressed in N. benthamiana leaves. Arrowheads indicate perinuclear regions. Similar results

were obtained in three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g004
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mainly detected at the cellular peripheral regions, indicating their plasma membrane localiza-

tion (Fig 4A). Consistent with the above-described results, the GFP signal from STP13

(WHW/AAA)-GFP, but not STP13-GFP, was also strongly observed at the perinuclear regions

in N. benthamiana leaves (Fig 4B). Although these results showed that the loss of the tri-aro-

matic motif caused ER retention of STP1 and STP13, their variants devoid of the tri-aromatic

motif also appeared to be localized at the cellular peripheral regions. ln fact, we found that the

GFP signal from STP1 (AAA/WHW)-GFP was merged with fluorescence of not only the ER

marker but also the plasma membrane-staining dye FM4-64 (S1 Fig). It is indeed technically

difficult to discriminate the plasma membrane and the ER at the cellular peripheral regions in

leaf epidermal cells whose cytoplasmic volumes are very limited due to large central vacuoles.

Therefore, we here cannot exclude the possibility that a portion of STP1 (AAA/WHW)-GFP

was sorted to the plasma membrane.

We further analyzed this observation using stable transgenic Arabidopsis plants. Because

expression levels of genes transiently introduced to cells often exceed those stably expressed in

transgenic plants, transient expression analysis sometimes causes mis-localization of protein.

In transgenic Arabidopsis roots, GFP fluorescence from STP1 (WHW/AAA)-GFP was clearly

detected in perinuclear regions and reticular structures resembling ER networks, whereas the

fluorescent signal from STP1-GFP was observed at the plasma membrane (Fig 5), showing

that STP1 (WHW/AAA)-GFP was localized at the ER in Arabidopsis. Taken all data together,

we inferred that the tri-aromatic motif is involved at the step of ER exit of STP transporters as

an ER export signal to facilitate their plasma membrane localization.

The tri-aromatic motif is conserved in STP transporters of various plant

species

Because the tri-aromatic motif was observed in all Arabidopsis STP transporters (Fig 2D),

we next investigated whether this motif occurs among other plant STP transporters. Our anal-

ysis showed that the tri-aromatic motif is highly conserved in STP transporters of the various

Fig 5. Disruption of the tri-aromatic motif causes ER retention of STP1 and STP13 in roots of stable

transgenic Arabidopsis plants. GFP signals were observed for STP1-GFP and STP1 (WHW/AAA)-GFP in

root cells of 10-day-old Arabidopsis plants. Arrowheads indicate perinuclear regions. Similar results were

obtained in three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g005
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plant species including a moss (Fig 6A), further suggesting its importance in STP transporters.

However, while this motif is completely conserved in STP transporters of Arabidopsis and

Physcimitrelle patens, STP transporters whose tri-aromatic motifs are mutated or deleted are

found in Oryza sativa, Lotus japonicus, N. benthamiana and Solanum lycoperisucum. In

Fig 6. The tri-aromatic motif is conserved in STP transporters of various plant species. (A) Alignment of the tri-aromatic motifs of STP

transporters from various plant species. At1g11260.1 and At5g26340.1 indicate STP1 and STP13 of Arabidopsis, respectively. Conserved

aromatic residues in the tri-aromatic motif are highlighted in red. Os, Lj, Nb, Solyc, and Pp indicate Oryza sativa, Lotus japonicas, Nicotiana

benthamiana, Solanum lycoperisucum and Physcomitrella patens, respectively. (B) Sequences of the amino acid-substituted STP1

mutants. Substituted amino acids are highlighted in red. (C) Complementation assays for glucose uptake in yeast cells. Transformed yeast

cells were grown on medium containing 2% maltose (control) or 10 mM glucose for 3 days. (D) GFP signals were observed in yeast cells

expressing STP1-GFP variants. Similar results were obtained in three independent experiments.

https://doi.org/10.1371/journal.pone.0186326.g006
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NbS00017100g0012.1 and NbS00042291g0008.1, the histidine residue of the tri-aromatic

motif is substituted with asparagine residue (N). In Os04g38026.1, Lj4g3v3056200.1 and

Lj4g3097110.1, the first tryptophan residue of the tri-aromatic motif is substituted with phe-

nylalanine residue. To investigate whether these substitutions affect sugar uptake activities of

STP transporters, we generated STP1 (WHW/WNW) and STP1 (WHW/FHW) variants, the

histidine and the first tryptophan residue of which was substituted with phenylalanine and

asparagine residue, respectively (Fig 6B). The introduction of STP1 (WHW/WNW)-GFP and

STP1 (WHW/FHW)-GFP complemented the yeast growth on glucose media. In addition,

their GFP signals were observed at the plasma membrane in yeast cells (Fig 6D). We here

noted that these STP1 variant cells seemed to grow to a slightly lesser extent with STP1-GFP

cells on glucose media (Fig 6C) and florescence of STP1 (WHW/FHW)-GFP appeared to be

patchly distributed at plasma membrane (Fig 6D), which suggested the possibility that these

substations somewhat affect STP1 behavior. Nonetheless, our data indicated that STP trans-

porters, which even have these substitutions, are also functional for sugar absorption.

Discussion

Here, we showed that a novel sorting signal, the tri-aromatic motif (WxxHxxW), acts as an ER

export signal to promote the plasma membrane localization of STP1 and STP13. Although the

tri-aromatic motif is highly conserved in STP transporters in various plant species, natural var-

iations in this motif occur in some STP transporters (Fig 6A). Our data indicated that STP

transporters, which have these substitutions, are functional enough to complement the sugar

uptake activity of the multiple sugar transporter-deficient yeast cells (Fig 6C). Such functional

conservation may also support the importance of the tri-aromatic motif in STP transporters.

The correct trafficking of transporters is indeed critical for their physiological functions. For

example, PHF1, a plant-specific SEC12-related gene, governs the sorting of the phosphate

transporter PHT1;1 from the ER to the plasma membrane in Arabidopsis [23]. Thus, the loss

of PHF1 causes the ER retention of PHT1;1, and phf1 plants become sensitive to low-phos-

phate conditions [23]. Additionally, interfering with clathrin function results in defects in

endocytosis and the polar localization of the auxin transporter PIN1, perturbing the normal

auxin distribution in Arabidopsis [24]. Although we demonstrated that the tri-aromatic motif

affects the subcellular localization of STP1 and STP13, we were here not able to address

whether it also contributes to their enzymatic properties. Since the improper localization of

transporters eventually disrupts their substrate movements across the membranes, it is difficult

to uncouple the subcellular localization and the enzymatic activity in our experimental sys-

tems. However, our data suggested the possibility that STP1 (WHW/AAA)-GFP was partially

sorted to the plasma membrane in N. benthamiana leaves (S1 Fig) although STP1 (WHW/

AAA)-GFP was a non-functional transporter in yeast cells (Fig 2B). Whereas further investiga-

tion is required to determine more detailed roles of the tri-aromatic motif in STP transporters,

it implies that this motif is involved in the sugar uptake activity of STP1.

Sorting signals reside in cytoplasmic regions of multipass transmembrane proteins, such as

transporters. We identified the tri-aromatic motif as a novel sorting signal in the C-terminal

cytoplasmic tails of STP transporters. In particular, the tri-aromatic motif is important when

STP transporters are exported from the ER. The ER protein quality control system recognizes

incorrect folding proteins and retains these proteins in the ER. Therefore, mutations or dele-

tions which we here introduced to STP1 and STP13 might result in their ER localization due

to improper protein folding. Although we cannot exclude this possibility, we have considered

that mutations of only three residues in cytoplasmic tails, not in transmembrane domains,

may not significantly affect their structure. Therefore, based on our data, we postulate that the
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tri-aromatic motif functions as an ER export signal promoting the plasma membrane localiza-

tion of STP transporters. In addition to ER exit, membrane trafficking to the plasma mem-

brane is highly regulated by the Golgi/trans-Golgi network. The tri-aromatic motif may also

be involved in post-ER trafficking to the plasma membrane. GFP fluorescence patterns of

STP1 (AAA/WHW)-GFP and STP1Δ36-GFP, which partially retained and completely lost the

tri-aromatic motif sequence, respectively, seemed to be different in yeast cells (Fig 3). We

noticed that several amino acids adjacent to the three aromatic residues are also highly con-

served in the tri-aromatic motif (Figs 2D and 6). Collectively, these findings imply that these

conserved residues play a role in the subcellular localization of STP1. In the case of Arabidopsis
EMP12 which is localized in the Golgi apparatus, it has two sorting signals for ER export and

Golgi retention in the C-terminus [15].

ER export signals are categorized into two major groups, the acidic motif and the hydro-

phobic motif [12]. Hydrophobic motifs of ER export signals often contain aromatic amino

acids, like the tri-aromatic motif. Protein trafficking between the ER and the Golgi apparatus

is mediated by two distinct coated vesicles, COPII and COPI, which regulate anterograde and

retrograde transport, respectively [11,12]. ER export signals in membrane proteins are recog-

nized and bound by Sar1-Sec23-Sec24 prebudding complexes for inclusion in COPII vesicles

[12]. For example, the aromatic residue-containing FVxxxY motif of the Arabidopsis EMP12

protein binds to Sec24 in vitro [15]. The tri-aromatic motif may also interact with COP II pre-

budding complexes, although further investigations are needed to determine the mechanism

by which the tri-aromatic motif contributes to the proper sorting of STP transporters. Notably,

the tri-aromatic motif was functional in yeast and plant cells in this study, indicating that the

secretory pathway mediated by the tri-aromatic motif is conserved in different organisms.

Indeed, a similar motif (FxxxFxxxF) has been reported to play a role in ER exit of the dopa-

mine receptor D1 in cultured mammalian cells [25]. The ER membrane-associated protein

DRiP78 was reported to bind to this motif and regulate D1 trafficking via a process that

remains elusive [25]. Because DRiP78 is also conserved in Arabidopsis [25], it may contribute

to protein sorting through the pathway mediated by the tri-aromatic motif.

This study revealed that a novel sorting signal, which is highly conserved among STP trans-

porters in various plant species, is important for STP function. In conclusion, the tri-aromatic

motif promotes the plasma membrane localization of STP transporters as an ER export signal,

and our findings provide insights into the importance of appropriate subcellular localization

for the physiological functions of transporters.

Supporting information

S1 Fig. Co-localization analysis of STP1 variant with the plasma membrane-staining dye

FM4-64 in N.benthamiana. Fluorescent signals were observed from STP1 variants and the

plasma membrane-staining dye FM4-64 in N. benthamiana leaves. Arrowheads indicate peri-

nuclear regions.

(TIF)

S1 Table. Primers used in this study.

(TIF)
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7. Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J. et al. A member of the mito-

gen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake.

Plant Journal 2011; 68: 890–900. https://doi.org/10.1111/j.1365-313X.2011.04739.x PMID: 21838775

8. Takano J., Miwa K. and Fujiwara T. Boron transport mechanisms: collaboration of channels and trans-

porters. Trends in Plant Science 2008; 13: 451–457. https://doi.org/10.1016/j.tplants.2008.05.007

PMID: 18603465

9. Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J. DRP1-Dependent Endocytosis is Essen-

tial for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidop-

sis thaliana. Plant Cell Physiol. 2016; 57: 1985–2000. https://doi.org/10.1093/pcp/pcw121 PMID:

27449211

10. Takano J., Miwa K., Yuan L.X., von Wiren N. and Fujiwara T. Endocytosis and degradation of BOR1, a

boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceedings of the National

Academy of Sciences of the United States of America 2005; 102: 12276–12281. https://doi.org/10.

1073/pnas.0502060102 PMID: 16103374

A novel ER export signal of STP transporters

PLOS ONE | https://doi.org/10.1371/journal.pone.0186326 October 13, 2017 12 / 13

https://doi.org/10.1146/annurev.arplant.55.031903.141758
https://doi.org/10.1146/annurev.arplant.55.031903.141758
http://www.ncbi.nlm.nih.gov/pubmed/15377224
http://www.ncbi.nlm.nih.gov/pubmed/24649486
https://doi.org/10.1074/jbc.M109.054288
http://www.ncbi.nlm.nih.gov/pubmed/19901034
https://doi.org/10.1074/jbc.M111.269712
https://doi.org/10.1074/jbc.M111.269712
http://www.ncbi.nlm.nih.gov/pubmed/22041897
https://doi.org/10.1126/science.aah5692
http://www.ncbi.nlm.nih.gov/pubmed/27884939
https://doi.org/10.1111/j.1365-313X.2011.04812.x
https://doi.org/10.1111/j.1365-313X.2011.04812.x
http://www.ncbi.nlm.nih.gov/pubmed/21988472
https://doi.org/10.1111/j.1365-313X.2011.04739.x
http://www.ncbi.nlm.nih.gov/pubmed/21838775
https://doi.org/10.1016/j.tplants.2008.05.007
http://www.ncbi.nlm.nih.gov/pubmed/18603465
https://doi.org/10.1093/pcp/pcw121
http://www.ncbi.nlm.nih.gov/pubmed/27449211
https://doi.org/10.1073/pnas.0502060102
https://doi.org/10.1073/pnas.0502060102
http://www.ncbi.nlm.nih.gov/pubmed/16103374
https://doi.org/10.1371/journal.pone.0186326


11. Jurgens G. Membrane trafficking in plants. Annual Review of Cell and Developmental Biology 2004; 20:

481–504. https://doi.org/10.1146/annurev.cellbio.20.082503.103057 PMID: 15473849

12. Barlowe C. Signals for COPII-dependent export from the ER: what’s the ticket out? Trends in Cell Biol-

ogy 2003; 13: 295–300. PMID: 12791295

13. Nishimura N. and Balch W.E. A di-acidic signal required for selective export from the endoplasmic retic-

ulum. Science 1997; 277: 556–558. PMID: 9228004

14. Kappeler F., Klopfenstein D.R.C., Foguet M., Paccaud J.P. and Hauri H.P. The recycling of ERGIC-53

in the early secretory pathway—ERGIC-53 carries a cytosolic endoplasmic reticulum exit determinant

interacting with COPII. Journal of Biological Chemistry 1997; 272: 31801–31808. PMID: 9395526

15. Gao C.J., Yu C.K.Y., Qu S., San M.W.Y., Li K.Y., Lo S.W. et al. The Golgi-Localized Arabidopsis Endo-

membrane Protein12 Contains Both Endoplasmic Reticulum Export and Golgi Retention Signals at Its

C Terminus C. Plant Cell 2012; 24: 2086–2104. https://doi.org/10.1105/tpc.112.096057 PMID:

22570441

16. Sieben C., Mikosch M., Brandizzi F. and Homann U. Interaction of the K(+)-channel KAT1 with the coat

protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif.

Plant Journal 2008; 56: 997–1006.

17. Mikosch M., Kaberich K. and Homann U. ER Export of KAT1 is Correlated to the Number of Acidic Resi-

dues within a Triacidic Motif. Traffic 2009; 10: 1481–1487. https://doi.org/10.1111/j.1600-0854.2009.

00962.x PMID: 19659502

18. Wolfenstetter S., Wirsching P., Dotzauer D., Schneider S. and Sauer N. Routes to the Tonoplast: The

Sorting of Tonoplast Transporters in Arabidopsis Mesophyll Protoplasts. Plant Cell 2012; 24: 215–232.

https://doi.org/10.1105/tpc.111.090415 PMID: 22253225

19. Imai Y, Matsushima Y, Sugimura T, Terada M. A simple and rapid method for generating a deletion by

PCR. Nucleic Acids Res. 1991; 19: 2785. PMID: 1645866

20. Wieczorke R., Dlugai S., Krampe S. and Boles E. Characterisation of mammalian GLUT glucose trans-

porters in a heterologous yeast expression system. Cellular Physiology and Biochemistry 2003; 13:

123–134.

21. Yamada K, Yamashita-Yamada M, Hirase T, Fujiwara T, Tsuda K, Hiruma K, et al. Danger peptide

receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. EMBO

J. 2016; 35: 46–61. https://doi.org/10.15252/embj.201591807 PMID: 26574534

22. Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T. Viral cell-to-cell movement requires formation of corti-

cal punctate structures containing Red clover necrotic mosaic virus movement protein. Virology. 2011;

413: 205–215. https://doi.org/10.1016/j.virol.2011.02.008 PMID: 21377183

23. Gonzalez E., Solano R., Rubio V., Leyva A. and Paz-Ares J. PHOSPHATE TRANSPORTER TRAFFIC

FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit

of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 2005; 17: 3500–3512. https://doi.org/

10.1105/tpc.105.036640 PMID: 16284308

24. Kitakura S., Vanneste S., Robert S., Lofke C., Teichmann T., Tanaka H. et al. Clathrin Mediates Endo-

cytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis. Plant Cell 2011; 23: 1920–

1931. https://doi.org/10.1105/tpc.111.083030 PMID: 21551390

25. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new

membrane-associated ER protein. Nat Cell Biol. 2001; 3: 492–498. https://doi.org/10.1038/35074561

PMID: 11331877

A novel ER export signal of STP transporters

PLOS ONE | https://doi.org/10.1371/journal.pone.0186326 October 13, 2017 13 / 13

https://doi.org/10.1146/annurev.cellbio.20.082503.103057
http://www.ncbi.nlm.nih.gov/pubmed/15473849
http://www.ncbi.nlm.nih.gov/pubmed/12791295
http://www.ncbi.nlm.nih.gov/pubmed/9228004
http://www.ncbi.nlm.nih.gov/pubmed/9395526
https://doi.org/10.1105/tpc.112.096057
http://www.ncbi.nlm.nih.gov/pubmed/22570441
https://doi.org/10.1111/j.1600-0854.2009.00962.x
https://doi.org/10.1111/j.1600-0854.2009.00962.x
http://www.ncbi.nlm.nih.gov/pubmed/19659502
https://doi.org/10.1105/tpc.111.090415
http://www.ncbi.nlm.nih.gov/pubmed/22253225
http://www.ncbi.nlm.nih.gov/pubmed/1645866
https://doi.org/10.15252/embj.201591807
http://www.ncbi.nlm.nih.gov/pubmed/26574534
https://doi.org/10.1016/j.virol.2011.02.008
http://www.ncbi.nlm.nih.gov/pubmed/21377183
https://doi.org/10.1105/tpc.105.036640
https://doi.org/10.1105/tpc.105.036640
http://www.ncbi.nlm.nih.gov/pubmed/16284308
https://doi.org/10.1105/tpc.111.083030
http://www.ncbi.nlm.nih.gov/pubmed/21551390
https://doi.org/10.1038/35074561
http://www.ncbi.nlm.nih.gov/pubmed/11331877
https://doi.org/10.1371/journal.pone.0186326

