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Abstract

Long QT syndrome (LQT) is a pro-arrhythmogenic condition with life threatening complications.
Fifteen genes have been associated with congenital LQT however, the genetic causes remain
unknown in more than 20% of cases.

Eighteen patients with history of palpitations, presyncope, syncope and prolonged QT were
referred to the Yale Cardiovascular Genetics Program. All subjects underwent whole exome
sequencing (WES) followed by confirmatory Sanger sequencing. Mutation burden analysis was
carried out using WES data from sixteen subjects with no identifiable cause of LQT.

Deleterious and novel SCNI0A mutations were identified in three of the sixteen patients (19%)
with idiopathic LQT. These included two frameshifts and one missense variants (p.G810fs,
p.R1259Q, and p.P1877fs). Further analysis identified two damaging SCNZ0A mutations with
allele frequencies of ~0.2% (p.R14L, p.R1268Q) in two independent cases. None of the SCNI0A
mutation carriers had mutations in known arrhythmia genes. Damaging SCNZ0A mutations
(p-R209H, p.R485C) were also identified in the two subjects on QT prolonging medications.

Our findings implicate SCNI0A in LQT. The presence of frameshift mutations suggests loss of
function as the underlying disease mechanism. The common association with AF suggests a
unique mechanism of disease for this LQT gene.
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1. Introduction

Long QT syndrome (LQT) is a pro-arrhythmogenic condition that increases the risk of a
unique life threatening polymorphic ventricular tachycardia known as “torsades de pointes”,
and sudden cardiac death (SCD). Congenital LQTs are inherited disorders caused by
mutations in cardiac conduction channels or associated proteins, and are estimated to affect
0.005% to 0.05% of the general population (1). LQT is also accounted for by QT prolonging
drugs, electrolyte abnormalities (2), ischemic heart disease (3) or structural heart disease; a
condition that is often referred to as acquired LQT. With the advent of genome sequencing it
is evident that genetic variants with small effects also account for some, if not all, subclinical
acquired LQTs that manifest themselves in the presence of additional precipitating factors
(4, 5). It has also been estimated that 10 to 36% of patients with LQT genotypes are silent
mutation carriers (6, 7).

To this date fifteen different types of congenital LQT have been characterized and account
for about 80% of inherited long QT cases. These correspond to mutations in genes encoding
potassium channels (8-13), calcium channels (14), calcium signaling proteins (15-17),
anchoring proteins (18, 19), transport proteins (20, 21), and voltage gated sodium channels
(22, 23). Most of these genes have been established as casual genes for LQT based on
linkage or segregation analysis, or in the case of KCNEZ, CAV3, SNTAI and CALMZ genes
by association studies. The genetic cause of congenital LQT remains unknown in at least
20% of cases (24).

The SCNI0A gene encodes the alpha subunit of a voltage-gated sodium channel (Na,1.8),
which is expressed in the peripheral nervous system but also has low expression in atrial and
ventricular cardiomyocytes and neurons of the heart (25-28). Genome wide association
studies implicated the SCN10A gene in cardiac conduction (29-31). In addition, mutations
in the SCN10A gene have been linked to cardiac arrhythmias such as Brugada syndrome
(32-36), atrial fibrillation (37-40) and sudden cardiac death (41).

SCN10A influences cardiac conduction via three proposed mechanisms based on a
multitude of in-vitro and in-vivo studies (42). Given the expression of Na,1.8 in cardiac
myocytes, it can have direct effects on cellular physiology (25, 26, 30). Alternatively,
indirect effects could be mediated via modifying the expression of SCA5A gene, located
immediately downstream of its 3" end. The presence of an enhancer binding domain of
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SCN5A within the SCN10A gene, encompassing exons 17 and 18, supports this concept
(43-45). Lastly, SCN10A, which has robust expression in the cholinergic vagal neurons and
dorsal root ganglia, has been associated with modulation of cardio-vagal input from the
peripheral nervous system (27, 46, 47).

No prior studies attributed QT prolongation to mutations in SCNZ0A. In this study, we
report a series of patients who were referred to our cardiovascular genetics clinic for genetic
screening for prolonged QT associated with either syncope, pre-syncope, SCD, or AF and
were found by whole exome sequencing (WES) to have damaging mutations in the SCN10A
gene.

2. Materials and Methods

Study Subjects

Patients were referred to the Yale Cardiovascular Genetics team for genetic screening of
SCD and/or cardiac arrhythmias. The protocols were approved by the institutional review
board at Yale University School of Medicine. Written consent to participate in the study and
to undergo genetic sequencing was obtained from all patients. Detailed clinical information,
including laboratory data and clinical imaging were collected. Potential non-genetic causes
for prolonged QT were excluded. Out of the eighteen patients referred for prolonged QT,
palpitation and syncope/presyncope, two were on QT prolonging medications and hence
were excluded from the initial mutation burden analysis. Five out of the sixteen patients had
already undergone targeted panel genotyping for LQT in previous years with negative
results.

Genomic DNA was extracted from peripheral blood leukocytes and sent for exome
sequencing. Family history was obtained from the index cases, and pedigrees were
constructed based on self-reported phenotypes. Family members were not available for
segregation analysis. Thus, we proceeded with a mutation burden analysis.

Whole Exome Sequencing and Targeted Sequence Capture

Genomic DNA was captured on exomes at the W.M. Keck Facility at Yale University using
Roche NimbleGen 2.1M Human Exome Array, as described earlier (48). In brief, DNA
libraries were prepared and sequenced on the lllumina Genome Analyzer, followed by image
analysis and base calling. Sequences were aligned against human reference genome (UCSC
Genome Browser hg19) and processed using MAQ program SAMtools. SAMtools was also
used for the single-nucleotide variant detection and filtering against the reference genome as
described earlier. Filters were applied against published databases. A computer script was
designed for variants annotation based on the novelty, conservation, tissue expression and
their effect on protein function. They were considered nonconservative if the substituted
amino acid was conserved in all species. Polyphen, SIFT and CADD scoring were used for
in silico prediction of pathogenicity of the mutations (49). Genetic intolerance score was
calculated using RVIS (Residual Variation Intolerance Score) (50).

We first screened for all variants in known LQT-associated genes with allele frequencies <
1% in the EXAC database. Based on the prevalence of congenital long QT syndrome
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(1:2,000 to 1:20,000) (1) and percentage of unknown genes (20%) we used a stringent
filtering for discovery of novel variants. All variants with allele frequencies greater than
1:100,000 in the ExXAC database, or variants considered benign either by by PolyPhen or
SIFT prediction software were filtered out. Once the disease associated variant(s) were
identified we screened the database for presence of variants with allele frequencies of less
1% in EXAC database in the same gene(s). In addition, we screened for variants in genes
encoding cardiac voltage gated calcium, sodium, or potassium channels, with allele
frequencies less than 1%.

The 1,000 Genomes Project and an exome database of 2,000 healthy white subjects were
also used as reference. Confirmatory Sanger sequencing was carried out for all variants of
interest.

Literature and Database Review

3. Results

We queried existing genetic databases (EXAC) for mutation burden analysis in the SCNI0A
gene. EXAC contained 121,412 alleles in 60,706 subjects with available SCN10A
sequences. We filtered the database for rare damaging mutations that have allele frequency
less than 0.001%. The number of mutation carriers was calculated using the Hardy-
Weinberg equilibrium model. Assuming low prevalence of prolonged QT in the general
population, we used the EXAC database as a control and examined the association between
rare deleterious SCNI0A mutations and long QT. The odds ratio, standard error and 95%
confidence interval were calculated (51) and the p-value was calculated using a two-tailed
Chi-Squared test with Yates’ correction. We also performed a literature review on all
reported SCNI0A mutations. All the reported cases, disease associations and corresponding
ECG parameters were summarized.

SCN10A Mutations Among Patients with QT Prolongation Referred for Genetic Testing

Of the 18 patients referred for QT prolongation, 16 were not on any QT-prolonging
medications and did not have any other identifiable cause for prolonged QT. Mutations in
known arrhythmia genes were identified in 7 out of the 16 patients with idiopathic LQT.
Five of those patients had pathogenic variants in known LQT genes; AKAP9 (p.Q3520H),
ANK2 (p.V36321), ANK2 (p.E1449G), CAV3 (p.T78M), and KCNQ1 (p.L266P). One had
mutations in RBM20 (p.D996Y) and TTN (c.32562-insAGA) that are associated with
arrhythmias and dilated cardiomyopathy (52, 53). Another patient had a mutation in
CTNNAS3 (p.H727R), a gene associated with arrhythmogenic right ventricular
cardiomyopathy (54).

The mutation burden analysis of WES using all variants with allele frequencies <1:100,000
revealed 3 independent novel heterozygous deleterious mutations in SCNZ0A gene in 3
subjects without mutations in known LQT genes with a P-value<0.0001 and an odds ratio of
90.9 (95% confidence interval of 31.4 to 263.2; supplemental table 1). No other mutations
were found in the same gene in more than 2 subjects.
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Two patients had completely novel frameshift mutations (p.G810fs and p.P1877fs). The
subject with p.G810fs variant was a 53 years old patient with palpitations, pre-syncope,
paroxysmal AF, and a biphasic T-wave on ECG. His corrected QT (QTc) was prolonged at
466 msec. The proband with the p.P1877fs variant presented at 33 years of age due to
palpitations and a QTc of 519 msec. He had shortening of his QTc during an exercise stress
test, and did not have AF. In this subject, genetic variants in AKAP-9 (p.R3704Q) and
ANK-2 (p.D955G) were also identified. The variant in AKAP-9was predicted to be benign,
whereas the ANK-2variant falls in the non-canonical transcript of the protein. A third
completely novel variant was identified in a patient with pre-syncope and palpitations. The
mutation, which results in p.R1259Q substitution was predicted to be damaging by
PolyPhen and SIFT (table 1). None of the SCNZ0A mutations carriers had neuropathy. Of
the five patients that had previously undergone panel genotyping, only one had an SCNI0A
mutation, while the disease gene for the other four remains unidentifiable at this point.

Given that nonsynonymous SCN10A mutations with allele frequencies as high as 1% have
been associated with Brugada syndrome and AF, we screened the remaining subjects for
SCN10A mutations using a less stringent frequency of <1%. The analysis revealed 2
additional missense mutations. One mutation leading to p.R14L amino acid substitution in
SCN10A was identified in a 48 years old woman who presented with syncope and LQT and
had no identifiable mutation in known LQT genes. The p.R14L variant, which based on
PolyPhen and SIFT is predicted to be damaging (table 1) has an allele frequency of 0.19% in
EXAC database and has been previously associated with AF and Brugada but not long QT
(table 2). The second missense mutation in SCNI0A resulted in p.R1268Q substitution and
was identified in a subject with familial AF, long QT, pre-syncope and palpitations of no
identifiable cause, who also had no identifiable mutation in known LQT genes. The
p.R1268Q variant has an allele frequency of 0.18% in EXAC database (table 1), but its
disease association was not known. The variant was predicted to be damaging by SIFT only.

Conservation analysis showed that all of the substituted amino-acids are evolutionarily
highly conserved (figure 1b). There was no clustering of the mutations observed, hence a
genotype phenotype correlation could not be established (figure 1b). For instance, the
p.R1268Q variant is located in the cytoplasmic portion of the protein, while the p.R1259Q
variant is in the transmembrane portion between the voltage sensing domain and the channel
pore domain. Interestingly, none of the above mutations were near the enhancer-binding
domain of the SCN10A gene (figure 1a). There was strong family history of arrhythmias and
LQT among SCNI0A mutation carriers (figure 2). Careful review of the pedigree suggests
pleotropic effect of these mutations, resulting in trait that range from atrial fibrillation to
supraventricular tachycardia, long QT and syncope with an inheritance that is consistent
with an autosomal dominant pattern. First degree relatives were not available for genetic
testing.

SCN10A Mutations Among Patients on QT Prolonging Medications

Two patients, who were taking QT prolonging medications also underwent exome
sequencing. The first patient was a 59 years old man with a complex medical history
including hypertrophic cardiomyopathy (HCM), on metoclopramide who had QT
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prolongation, and was found to have a genetic variant in the SCNV0A gene leading to
p.R485C substitution. Interestingly, he later developed persistent AF. He had also a non-
conservative MYBPC3 mutation as the underlying cause of his HCM. The SCN10A
p.R485C is a rare variant with an allele frequency of 7.0x107% in the EXAC database, which
is also predicted to be damaging. The second patient was a 57 years old woman, who
presented with persistent AF and had been placed on Sotalol. Her QTc on this drug ranged
from 459 to 615 msecs. Given the strong family history of arrhythmia and AF she underwent
WES, which revealed a missense mutation in SCNVI0A gene leading to p.R209H
substitution. There were no other mutations identified in known arrhythmia genes. The
p.R209H is a rare variant with an allele frequency of 3.3x107° in the EXAC database and is
predicted to be damaging. Both substituted amino-acids were highly conserved (figure 1a)
and none was located near the enhancer-binding domain of the SCN10A gene (figure 1b).
Moreover, the CADD scores for p.R485C and p.R209H were 34 and 33, respectively which
suggest a very high likelihood of pathogenicity.

Review of Rare Damaging SCN10A Mutations in EXAC and Mutation Burden Analysis

We queried the EXAC database for rare damaging mutations in the SCN10A gene. Out of
the 60,706 total subjects, there were 303 damaging mutations at an allele frequency of less
<1:100,000 (figure 3).

Mutation burden analysis (supplementary table 1) using the EXAC database as control
showed an odds ratio of 90.9 for having prolonged QT if the patient harbors a rare and
deleterious SCNI0A mutation (95% confidence interval of 31.4 to 263.2, P-value < 0.0001).

In a second analysis using an allele frequency of <1:100 two more variants in the SCNZ0A
gene were identified in our patient cohort. Additionally, out of the 60,706 total subjects in
the EXAC database, there were 574 damaging mutations at an allele frequency <1:100.
These included missense (n=501), non-sense (n=32), splice (n=17), frameshift (n=15),
deletion (n=8), and insertion (n=1). Mutation burden analysis at this allele frequency showed
an odds ratio of 4.9 for having prolonged QT if the patient harbors a deleterious SCN10A
mutation (95% confidence interval of 1.7 to 14.2, P-value = 0.0047; supplemental table 1).
Interestingly, SCNI0A’s RVIS score of —1.32 places this gene among the 4.74% most
intolerant genes. Taken together, our analyses provide strong statistical evidence for
association between SCN10A mutations and long QT trait.

Systematic Literature Review of All Reported SCN10A Mutations and Available ECG
Characteristics

In our review of the published literature we found 46 different SCN10A reported mutations.
The available clinical and ECG data are summarized in table 2. Interestingly, heterozygous
SCNI10A mutations causing p.F385C, p.11225T, p.N1328K, p.N1715T amino acid
substitutions were detected in four independent patients with QT prolongation. All four
variants had been reported in independent publications, hence they lacked the power to
establish association between SCN10A mutations and QT prolongation.

The subject with the deleterious p.F385C SCNI0A variant is reported as a 65-year-old man
with a history of sudden cardiac death, Brugada syndrome, and a QTc of 464 msec (table 2).
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One of the two subjects with symptomatic Brugada syndrome and p.11225T variants had
been reported to have a prolonged QTc of 525 msec (table 2).

The third deleterious SCNZ0A mutation had been reported in a 68-year-old man with
syncope and a prolonged QTc of 450 msec. He had a novel missense mutation in SCNZ0A
that substituted a highly conserved amino acid (p.N1328K).

The fourth reported deleterious SCNVZ0A mutation substitutes a highly conserved amino acid
(p.N1715T) with a rare allele frequency of 8.1x1074 in the EXAC database. This mutation
had been identified in a 65-year-old man with presyncope and palpitations, inducible
ventricular tachycardia, and ventricular fibrillation, diagnosis of Brugada syndrome and a
QTc of 463 msec.

In addition, there has been report of 6 different SCN10A mutations in 6 subjects with
borderline prolonged QTc, resulting in p.R14L, p.W189R, p.R844H, p.S1337T, p.G1406D,
and p.G1662S amino acid substitutions (table 2). All of these mutations substituted highly
conserved amino acids and were predicted to be damaging. Of note, there have been 6
patients with the p.R14L variant, 4 patients with the p.G1662S variant and 2 patients with
the p.R844H variant reported and only one from each group has had borderline prolonged
QTc (table 2).

4. Discussion

\oltage gated sodium channels (Nay) conduct inward sodium currents that are regulated by
the transmembrane potential. These channels are composed of the pore forming or a-
subunit, and a p regulatory subunit. The a-subunit possesses a voltage sensing domain, a
pore domain with a filter selective for sodium ions, an activation gate, and an inactivation
gate (55). There are nine different Nays identified in humans with different tissue
distribution and functionality based on the a-subunit (55). The a-subunits of Na,1.1 to
Na,1.9 are encoded by nine different genes.

Gain of function mutations in SCN5A have been previously implicated in congenital LQT
type 3 (56). The SCN5A gene encodes Nay1.5, which is the most abundant voltage gated
sodium channel in cardiac tissue. Na, 1.5 is responsible for the depolarization phase of the
cardiac action potential, characterized by rapid inward sodium current that is quickly
inactivated by the inactivation gate (57). Congenital LQT type 3 mutations cause a gain of
function in Na, 1.5 due to failure of the inactivation gate to terminate the influx of sodium at
the appropriate time. Hence, sodium entry slowly continues during the subsequent phases of
the action potential and results in prolonged repolarization (58). This is in contrast to
Brugada associated mutations in SCN5A that cause loss of function via premature closure of
Na,1.5 channel without effect on the QT interval (59). An overlap syndrome of long QT and
Brugada has also been described as some SCN5A genotypes can cause features of both
syndromes (60).

In parallel, SCN10A mutations have been strongly associated with Brugada syndrome and
other cardiac conduction abnormalities in humans. In fact, up to 10% of Brugada cases are
attributed to SCNZ0A mutations (34).
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A recent fine-mapping study implicated the SCN54-SCN10A locus in QT prolongation
(61). In-vitro studies have shown that the Na, 1.8 contributes to late cardiac sodium current
and displays marked differences in gating compared to Na,1.5 (26). While the enhancer
hypothesis offered a mechanism whereby polymorphisms in SCN0A could contribute to
SCN5A expression levels (45), the majority of the arrhythmia associated SCAVZ0A mutations
fall far from the enhancer-binding domain. However, a direct effect through the sympathetic
nervous system is another plausible mechanism. Although Nav1.8 has low expression in
cardiomyocytes, its expression levels are high in intra-cardiac ganglia and neurons (27, 62).
Loss of Nav1.8 current had low effect on cardiomyocyte conduction (27, 62). However,
Nav1.8 blockade significantly reduces the sodium current and firing frequency of intra-
cardiac neurons (27). Similarly, Nav1.8 channel blockade in cardiac ganglionated plexi has
been shown to suppress cardiac conduction and atrial fibrillation inducibility (46).
Accordingly, left cardiac sympathetic neuron denervation (LCSD) has been successfully
used to treat LQT syndrome (63, 64).

In our study, we observed a remarkably high prevalence of deleterious SCNZ0A mutations in
patients with prolonged QT, an association that hasn’t been made before. All the observed
mutations affected the amino-acid sequence of Nav1.8, either through deleterious amino-
acid substitutions at conserved sites or frameshift mutations. None of the observed mutations
resides near the enhancer-binding domain, which means that they are less likely to disturb
cardiac conduction via indirect effects on SCA5A expression levels. Although, one cannot
exclude an allosteric effect of these mutations on the enhancer-binding domain. More likely
these mutations affect Nav1.8 function in regulation of cardiac sodium current and
repolarization. The amino acid substitutions involve the voltage sensing domain (p.R209,
p.R1259Q and p.R1268Q), channel modulation domain (p.R485C), and N-terminal domain
(p.R14L).

While the three deleterious and entirely novel variants (p.G810fs, p.R1259Q, and p.P1877fs)
in SCN10A provided a strong signal of association with LQT, the subsequent mutations
were present at higher allele frequencies. For instance, the p.R1268Q variant was present at
an allele frequency of 0.18% that is high compared to the prevalence of LQT. However, the
same mutation had been associated with Brugada syndrome (34, 36), which is also a rare
disease (65). Similarly, the p.R14L variant with an allele frequency of 0.19% had been
previously associated with Brugada syndrome (34, 38, 39). We speculate that these are
disease-contributing variants that are not sufficient to independently cause disease, which
explains their pleotropic effects and incomplete penetrance. The two variants (p.R209H,
p.R485C) identified in the two patients who were on QT prolonging medications are also
most likely not sufficient to cause LQT and require the contribution of environmental factors
such as QT prolonging drugs. Although mutations in known LQT genes account for about
80% of LQT cases, our study was enriched for patients who had previously undergone
targeted genotyping panels (5 out of 16 patients) with negative results for LQT gene
mutations. This has resulted in the lower yield for mutations in known LQT genes in our
WES and likely higher SCN10A mutation rate compared to the general population.

Of interest is the prior association between SCNZ0A mutations and unexplained nocturnal
sudden cardiac death (41). Although the SCD had been attributed to a possible underlying

Clin Genet. Author manuscript; available in PMC 2019 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Abou Ziki et al. Page 9

Brugada syndrome, the current findings suggest that LQT induced torsades could be another
mechanism of SCD in patients harboring SCNZ0A mutations. Overall, these findings are of
great significance to the study of cardiac electrophysiology and prevention of fatal
arrhythmias in at-risk subjects.

5. Conclusion and Future Prospects

To this date there is no definitive therapy available for LQT, therefore, screening and early
detection of prolonged QT remains a central approach for risk stratification and primary
prevention against fatal arrhythmias in affected subjects and their extended families. Hence,
it is imperative to identify all genetic culprits in abnormal cardiac repolarization and long
QT. Strikingly, the genetic cause in congenital LQT remains elusive in about 20% of
inherited cases, while many of the acquired LQTs are also accounted for by predisposing
genetic mutations.

Our study implicates SCNZ0A mutations as an underlying cause of LQT, adding to the list
of genes that should be screened for in patients with prolonged QT. The presence of
frameshift mutations, which result in premature stop codon and potentially non-sense
mediated decay, suggest that the disease mechanism is due to loss of function of the encoded
protein. In addition, the common association with AF suggests that SCNZ0A may represent
a unique subtype of LQT genes.

Our findings advance the identification of genetic causes of LQT and improve the capability
of screening in individuals at risk. Further investigations into genotype-phenotype
correlation may improve our ability to predict the development of isolated atrial fibrillation,
Brugada syndrome, LQT or combination thereof in SCAZ0A mutation carriers. In addition,
future investigations are necessary to examine the co-expression and interaction of SCNI0A
with SCN5A in regulation of sodium current in cardiomyocytes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nav1.8 voltage gated sodium channel encoding SCN10A gene domains, long QT associated
mutations and conservation analysis. (A) SCNI0A gene is comprised of 27 exons located on
the short arm of chromosome 3. The enhancer-binding domain encompasses exons 17, 18
and the intronic region in between. The mutations are labelled along the gene with the
corresponding dbSNP (rs) number when available. (B) Several of the mutations fall within
the transmembrane alpha helical domains (G810fs, R1259Q, and R1268Q), the R14L is in
the N-terminal domain, and the P1877fs is in the C-terminal domain. The two mutations in
the patients who were on QT prolonging medications are labelled in orange, the R209H in
proximity to the voltage sensing domain and R485C within the channel modulation domain.
All the mutation occurred at evolutionarily conserved site.
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Family pedigrees of index cases with SCNI0A mutations. There was strong family history
among SCNI0A mutation carriers concerning for arrhythmias and underlying long QT
syndrome (labelled in red). The black arrows show index cases. The (+) sign indicates that
the subject is heterozygous for an SCNZ0A mutation.
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Distribution of SCN10A mutations in the EXAC database

m Deletion; 2%

TR

—\\-

» Splice; 4%

= |nsertion; 0.3%

= Nonsene; 8%

® Frameshift; 3%

™ Missense; 83%

Figure 3.
Distribution of SCN10A mutations exomes of 60,706 subjects in EXAC database. Overall

there were 303 rare (minor allele frequency< 0.001%) and damaging mutations. The
majority of the mutations were miss-sense (n= 253, 83%), followed by 24 non-sense (8%),
11 splice site (4%), and 9 frameshift (3%) mutations, 5 were deletion (2%) and 1 was an
insertion mutation (0.3%).
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