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Integrating networks and comparative genomics
reveals retroelement proliferation dynamics in
hominid genomes
Orr Levy,1*† Binyamin A. Knisbacher,2† Erez Y. Levanon,2‡ Shlomo Havlin1‡

Retroelements (REs) are mobile DNA sequences that multiply and spread throughout genomes by a copy-and-
paste mechanism. These parasitic elements are active in diverse genomes, from yeast to humans, where they pro-
mote diversity, cause disease, and accelerate evolution. Because of their high copy number and sequence similarity,
studying their activity and tracking their proliferation dynamics is a challenge. It is particularly difficult to pinpoint
the few REs in a genome that are still active in the haystack of degenerate and suppressed elements. We develop a
computational framework based on network theory that tracks the path of RE proliferation throughout evolution.
We analyze SVA (SINE-VNTR-Alu), the youngest RE family in human genomes, to understand RE dynamics across
hominids. Integrating comparative genomics and network tools enables us to track the course of SVA proliferation,
identify yet unknown active communities, and detect tentative “master REs” that played key roles in SVA propaga-
tion, providing strong support for the fundamental “master gene” model of RE proliferation. The method is generic
and thus can be applied to REs of any of the thousands of available genomes to identify active RE communities and
master REs that were pivotal in the evolution of their host genomes.
INTRODUCTION
Retroelements (REs) are transposable elements that replicate and
create new insertions throughout the genome. Using a “copy-and-
paste” mechanism (1–3), these genomic parasites have eminently pro-
liferated and spread throughout evolution and now constitute >40% of
the DNA in the human genome (4–6). They generate genomic diver-
sity in the human population (7–9), facilitate evolution (10), and cause
disease by harmful de novo insertions in functional genomic regions
(11). Thus, characterizing RE subfamilies and understanding their
proliferation dynamics can illuminate the processes that forged the ge-
nome during evolution and persistently threaten its integrity (10, 12).
Contemporarily, there are three families that contain active REs in the
human genome (13, 14): LINE-1 (long interspersed nuclear element
1), Alu, and SVA (SINE-VNTR-Alu composite RE; Fig. 1A), which
make up 17, 11, and 0.2% of the human genome, respectively (15).
Only a small fraction of RE sequences within these families, belonging
to a handful of subfamilies, can still proliferate (11, 13–15). Here, we
focused on SVA, the youngest and least-studied active RE family in
humans (16, 17). SVA emerged in the common ancestor of apes (hom-
inoids) but successfully proliferated only in great apes or “hominids,”
comprising human, chimpanzee, gorilla, and orangutan. The expansion
dynamics of SVA throughout evolution has not yet been studied across
hominids, and most importantly, the specific subset of active SVA sub-
families and elements that currently cause disease and drive their expan-
sion across hominid genomes is still unknown.

Network science has been widely used to study the topology and
community structure of real-world networks (18, 19). These analy-
ses have provided new insights in sociology (20, 21), epidemiology
(22), robustness (23), traffic (24), climate (25, 26), and neuroscience
(27), among many other areas (28). Community structure analysis
has been used for phylogenetic inference of biological sequences
and, for protein sequences, has been shown to perform comparably
to commonly used phylogenetic methods (29). Given that REs repli-
cate in a manner where one element spawns the next, we advocate
that networks are a natural scheme for representing RE relations and
that network science embraces a large and yet unexploited potential
for delineating RE activity and proliferation dynamics. To address
these challenging issues, we developed a computational framework
that combines complex network theory and computational genomics.
We use hominid SVA for proof of concept, but the framework is
modular and generic and hence can be applied to RE families of
any genome.

The first step toward understanding RE activity is to identify the
RE subfamilies. A commonly used method for subfamily identifica-
tion, CoSeg (30), is based on multiple sequence alignments (MSAs)
of a cohort of REs being analyzed. A recent method, based on MSAs
as well, goes on to infer the ancestry relations within a family of REs
using Bayesian statistics, from which it constructs an RE ancestry
network (31). Here, we avoid using MSAs, which have some inher-
ent limitations, such as being unable to properly align sets of sequences
that have low global similarity (32), and use RE similarity networks
that are constructed from RE pairwise similarity scores. The network
approach, in combination with comparative genomics, enables us
to study RE community structure, delineate evolutionary relations
between communities, and, most importantly, identify active com-
munities and REs that are responsible for RE proliferation in an-
cient and recent evolution.
RESULTS
SVA similarity networks identify SVA subfamily structure
To test the potential of network analysis to identify RE subfamilies or
“communities” and describe their evolutionary dynamics, we con-
structed networks of SVA elements for four hominid reference ge-
nomes (human, chimpanzee, gorilla, and orangutan; see Materials and
Methods). The networks were constructed from 2638 SVA elements
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in human, 2523 in chimp, 2333 in gorilla, and 1695 in orangutan
(Materials and Methods and data set S1 of data file S1). To create
similarity networks between SVAs, we produced similarity scores
between each pair of elements. Using BLAST (basic local alignment
search tool) (33), we aligned each pair of assembled SVA sequences
within a genome and used the “bitscore” produced by BLAST as the
similarity measure. The bitscore takes into account the amount of
matches, mismatches, and insertions/deletions in the sequence
alignment; therefore, it is a comprehensive measurement of the simi-
larity of pairs of REs. The repetitiveness and variability in the VNTR
(variable number tandem repeats) region hinder the ability to use it
for accurate alignments, and VNTR alignment bitscores are biased
by alignment length. Therefore, we focused on the SINE and Alu
regions of SVA, which have nearly constant lengths of ~500 and
~360 base pairs (bp), respectively, creating separate networks for each
(Materials and Methods). Comparing between the two types of net-
works will help validate our approach. Hence, links in the RE net-
works are weighted, where the nodes are the SVAs and the weights
are BLAST alignment bitscores between pairs of REs. The weight
values vary widely throughout the network and range from 300 to
900 and 200 to 500 for the SINE- and ALU-based networks, respec-
tively. The strengths of matching links in the SINE and ALU net-
works are highly correlated (fig. S1). Notably, not all possible links
were created, due to insignificant BLAST alignments between many
pairs of REs in the network. In the human SINE network, for ex-
ample, 510,045 links were created, which are ~15% of the 3,478,293
possible links.
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The first step toward understanding RE proliferation dynamics is
to identify RE subfamilies, which are sets of REs with highly similar
genetic sequences. Within the networks, REs of the same subfamily are
expected to be more densely connected than REs from different sub-
families in terms of number and strength of links. In network terminol-
ogy, these can be viewed as communities, which are subsets of nodes
that are more densely linked among themselves than they are to the
rest of the network. The RE replication mechanism is such that a new
RE is identical to its source element upon insertion. Over time, the new
insertion accumulates mutations, as do all genomic sequences, which
diverge it from its progenitor. Thus, young REs will be strongly linked
to their sources and close “relatives,” and young communities will be
more tightly linked than older ones (fig. S2). The community detection
algorithm that we used, extremal optimization (EO) (34), is sensitive
to the number of links, their strength, and topology. To better identify
the communities and understand the network structure, we removed
the weakest links of each node and retained only a fraction of the stron-
gest links, denoted as Pr (Materials and Methods). For the RE networks,
this method of disconnecting links is better than using a threshold,
because it does not disconnect whole groups of more ancient REs from
the network. After disconnecting the links, we applied EO and bootstrap
algorithms for community detection (Materials and Methods). The
bootstrap algorithm requires a predefined q parameter, which denotes
the fraction of runs that two nodes must be in the same community to
be considered members of the same community. Increasing q and de-
creasing Pr values increases the number of communities and, therefore,
produces a finer resolution of community structure. Here, we used
Fig. 1. Network approach detects SVA communities with high precision. (A) Prototypical structure of an SVA element. In addition to the major SINE-R and ALU
regions, repetitive VNTR and CCCTCT hexamer regions are presented. The SVA element ends with a characteristic polyadenylate tail and flanking target site duplications
(TSDs), which form upon insertion of REs to the genome. The ~500-bp-long SINE-R region is used here to calculate SVA similarities, and the shorter ALU region is used
for validation. (B) Similarity network of human SVA REs. The nodes represent REs, and the links are weighted by the strength of similarity between their SINE regions.
Communities detected coincide with the commonly used SVA subfamily annotation assigned by RepeatMasker, which was used for node color-coding (Materials and
Methods). (C) Intra- and intercommunity similarity. Calculated by the ratio of the number of present links to all possible links between communities (Materials and
Methods). Red corresponds to strong linkage, which is the strongest along the diagonal, implying high-confidence separation between communities and, specifically,
supporting our findings of the division of SVA_D to six communities.
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Pr = 0.25 and q = 0.8, but consistent results were obtained for a broad
range of different values (note S1). Moreover, we applied an additional
community detection method (35), and the communities were highly
consistent with the EO results for a variety of parameters (see note
S2 and fig. S3). The bootstrapping of EO also identifies a small frac-
tion of “unstable” nodes in the network (~1.8% in the human network;
table S1), which lie on the border between two communities and hence
resemble transitional states between communities (fig. S4).

To validate the communities identified, we compared our com-
munity assignment to subfamilies identified by RepeatMasker, the
most widely used program for RE classification (36). We labeled
each community based on the RepeatMasker SVA repeat annota-
tion, which classifies SVA into six subfamilies (SVA_A to SVA_F),
by using a majority rule for each community. Our network-based
classification almost completely overlapped that of RepeatMasker,
with 97.61% precision in human (Fig. 1B) and 98.99% in chimp
(see Materials and Methods and note S3). This concordance allowed
us to rely on the network’s further division of SVA_D, the largest SVA
family in human, into six distinct subfamilies (SVA_D1 to SVA_D6;
data set S2 of data file S1). These six subfamilies were also identified
by a complementary community structure analysis using the Bornholdt
method (note S4 and fig. S3). SVA_D1 is the largest subfamily
(809 elements), and the others are much smaller (39 to 84 elements).
The six SVA_D subfamilies are separated even more easily than
SVA_B from SVA_C (table S2), which implies that the former
(SVA_D) is more diverged than the latter (SVA_B and SVA_C). Intra-
and intercommunity connectivity scores are used to determine the
quality of community separation. We computed connectivity scores,
and reassuringly, community intraconnectivity is found to be much
larger than interconnectivity (see Materials and Methods and Fig. 1C).
These scores can also be used to infer the evolutionary relations between
communities, as discussed in the next section.

We built the human SVA similarity network based on the SINE
regions. Our network approach is supported by the fact that there
is a high agreement between the SINE-based communities and those
identified by the ALU-based networks (fig. S5). Intersecting the two
classifications enable us to further identify SVA subcommunities.
SVA_F, for example, split into two subfamilies, separating theMAST2
transduction group (a set of SVAs that contains a segment of theMAST2
gene) (37, 38), SVA_F1, from the major SVA_F subfamily, which shows
that our network approach can assist in identifying subsets of REs
with distinct biological features.

Next, we wish to support the communities identified in the network
by determining that the SVA communities represent groups of distinct
sequences. To that end, we generated consensus sequences of the SINE
regions for each community and constructed a neighbor-joining phy-
logenetic tree of them (fig. S6 and data set S5 of data file S1). The arche-
typical consensus sequences were distinct for each of the communities,
including the six newly identified communities in SVA_D.

Comparison between hominid network structures
delineates RE proliferation dynamics
The SVA family has been active in the lineage leading to humans for
millions of years, since the common ancestor of hominids. Therefore,
a genomic SVA network should contain ancient and young elements,
with insertion times spanning from the hominid’s common ancestor
to young species-specific ones. To compare SVA expansion in the dif-
ferent hominids and identify unique expansions in each genome, we
construct SVA networks for each hominid separately and use compar-
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ative genomics to identify which communities are shared and which
are species-specific (see Materials and Methods; Fig. 2, A to D; and
data sets S2 and S3 of data file S1). The evolutionary relations between
the hominids are such that orangutan branched off first from the
common ancestor leading to the human lineage, followed by gorilla,
and lastly chimp. As expected, the overall community structure and
the number of shared or orthologous (existing in the same genomic
location in multiple organisms due to insertion in a common ances-
tor) elements between hominids follow these phylogenetic relations. In
addition to the shared ancient communities, the network analysis also
revealed new species-specific communities of REs in each hominid,
representing unique evolutionary expansions (Fig. 2, A to D). For no-
menclature, we named these new communities in each hominid with
prefixes denoting the A to F subfamily they belong to and enumerated
the subfamilies by the communities’ age—higher numbers for younger
communities (by activity times defined below). For species-specific
communities in nonhuman primates, we added suffixes of acronyms
resembling their genus and species (Pt for chimp, Gg for gorilla, and
Pa for orangutan).

RE networks have a special property of “network expansion,” in
which existing nodes in the network spawn new ones. This phe-
nomenon can be viewed at two resolutions—either the community
or element levels. Being initially interested in the macro level of
SVA evolution, we constructed community-level networks for each
hominid. To weigh the links in these networks, we devised an in-
tercommunity similarity metric that represents the connectivity be-
tween each pair of communities (Materials and Methods). Then,
applying Edmond’s algorithm (39) to each of these undirected net-
works, we calculated the optimal branching or “maximal spanning
tree” describing the order of community spawning in each (Fig. 2,
E to H). This algorithm requires defining a root community, which
was set to the most ancient community in each network, systemat-
ically and unequivocally identified by using the comparative geno-
mics data and intracommunity similarity rates described below (see
Materials and Methods and Fig. 2, I to L).

The directed network structure revealed by Edmond’s algorithm
illuminates different modes of community spawning throughout SVA
evolution. In some cases, network expansion is linear, as seen for com-
munities SVA_A to SVA_D. In other cases, there is an individual com-
munity that spawns multiple new communities, as exemplified by
SVA_D1 in the human, chimp, and gorilla networks (Fig. 2, E to G).
The general SVA network topology and these two modes of expansion
infer different possible roles for communities in the network: (i) founder
communities, which are the ancestral root community of an entire net-
work (that is, SVA_A); (ii) transitional communities, which gave rise to
a single community and have ceased to be active; (iii) spawning commu-
nities, which spawned multiple child communities; and (iv) terminal
communities, which are current leaves in the directed network. These
can be further classified as “dead-end” communities that were active
in the past, or “active” communities that are still active. In the human
network, D2, D3, and D4 are the dead-end communities, whereas E
and F are the active communities (based on the method described in
the next section).

Communities represent bursts of RE proliferation and
highlight recent activity
There is an ongoing arms race between the genome and its resident
REs. REs invade or emerge in a genome, and the latter must find
the means for their restriction to maintain its integrity and proper
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function. In many cases, REs subsequently evolve to evade the host’s
restriction, resulting in a new era of uncontrolled activity (40). This
interplay causes REs to proliferate via intermittent bursts of activity.
As is typical for active RE families, most SVAs in the genome are in-
active due to truncation upon initial insertion or post-insertion de-
generation, and only a limited set of source elements continues to be
capable of mobilization. In essence, each community in the RE net-
works resembles a burst of activity of an individual or set of similar
active source elements. The subset of REs that are still active are the
ones that continue to create diversity and can cause disease in their
host’s population. Therefore, we were most interested in developing
a method that will infer the activity periods of each RE community
and hence highlight the communities containing contemporarily active
elements.

To this end, we devised a method based on intracommunity simi-
larities that approximates the relative activity periods of each commu-
nity. REs are identical to their progenitors or source elements upon
insertion and accumulate random mutations that cause them to grad-
ually diverge. Thus, the intracommunity sequence identity can be a
Levy et al., Sci. Adv. 2017;3 : e1701256 13 October 2017
proxy for activity time. Specifically, we calculated the percentage of
sequence identity between each RE to its closest relative (by maximal
bitscore) and used the median of these values per community to ap-
proximate the activity periods (Fig. 2, I to L). Although these are not
exact estimations, they are sufficient to understand the relative activity
periods of different communities. Reassuringly, this method accords
with the known evolutionary relations of human SVA (fig. S6) (16)
and an independent analysis obtained from comparative genomics
data (Pearson’s r = 0.924 between the identity percent medians and
the percentage of ancient “shared” elements per community). With
regard to contemporary activity potential, the communities with the
highest identity scores are the most likely to still be active today, es-
pecially if they have many pairs of REs with 100% identity. In agree-
ment with previous knowledge, this method predicts that SVA_E and
SVA_F are active in humans (Fig. 2O). We also identified a novel com-
munity within SVA_D, D6, which, with high probability, was active in
recent human evolution (see additional support in the next section).
For the other hominids, this approach reveals unique communities that
are currently most probably active in each genome. To our knowledge,
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Fig. 2. SVA networks in hominids illustrate differential community structure and proliferation dynamics. (A to D) SINE-based networks of SVA elements for each
hominid. Common colors are assigned to communities A, B, C, and D1 corresponding to colors in (E) to (H). Unique colors are given to the remainder, which are
primarily species-specific expansions. (E to H) Community-level directed networks describing SVA expansion in each hominid network presented in (A) to (D), respec-
tively. (I to L) Density plots describing relative community activity periods for each community based on evolutionary distances between the REs within each com-
munity (Materials and Methods). The higher is the identity within a community, the younger is the community, indicating recent activity.
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this is the first description of SVA subfamily activity capacities in
nonhuman hominids (NHHs). Each NHH had two to four active com-
munities: in chimpanzee, D4_Pt, D5_Pt, and possibly D2_Pt; in gorilla,
all four SVA_D subfamilies (D1 to D4_Gg); and in orangutan, A5_Pa,
A6_Pa, and possibly, albeit to a much lower extent, A2_Pa to A4_Pa
as well. These species-specific communities contain the active elements
driving diversity and disease in their respective hosts’ population.

A possible way to evaluate the extent of recent activity of a com-
munity is to search for sets of REs within a community that are 100%
identical to each other and hence form fully connected cliques (Mate-
rials and Methods). By searching for cliques in the SVA network, we
found that SVA_F has 6 large cliques, with a maximum clique size of
33; SVA_E has 5 cliques, with a maximum size of 5; and D1 also has a
single small clique (fig. S7). These cliques most probably contain the
most recently active REs in their respective communities.

RNA and DNA sequencing data support network-based
community activity findings
To corroborate and further understand the activity capacities of the
communities identified in the human genome, we analyzed compre-
hensive data sets of human RNA and DNA sequencing (Fig. 3). The
subfamily expansion depicted by our genome-based networks re-
flects SVA proliferation specifically in the germ line or early embry-
onic development, which can result in heritable genomic insertions.
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RNA expression of an RE is a prerequisite for its ability to create new
insertions. Therefore, we analyzed SVA RNA expression through-
out early (preimplantation) human embryonic development (Materials
and Methods), which is an ideal setting for creating new heritable
insertions. A previous study (41) that analyzed this data showed that
SVA expression strikingly increases at the eight-cell stage and further
rises at the following morula stage. We wished to further examine
the expression of each SVA community in the various developmental
stages (Fig. 3, A and B). As expected, we find that SVA_E and SVA_F
have elevated rates of RNA expression, but surprisingly, the greatest
contributor to SVA expression is SVA_D1, identified by our commu-
nity method as the founding community of SVA_D (Fig. 2E), despite
being a relatively old and presumably inactive community. To under-
stand this conundrum, we further divided SVA_D1 into subcom-
munities (using a higher q = 0.9 in the EO algorithm; Materials and
Methods) and identified four distinct communities in SVA_D1, with
differential expression rates that are in general agreement with their
estimated activity times (fig. S8). The youngest one, SVA_D1d, is re-
sponsible for 50% of SVA_D1’s expression and is more enriched in
expression than SVA_E (but less than SVA_F) when normalized by its
genomic element count. This subcommunity is also the largest, hence
the most successful, within SVA_D1 (table S3).

Although RNA expression is necessary for RE mobilization, direct
evidence for RE replication in the germ line can be best derived from
Fig. 3. Network predictions of SVA activity are supported and refined by both RNA and DNA sequencing data. (A) SVA expression throughout early embryonic
development derived from single-cell RNA sequencing (RNA-seq) data. Stages of development are as follows: oocyte (Oo), Zygote (Zy), two-cell (2), four-cell (4),
eight-cell (8), morula (Mo), inner cell mass (ICM), and post-implantation (PI). SVA expression drastically rises at the eight-cell phase and peaks at the morula stage.
(B) Enrichment of expression per human SVA community at peak expression stages. Enrichment was given by the number of RNA reads divided by the com-
munity size. (C) Enrichment of mobile element insertions (MEIs) generated by each human SVA community based on whole-genome sequencing (WGS) of 2422 individuals
from the global human population. The inset contains the bulk number of MEIs per community, showing that D1, in addition to E and F, is responsible for a large
fraction of recent SVA expansion.
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MEIs in genomic sequencing data. Therefore, we analyzed WGS data
of 2422 individuals from the 1000 Genomes Project (Materials and
Methods) (9). Sudmant et al. (9) identified 818 SVA insertions in this
genomic data that are not present in the human reference genome.
These are annotated as “SVA,” and we were interested in further char-
acterizing the source communities of these MEIs. As previously ob-
served (14, 16), SVA_E and SVA_F were the most active communities,
followed by SVA_D1, which was responsible for the greatest amount
of MEIs among SVA_D subcommunities (Fig. 3C). Appealingly, further
scrutinizing the four subcommunities within SVA_D1 discussed above
shows that the same subcommunity, SVA_D1d, which we identified to
be the youngest and the most expressed in embryonic development, is
also the main contributor to MEIs in the human population (fig. S9).
This cross-validation by multiple types of real biological data supports
the ability of network analysis to identify active RE communities.

All-hominid network reveals key elements in
SVA proliferation
The above network analysis reveals the expansion and activity of com-
munities in each species. To compare and link between these commu-
nities, we applied the same methods used for community and ancestry
detection to the SVA sequences of all four hominids merged together
(Materials and Methods). By characterizing the communities in this
all-hominid network and integrating the comparative genomics data
(Materials and Methods), we can differentiate between communi-
ties that emerged in a common ancestor of two or more species (shared)
and species-specific ones. The comparative genomics data also enable
us to locate the root community of all SVA, which we use to infer and
visualize the ancestry tree of SVA expansion throughout hominid evo-
lution (Fig. 4). Our method infers tree structure primarily from sequence
similarity. To see whether it corresponds to biological community prop-
erties that should gradually change with age, we compared several prop-
erties in parent and child community pairs in the tree (Materials and
Methods). As hypothesized, we find that communities closer to the root
are more ancient than their descendants by two criteria: (i) they are
richer in shared elements and (ii) they have lower intracommunity
similarity (Wilcoxon paired signed-rank test; P = 1.73 × 10−4 and
0.088, respectively).

Next, we mapped the communities identified in the per-species
network to the all-species one. As expected, the youngest communities
identified in the per-hominid networks mapped to distal leaves in the
tree. Intriguingly, these networks showed that communities such as
human SVA_E and SVA_F, which were thought to be human-specific
(16), contained elements from the chimp and gorilla genomes, too.
This could occur because of two possible scenarios: either by the initial
proliferation of an element that was present in a common ancestor or
due to convergent evolution, where REs in multiple genomes indepen-
dently underwent the same mutations to take the same form. Because
we found multiple shared elements in both communities, the first ex-
planation seems most likely. These shared elements most probably
contain the founders of their entire respective communities.

Further analysis showed that human SVA_D2, an ancient and in-
active family in human genomes, resides in the same all-hominid network
community as communities that independently expanded in chimp
and gorilla genomes (D2_Pt and D2_Gg) (Fig. 2, F and G). Moreover,
the communities in these genomes expanded more successfully (33 and
100% more, respectively) than in human and are probably still active in
the gorilla genome today (Fig. 2K). Another notable finding is that the
four subcommunities of human D1mapped to the all-hominid network
Levy et al., Sci. Adv. 2017;3 : e1701256 13 October 2017
in the expected order (Fig. 4). Once again, SVA_D1d is portrayed as a
young community and is now found to represent a mostly human-
specific expansion (table S3).

In addition to identifying tentative founders of young commu-
nities, we use the networks to identify possible “master SVAs” that
played seminal roles in the initial proliferation of SVA in hominids.
The linear evolution of SVA subfamilies A to D (Fig. 2, A to C) sug-
gests that there could be a single “master RE” that was active over a
long period in evolution, spawning subfamilies A to D subsequently,
as it accumulated mutations over time. To identify such an element,
we search for a full-length element in the human genome that has an
ortholog (an SVA in the same genomic location) in the orangutan ge-
nome. We are specifically interested in elements that belong to SVA_D
or an even younger subfamily in human and to any of the SVA_A-like
subfamilies in orangutan. In the network, these would be orthologs
that are present in different communities in the all-hominid SVA net-
work (Fig. 5A). Rigorous computational and manual analyses reveal
only two pairs of candidate elements that meet these criteria (note S5).
Both elements reside within introns of genes (in reverse orientation):
Fig. 4. Integrated network from multiple hominids maps SVA expansion and
uncovers probable source elements. The Circos network demonstrates an ap-
proach to integrating RE data from multiple related organisms, describing the
common and distinct evolutionary expansions of SVA in hominids. Each circle
represents a community in the merged network (Materials and Methods), labeled
with its respective size. The directional links between the communities represent
the expansion of SVA throughout evolution, stemming from the ancestral SVA_A
community, which emerged in the common ancestor of hominids. The inner ring
is colored according to the subfamily annotation of the community (bottom leg-
end), and the outer ring portrays the fraction of elements present in multiple
species (shared) and the fraction of species-specific elements in each hominid
(top legend). The shared elements in young communities are the most ancient
in their communities and hence are the most probable active elements that
founded them.
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one in CABIN1 (calcineurin binding protein 1) and the other in NPLOC4
(nuclear protein localization protein 4 homolog). These elements re-
spectively belong to SVA_A2_Pa and SVA_A in orangutan and to
SVA_D1a in human. The locations of these SVAs are identical in
the hominid genomes, as evinced by the similarity of their flanking
genomic sequences and TSDs (that is, the short genomic sequence
duplication that occurs during RE insertion; Fig. 1A and note S5). Be-
cause TSD lengths vary between insertion events, the identity of TSD
length implies that these SVA elements are bona fide orthologs that
resulted from a single insertion event in the hominid common an-
cestor (note S5). Put together with the unequivocal assignment of these
orthologous SVA pairs to distinct and distant communities (Fig. 5B
and figs. S9 to S11), one of these elements is the most probable master
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SVA behind the formation of subfamilies B, C, and D in the common
ancestor of hominins (that is, hominids excluding orangutan).
DISCUSSION
We hypothesized that networks, which naturally represent RE ances-
try and similarities, are a powerful platform for studying RE activity.
Here, we use hominid SVA to demonstrate that network analysis can
reveal new RE community structure at a fine scale and delineate their
expansion dynamics in the genome throughout evolution. Integrat-
ing networks with comparative genomics enables us to estimate ac-
tivity potentials of RE communities, highlights specific elements that
are active with high probability, and pinpoints elements that played
Fig. 5. Networks, together with comparative genomics, pinpoint a tentative master SVA element in the CABIN1 gene. SVAs found in the exact same location in
the human and orangutan genomes are most likely ancient SVAs that were inserted in the genome of the hominid’s common ancestor. One of the only examples for
such an element is located in the CABIN1 gene. These ancient SVAs are expected to belong to the most ancient SVA subfamily, SVA_A. However, the “CABIN1 element”
contains diagnostic mutations, unequivocally mapping it to distinct younger communities in the human and orangutan genomes. The most feasible explanation for this
discrepancy is that this element was an active “master SVA” in the common ancestor of hominids that accumulated distinct mutations in the hominin and orangutan
lineages after the latter’s speciation. This master element retained activity and passed on its new lineage-specific mutations to its offspring in each genome, fueling the
formation of the communities found in the linear evolutionary path from SVA_A to the respective communities they currently map to in each genome. (A) Schematic of
the all-hominid community network (as in Fig. 4), depicting the path of molecular evolution the SVA element in the CABIN1 gene underwent from SVA_A (red root
node) to the SVA_D1a community in human (off-white node) and, in parallel, to the SVA_A2_Pa community in orangutan (green node). The accumulation of mutations
necessary to transform from SVA_A to SVA_D in this ancient element suggests that it may be the master element that spawned SVA communities B to D. (B) Genomic
location of the CABIN1 SVA element. The MSA compares the SINE regions of this element’s sequences from hominid genomes to the ancestral HERVK sequence, from
which the SVA SINE region was derived, and to the SVA consensus sequences. The MSA, and especially the 16-bp deletion, supports the differential community
classification of the orangutan element to SVA_A and of the other hominid genomes to SVA_D (yellow columns). The first 150 columns of the full alignment (fig.
S9) are shown. Dots represent matches and hyphens represent deletions with respect to the HERVK sequence.
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key roles in the successful proliferation of an entire lineage of REs.
These new RE communities, their activity time estimation, and the
identification of the most probable master elements were supported
with analyses of genomic sequencing data.

Subfamily classification algorithms regularly rely upon MSAs
(30, 31). In many cases, clustering algorithms that detect sets of similar
sequences are required as a preprocessing step for the MSA-based
methods to work accurately (42). The first component in our network
method is essentially a clustering algorithm that can uncover a spec-
trum of community structure resolutions, depending on the param-
eters used, enabling precise characterization of communities without
necessitating MSAs, which have various constraints on the sets of se-
quences that can be aligned together (32). Using BLAST (and not a
pattern-matching algorithm) for the distance metric enables us to take
into account the specific processes of molecular evolution that shape
genomic sequence over time.

Community detection in networks can be achieved in approxi-
mately linear run time (43, 44) and can therefore be applied to net-
works containing millions of nodes. The modularity of our approach,
which enables us to substitute the community detection algorithm,
also allows for cross-validation using multiple algorithms (as we show
for SVA using the EO and Bornholdt methods). The pairwise similar-
ity step required in our method before community detection is the com-
putational bottleneck, but can also be parallelized or replaced by more
efficient algorithms (45, 46), enabling us to optimize the efficiency of
the entire pipeline. Thus, although we analyzed a data set of thousands
of REs as a test set, the efficiency of network-based analysis makes it
feasible to analyze even the largest RE families across more extensive
sets of genomes, as we demonstrate in a preliminary analysis of the hu-
man Alu family, the RE family with the highest copy number in the
human genome (note S4 and table S4).

The community-level directed networks reveal the evolutionary
expansion of SVA in each hominid genome, allowing us to differen-
tiate between successive (that is, linear) bursts of activity and the pro-
liferation of multiple communities in parallel. The network topology
reveals that different communities have played different roles in SVA
expansion. Further, characterizing the intracommunity pairwise simi-
larities enables us to estimate the period of activity and current activity
potential of each community. Notably, the routine method for esti-
mating the age of an RE is to calculate its divergence from its sub-
family’s consensus sequence (4, 47). We find that considering only
the maximal pairwise similarity per element can lead to new insights.
For example, clique detection, based on pairwise similarity, enables
us to identify the youngest and most probable active elements in com-
munities, which are not necessarily the most similar to the community’s
consensus, especially in heterogeneous communities (for example,
SVA_D1). Supplementing the network analysis with RNA and DNA
sequencing data validates and refines the understanding of RE com-
munity activity, supporting the predictive power of network analysis
and demonstrating the advantage of combining network and biolog-
ical analyses.

Integrating cross-species networks and comparative genomics data
provides detailed understanding of shared and species-specific ex-
pansions in each genome. The Circos network (Fig. 4) enables us to
effectively visualize the bird’s-eye view of the expansion of the entire
RE family. Detailed inspection of specific elements in the network re-
veals the most probable key players in SVA evolution. The SVA ele-
ments residing in the CABIN1 and NPLOC4 genes, identified by
crossing network and biological data, are the first discovered examples
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of a specific master RE that fueled the expansion of an entire RE fam-
ily that is still active in humans. The existence of these specific elements
in hominids and their absence from the Gibbon genome (fig. S13) (48)
can explain the success of SVA, specifically in hominid genomes and
not in more distant hominoids. One of these elements most probably
drove the sequential expansion of SVA in hominins (human, chimp,
and gorilla) from SVA_A until the formation of SVA_D, which pro-
liferated to reach a critical mass that facilitated the parallel differential
branching of SVA in each of these genomes.

It is most compelling to try to understand what is in the CABIN1
(or NPLOC4) element that enabled it to retain activity for such a long
period of time, since the proliferation of SVA_A to that of SVA_D.
CABIN1 and NPLOC4 are housekeeping genes (49) and are expressed
throughout early embryonic development and in adult gonads (fig. S14),
which supports the ability of these SVAs to drive SVA proliferation in
the inherited genome. Genic REs that are in the same orientation as
their host genes are removed by purifying selection at a faster rate than
reverse-oriented elements, probably due to greater interference with
gene function (4, 50). Thus, the fact that the CABIN1 and NPLOC4
elements are reverse-oriented may have contributed to their ability to
stay under the radar of evolutionary forces. Furthermore, the CABIN1
element resides between two close-by exons, which impedes the
genome’s ability to remove it by genomic deletion.

These elements are intriguing examples, but they are only repre-
sentatives of an entire set of master elements that can be identified in
the cross-hominid network. When seeking to identify elements that
played similar roles in young communities, the shared elements in
these communities are the immediate suspects, because these relatively
ancient elements were the first to take the form of their respective com-
munities and hence are the most probable founders. These primordial
elements of contemporarily active communities may or may not still
be active. The clique-based method we developed enables us to predict
which elements have recently replicated. These active elements are of
primary interest, because they are the elements that can still form disease-
causing and evolution-promoting de novo insertions.

In conclusion, we present an approach that integrates network anal-
ysis and computational genomics to delineate RE dynamics and activity.
The method could be used in the future to understand RE dynamics
and identify active elements in any of the thousands of organisms
whose genomes have been sequenced and to understand the evolution
of viruses within hosts.
MATERIALS AND METHODS
SVA element retrieval and assembly
DNA sequences of SVA elements were downloaded from the RepeatMasker
(36) table of the UCSC (University of California, Santa Cruz) Table
Browser (51). The assemblies used were hg19 (human), panTro3 (chimp;
Pan troglodytes), gorGor3 (gorilla; Gorilla gorilla), and ponAbe2 (orang-
utan; Pongo abelii). Poorly mapped elements, those assigned chromo-
some names of chr_random or chrUn, were discarded. RepeatMasker
tends to split sequences of an individual SVA element in the genome
into multiple fragments. Therefore, we first assembled SVA fragments
into full-length elements with an empirically devised method: (i) SVA
sequences within 500 bp apart were merged; (ii) sequences annotated
by RepeatMasker as simple repeats (TCTCCCn or GGGAGAn) present
within 100 bp of SVAs were merged with the SVA fragments because
they are actually the SVAs’ 5′-hexamer repeats; (iii) for NHH genomes,
VNTRs frequently had large gaps in the assembly (therefore, we merged
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SVA fragments with internal gaps, defined as fragments within 500 bp
on each side of the gap); and (iv) SINE, VNTR, and ALU regions were
identified within SVA sequences (as described below), and elements with
SINE regions >600 bp were replaced with the original RepeatMasker-
identified fragments, because they may resemble adjacent insertions
that were mistakenly merged.

Identification of regions within SVA elements
SVA elements consist of three main regions: SINE, VNTR, and ALU
(Fig. 1A). Most of our analyses focused on the SINE region, which is
longer than the Alu region (~500 versus ~360 bp, respectively) and has
constant length, unlike the VNTR. To identify these regions within
genomic sequences, we first identified them in the six (SVA_A to SVA_F)
consensus sequences found in Repbase Update (52). Next, for each
hominid genome, genomic SVA sequences were aligned to each of the
regions using BLAST (v2.2.23), and adjacent regions (≤50 bp) with
similar region annotation and genomic orientation were merged. The
longest region identified in this manner for each element was selected.
For the SINE regions, subfamily annotation was assigned on the basis
of the original annotation from the RepeatMasker table. This sub-
family annotation was considered the gold standard and used to show
the accuracy of the network-based annotation because RepeatMasker
annotation is the most widely used and is the only comprehensive RE
annotation that is publicly available.

RE network construction per hominid
Separate networks were constructed for SVAs of every hominid genome.
Each node in the network represents a single genomic RE sequence.
To generate weighted links, SVA sequences from each hominid genome
were pairwise-aligned using BLAST (2.2.30+; “-strand plus -dust no
-max_target_seqs 4000”). Links were drawn between pairs of sequences
for which any alignment was produced. The best alignment for each
pair was selected, and link weights were defined as alignment bit-
scores, which indicate the extent of sequence similarity. Only the SINE
region was used in this analysis to avoid biases associated with VNTR
lengths and alignment complication of this repetitive region. Addi-
tional networks were built from the Alu regions to validate and refine
the SINE-based networks.

Filtering links from the network
The network community detection algorithm is sensitive to the num-
ber of links, their strength, and topology. To have a better resolution
of the network community structure, we removed weak links from the
network. Genomic sequences accumulate mutations over time; there-
fore, the older the nodes are, the weaker are their links. For this rea-
son, we did not use a threshold to disconnect links, because it would
disconnect whole groups of older REs from the network. Therefore,
we disconnected the weakest links of each node and retained only the
top fraction of strongest links, denoted as Pr. Decreasing Pr values re-
moves more links and hence reveals more communities due to the bet-
ter separation, whereas increasing Pr values causes communities to
merge. In the Hominids networks, we used a Pr value of 0.25, which
means that the strongest 25% of each node’s links were kept. Consistent
results were obtained for a range of different Pr values (note S1).

Community detection in RE networks
Communities within networks can be defined as subsets of nodes that
are more densely linked than the rest of the network (18, 19). We iden-
tified RE communities in the network using a Matlab implementation
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of the EO method (34), which takes into account the number of links
in the network and their weights. EO was applied to both the initial
and “filtered” link-disconnected networks with various values of Pr.
Because EO contains random phases, there is some variation in the
community detection in each run. Therefore, we ran the algorithm
100 times and used a bootstrap algorithm (53) for statistical validation
of community assignment. The bootstrap algorithm requires a prede-
fined q parameter, which denotes the fraction of runs that two nodes
must be in the same community to be considered bona fide members
of the same community. Nodes that either were assigned to a commu-
nity smaller than 20 nodes or were not assigned to a community were
considered as unstable nodes. In the Hominids network, we used a
default q value of 0.8, but consistent results were obtained for a range
of q values. Increasing q reveals more communities and more unstable
nodes, whereas decreasing q merges different communities (note S1).
To further validate the SVA communities identified by EO, we applied
the Bornholdt community detection method (35) to the SVA network
with an array of parameters. This more efficient algorithm was used to
show the upscaling of our network-based approach by applying it to a
large network of human Alu (note S2).

Community connectivity scores
To characterize the relations and extent of separation between the com-
munities, we used community connectivity scores to measure to what
extent a community is connected within itself and separated from the
others. The community separation measurement takes into account
links within and between the communities. The measure is an n × n
table, where n is the number of communities in the network and each
cell notes the strength of the connectivity (0 ≤ Connectivity ≤ 1) be-
tween each pair of communities or within a certain community. The
connectivity measurement is the ratio between the number of exist-
ing links between (or within) the communities and their possible num-
ber of links.

The formula for i ≠ j is

Cði; jÞ ¼ Number Of LinksðCommi;CommjÞ
SizeðCommiÞ � SizeðCommjÞ ð1Þ

and the formula for i = j is

CðiÞ ¼ 2 � Number Of LinksðCommi;CommjÞ
SizeðCommiÞ � ðSizeðCommjÞ � 1Þ ð2Þ

where Number_Of_Links(Commi, Commj) is the number of links be-
tween communities i and j. The number of links taken into account
was different depending on the analysis the community separation
was used for: All the links in the network were used for community
connectivity scores (Fig. 1B), whereas for inferring community-level
ancestry (Fig. 2, E to H), only a certain percentile of the strongest links
were used, as described below in the section on Edmond’s algorithm.

Network visualization
The networks were plotted with Cytoscape (v3.4.0) (54) using “edge-
weighted force directed layout” (55). For efficiency and improved
perception, only the strongest links were presented, by setting the
Pr parameter defined above to 0.03, which retains the strongest
3% of links per node. The unstable nodes and their links were not
sketched.
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Comparison of community annotation to known
SVA subfamilies
To verify the communities detected by the network, we compared the
network community assignment of the various nodes to the widely
used RepeatMasker classification (36) provided in the UCSC Table
Browser (51). Because SVA elements in this table tend to be fragmented
into multiple sequences, we used the subfamily annotation of the SINE
region, which is the one analyzed in the network. Our network-based
classification is divided into more communities than the RepeatMasker
classification. Therefore, we labeled each community based on the
RepeatMasker SVA repeat annotation, which classifies SVA into six
subfamilies (SVA_A to SVA_F), by using a majority rule for each
community. Nodes assigned the same subfamily annotation as in
RepeatMasker were considered correct. Thus, the true-positive (TP) and
false-positive (FP) rates are the fraction of correctly and incorrectly an-
notated nodes, respectively (unstable nodes were disregarded in both).

Activity time approximation and clique finding
To approximate the relative activity time of each community, we ana-
lyzed the intracommunity sequence identity. We calculated the per-
centage of sequence identity between each RE to its closest relative
(the one with maximal bitscore, which takes into account the alignment
length) and used the median of these values per community to approx-
imate the activity times (Fig. 2, I to L).

To find groups within the communities that have maximal identity
levels, we generated a network in which its links are the percent iden-
tity between each pair of REs. We filtered out links with alignment
lengths shorter than 450 or less than 100% identity.

Edmond’s optimum branching algorithm for
community-level network analysis
A community-level network was constructed, in which nodes are com-
munities and links between all pairs of communities are weighted
by connectivity score matrices (see above). The networks analyzed for
optimum branching were defined by Pr = 0.05, not the previously
used Pr = 0.25, because evolutionary relations are most reliably in-
ferred from the strongest links. To identify the ancestral relations be-
tween communities, we applied an automated optimum branching
algorithm, Edmond’s algorithm (39), to the network. Edmond’s re-
quires a predefined root, which was set to the most ancient community
(SVA_A). This root was chosen on the basis of previous knowledge,
although it complies with the percentage of divergence between the
REs in each family and with the percentage of REs in each community
shared by other organisms (that is, inserted in their common ancestor).
Thus, these two measurements, for example, can be used to determine
the root in other RE networks. This algorithm was applied to both the
per-hominid (Fig. 2, E to H) and all-hominid networks (Fig. 4).

Construction of all-hominid SVA network
SINE regions of SVA sequences of all four hominids were pairwise-
aligned using BLAST (2.2.30+; “-strand plus -dust no”). Communities
were identified using the EO method (34), with Pr = 0.15 and q = 0.92.
Only communities with at least 20 elements were retained, which con-
tained 8488 of the total 9184 elements in all hominids. The advantage
of this approach is that it compares all sequences from all hominid
genomes in an unbiased manner and hence enables linking between
species-specific elements and communities from different genomes.
The community-level network of Circos nodes (Fig. 4) was constructed
by defining two tracks of information: the nodes’ presence/absence in
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different hominids and their A to F subfamily annotation. The former
was derived from comparative genomics, which enables us to identify
the presence/absence profiles of each genomic SVA element in the other
three genomes. These shared elements between the species are termed
orthologous, which implies that the element was inserted in these species’
common ancestor. Orthologs were identified using the UCSC Genome
Browser’s executable “liftover” tool (June 2013; http://hgdownload.soe.
ucsc.edu/admin/exe) (56) and whole-genome pairwise alignments.
SINE regions of all SVAs were “lifted” (-minMatch = 0.5) for each ge-
nome to all other genomes. Only elements lifted to syntenic chromo-
somes, including the known Gorilla chr5:chr17 translocation (57), were
accepted. In some cases, only part of the SINE region mapped to an-
other genome and liftover does not provide target-genome coordinates.
To obtain these for the partially lifted sequences, genomic sites at 50-bp
intervals were selected per element and lifted independently. The ge-
nomic mapping assigned for these sites was then associated back to
the full-length element. The second annotation, to subfamilies A to
F, was given by the original RepeatMasker annotation. The plot was
sketched in Cytoscape (v3.4.0) using the enhancedGraphics app (58).

Inferring age-related trends in the all-hominid
community network
Two values were calculated per community: (i) the fraction of shared
(orthologous) SVAs in each community and (ii) the median values of
the maximum percent identity per element in the community (as cal-
culated for per-hominid networks; Fig. 2, I to L). We hypothesized
that the greater the distance of a community is from the SVA-founding
root community, the lower its fraction of ancient elements and the high-
er its intracommunity sequence identity will be. Parent-child pairs in the
network were compared using paired Wilcoxon’s signed-rank test in R.

RNA expression analysis of SVA in human
preimplantation embryos
A previously published single-cell RNA-seq data set from human em-
bryonic development (SRP011546) (59) was downloaded from the
National Center for Biotechnology Information (NCBI) sequence read
archive (www.ncbi.nlm.nih.gov/sra). Post-implantation RNA-seq data
(SRR1295944, SRR1295945, and SRR1295946) were added from a
later study (60). All reads were aligned to the human genome (hg19)
using STAR (v2.4.2), with parameters that retain multimapped reads
and hence enable accurate analysis of repetitive element expression
(“–outFilterMultimapNmax 100–winAnchorMultimapNmax 100”).
Expression per community was assessed on the basis of sequencing
reads that mapped uniquely to REs of a single community. This is anal-
ogous to the common approach in RNA expression analysis to retain
only uniquely mapped reads (that is, to a single genomic location) but
is generalized to the community level as necessary for repetitive el-
ement analysis. This approach prevents erroneous intercommunity
read mapping, which is common in young RE families, such as SVA.
Cross-sample normalization was applied by DESeq normalization of
gene expression based on the expression values of all RefSeq genes,
which was quantified for each sample by featureCounts (v1.3.6-p1;
default parameters) (61).

Community annotation of SVA MEIs in 1000 Genomes
Project data
WGS reads were downloaded for 2504 human individuals from the phase
3 data of the 1000 Genomes Project (downloaded from fasp-g1k@fasp.
1000genomes.ebi.ac.uk:vol1/ftp/phase3 via Aspera) (9). The analysis
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was restricted to the 2422 individuals screened for MEIs in the phase 3
structural variation analysis (9). Therein, 818 SVA MEIs were identi-
fied in the human population, but the insertions were annotated as
SVA without further detail. We identify the specific communities that
most probably spawned each MEI to understand the activity rates
of each community. The 818 MEIs were previously identified primarily
using discordant paired-end reads in the data, where one read (“read1”)
maps to the genome at a specific locus and the other (“read2”) to an
SVA, which is not present in the genome. These discordant reads imply
that an MEI exists in proximity to the locus where read1 mapped to.
We designed a pipeline to efficiently sift through 46 terabytes of raw
data and focus on the reads supporting the SVA insertions, which could
subsequently enable community annotation of MEIs. First, we used
Kallisto (62) to identify all SVA reads (Kallisto v0.43.0; parameters:
–fragment-length 100 –sd 1 –pseudobam). The index file used for SVA
identification by Kallisto contained the six SVA consensus sequences
from Repbase Update (52) and six consensus sequences we created from
the SINE region of communities SVA_D1 to SVA_D6. Paired reads that
either both or none matched SVAwere discarded. For pairs with only one
read (read1) mapping to SVA, read2 was mapped to the human genome
(hg19) using STAR (v2.4.2a; parameters: –outFilterMultimapNmax 1
–outFilterMismatchNmax 999 –alignIntronMax 1) and was required
to uniquely map within 750 bp of one of the 818 MEI sites. We validated
that no SVAs were present in the reference genome within 500 bp
of these 750-bp flanks; hence, any discordant read pairs mapping in
this manner correspond to the SVA MEIs. Next, read1s were used
for community annotation. We mapped them to the genome using
STAR while allowing reads to map to multiple genomic locations
(–winAnchorMultimapNmax 100 –outFilterMultimapNmax 100
–outFilterMismatchNmax 999 –alignIntronMax 1). Only reads en-
tirely contained within a genomic SVA SINE region were retained.
Next, similar to the commonly used method of selecting uniquely
mapped reads, we retained only reads that mapped to a single SVA
community in the genome. Because it was not uncommon for an MEI
to have supporting reads uniquely mapping to multiple communities,
the final community annotation per MEI was defined as that with
maximum supporting reads.
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