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Abstract

Human genetic research in the past decade has generated a wealth of data from the genome-wide 

association scan era, much of which is catalogued and freely available. These data will typically 

test the relationship between a single nucleotide variant or polymorphism (SNP) and some 

outcome, disease or trait. Ongoing investigations will yield a similar wealth of data regarding 

epigenetic phenomena. These data will typically test test the relationship between DNA 

methylation at a single genomic location/region some outcome. Most of these findings will be the 

result of cross sectional investigations typically using ascertained cases and controls. 

Consequently, most methodological consideration focuses on methods appropriate for simple case 

control comparisons. It is expected that a growing number of investigators with longitudinal 

experimental prevention or intervention cohorts will also measure genetic and epigenetic 

indicators as part of their investigations, harvesting the wealth of information generated by the 

GWAS era to allow for targeted hypothesis testing in the next generation of prevention and 

intervention trials. Herein, we discuss appropriate quality control and statistical modelling of 

genetic, polygenic and epigenetic measures in longitudinal models. We specifically discuss quality 

control, population stratification, genotype imputation, pathway approaches, and proper modelling 

of GxE interaction.
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The availability of relatively inexpensive and accessible genomic arrays has led to a growth 

in the inclusion of genetic and epigenetic data in prevention and intervention trials (Brody, 

Yu, Chen, Beach, & Miller, 2015; Musci et al., 2015; Vandenbergh et al., 2016). Researchers 

carefully plan and design subject ascertainment, randomization, interventions and outcomes 

measurement. A similar level of attention must be paid to the inclusion of genomic data to 

maximize the ability of the field to find true associations. We present a series of 
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considerations and solutions to dealing with large scale genomic data that need to be 

addressed before, during or after actual genetic or epigenetic association testing aimed at 

limiting the genetic association replication crisis in the context of intervention and 

prevention studies largely predicated on the notion that randomized trials, which will be 

relatively underpowered when compared to large, genome-wide association scan consortia, 

can glean information from those GWAS (i.e., Post-GWAS) to limit testing to those loci 

(genetic, epigenetic) that have been previously associated with similar outcomes. (Ioannidis, 

Ntzani, Trikalinos, & Contopoulos-Ioannidis, 2001).

In an ideal situation, human geneticists elucidate the genetic basis of a disorder by 

identifying a missing or aberrant protein, or a candidate gene, which can be associated with 

the trait. Although this approach has been successful for many single-gene human diseases, 

it has not been very effective in the study of more complex outcomes such as psychiatric/

behavioral disorders, which are the result of small contributions of hundreds or thousands of 

genetic variants. Prior to the development of molecular genetic markers, other methods were 

utilized to provide evidence that genetic factors are important for the variation in behavioral 

and psychiatric outcomes. Those methods included twin, adoption and family studies, each 

testing specific hypotheses regarding the relationship between genetic and phenotypic 

similarity, that is, disorders or traits with a genetic component should be more concordant 

among those who are more closely genetically-related. While providing evidence for a 

genetic, or heritable, contribution to a trait or disease, these approaches were not designed to 

identify the contribution of specific genes or polymorphisms (a variation in the genetic 

sequence present in >1% of the population).

The development of technology to measure genetic polymorphisms shifted the approach to 

linkage analysis, relying primarily on repeat polymorphisms, such as microsatellites, to test 

the cosegregation of chromosomal regions with disease in families. Concurrently, there was 

a growing focus on association mapping, where a polymorphism in or near a gene putatively 

underlying the pathophysiology of the disease, a “candidate gene”, is tested for allele 

frequency differences between cases and controls. Unfortunately, the candidate gene era, 

even in cases where the neurobiology underlying specific behaviors or psychiatric disorders 

was thought to be understood, was largely unsuccessful at identifying replicating variants 

influencing a phenotype or outcome (Farrell et al., 2015). However, in whole, these lines of 

investigation have contributed greatly to our understanding of the nature of a host of human 

traits and diseases and are comprehensively reviewed elsewhere (Zandi, Wilcox, Dong, 

Chon, & Maher, 2012)

Subsequent progress in genetic technology, the development of a dense set of single 

nucleotide polymorphisms (SNPs) that capture a substantial proportion of common genetic 

variation across the genome and the assumption that common alleles with moderate effect 

sizes were largely responsible for observed heritability, created conditions for genetic studies 

of disorders of complex etiologic architecture, such as behavioral and psychiatric outcomes. 

The naiveté that flourished at the onset of the era of the genome-wide association study 

(GWAS), the primary approach to assessing the impact of genetic variation on common 

diseases or phenotypes in which hundreds of thousands or millions of single nucleotide 

polymorphisms (SNPs) spaced throughout the human genome are tested without any 
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theoretical justification, has largely waned. A major drawback to this approach is that the 

signals expected for complex diseases are unlikely to meet strict thresholds for multiple test 

correction that are necessary when hundreds of thousands or millions of tests are performed, 

and true signals are likely to be blended with false signals (Zaykin & Zhivotovsky, 2005). 

Though initially deemed “unsuccessful”, larger sample sizes, needed to overcome the 

multiple testing burden consequent to conducting 106 hypothesis tests, have yielded many 

successes and GWAS has proven useful in identifying some regions influencing variation in 

psychiatric/behavioral traits, a trend that is expected to continue. Additionally, polygenic 

approaches, which index tens, hundreds, or thousands of SNPs to create composite indices 

of genetic risk, have been developed (Maher, 2015).

A more recent focus is on epigenetics. For the purpose of discussion here, epigenetics is 

defined as genomic influences, other than the actual base (A,C,T,G) sequence, which impact 

on gene expression and ultimately on disease risk. While there are several classes of 

epigenetic changes discussed in the literature, the focus here is on DNA methylation. 

Briefly, DNA methylation refers to the addition of a methyl group to cytosine in areas of the 

genome that are enriched with C and G nucleotides. While the technical details of 

methylation are beyond the scope of this manuscript, the impact of DNA methylation may 

be central to understanding how gene expression is regulated. Important regions of many 

genes are potential targets of methylation, including the promoter region. Thus, methylation 

is a mechanism by which the expression of a gene can be reduced or silenced, including in 

the differentiation of tissues and specialization of cells. For decades, the role of methylation 

in important biological processes, such as X-chromosome inactivation, has been well known. 

Recently, the role of methylation in response to the environment coupled with the 

development of new array-based technologies allows for the assessment of variation in 

methylation at sites throughout the genome. Epidemiologic studies have identified specific 

environmental risk factors. However, biologic pathways along which environments “get 

under the skin” and influence mental health have only begun to be investigated.

Understanding the interplay between genes and environment remains at the forefront of 

research in the behavioral sciences into many developmental and disease etiology processes. 

Over the past few years several informative critical reviews have been published highlighting 

the successes, challenges and hype surrounding the investigation of gene-environment 

interaction (Dick et al., 2015; Duncan & Keller, 2011). Some of the issues are the relatively 

straightforward problems that plague many areas of research, such as sample size and 

publication bias. Other issues like hype, interpretation, replication and impact are not unique 

to GxE testing but shared across much of genetic association testing (Ioannidis et al., 2001). 

The replication problem is best exemplified by a case where multiple groups dealing with 

the same set of available data reached conflicting conclusions regarding the mediation of the 

relationship between stress and depression by 5-HTTLPR, a finding (Caspi et al., 2003) that 

received unparalleled attention and nearly fostered a subfield aimed at its replication 

(Munafò, Durrant, Lewis, & Flint, 2009; Risch et al., 2009).

Herein, we present general guidelines for performing high quality genetic and epigenetic 

analyses while avoiding the pitfalls that commonly occur. These issues include genotype 

quality control, correction for population stratification, and genotype imputation. We also 
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discuss single marker modelling of genetic and epigenetic data. Lastly, we discuss 

approaches frequently applied after single marker testing including polygenic and pathway 

approaches, and the inclusion of functional data in association tests. We also highlight 

specific topics that are unique to studies of intervention or prevention.

Quality Control

Maximizing genotype accuracy is a key step in increasing the power to detect true genotype-

phenotype relationships. Marker and subject-level checks are performed to ensure data 

precision. These steps are more thoroughly described elsewhere (Anderson et al., 2010) but 

reviewed here briefly. First, on a per-marker level, Hardy-Weinberg equilibrium (HWE) is 

tested and markers that exhibit large deviations from the expected distribution of genotypes, 

given the observed allele frequencies, are removed. The rationale for this step is to eliminate 

any markers that may exhibit evidence of systematic genotype error (e.g., excess failure of a 

particular allele). It is important to recognize that minor deviations from HWE will be 

observed by chance when testing such a large number of markers. Thus, it is typical to use a 

stringent criterion for dropping markers exhibiting Hardy-Weinberg disequilibrium (p < 

0.001). In addition, markers exhibiting sample-wide genotype call rates of less than 95% can 

also be eliminated. A high frequency of missing data is generally interpreted as an indicator 

of a poor quality marker. If cases and controls are present in a dataset then differences in 

missing rates between cases and controls can be used as a criterion for marker elimination. 

Lastly, although this step has become less common with an increasing interest in rare 

variants, SNPs with a minor allele frequency below a threshold are eliminated in the interest 

of power. On the per subject level, individuals for whom greater than 5% of the total markers 

assessed fail to be genotyped (i.e., cannot be called or are otherwise missing) are also 

eliminated, as this is likely due to poor DNA quality. In addition, subjects with a genetic sex 

(e.g., heterozygous X chromosome markers in a subject purported to be male) inconsistent 

with the reported sex are eliminated. Lastly, the availability of large-scale genetic data 

allows for the estimation of identity-by-state between individuals in a dataset. Identity-by-

state can be used as a proxy for identity-by-descent, or the degree of allele sharing due to 

common ancestry, a common measure of relatedness. Obviously, in samples where families 

are ascertained, it is expected that relatives will be present in the dataset and appropriate 

methods for accounting for dependence between subjects will be used in subsequent 

association testing. However, when unexpected relatedness among individuals is discovered 

(e.g., IBD/IBS > .1875, or midway between the expected genetic similarity of second- and 

third-degree relatives; Anderson et al., 2010) it is the usual practice to randomly delete all 

but one of the correlated observations.

Population Stratification

In the context of genetic association testing, population stratification refers to systematic 

genetic differences between subpopulations. This is especially problematic in instances 

where the investigators are blind to the presence of stratification and/or the population 

substrata also differ phenotypically. In these instances, association analyses will be prone to 

generate spurious genotype-phenotype relationships and it is especially important in 

prevention trials to ensure that, even after the fact, randomization properly accounted for 
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population stratification. Based on early results in the candidate gene era, this was thought to 

be a serious issue, and cause of the lack of replication in many candidate gene studies 

(Tabor, Risch, & Myers, 2002). Contradictory opinions notwithstanding (Hutchison, 

Stallings, McGeary, & Bryan, 2004), the availability of genome-wide SNP data made it very 

apparent that population structure or stratification was a potential source of spurious false 

positive results, even in samples thought to be homogeneous (Burton et al., 2007; Freedman 

et al., 2004). Several methods, including genomic control (Devlin & Roeder, 1999) and 

STRUCTURE (Pritchard & Rosenberg, 1999; Pritchard & Donnelly, 2001) are available to 

deal with this issue by either correcting the test statistic for the average level of stratification 

or a priori grouping of population subsets. At the onset of the GWAS era, the wealth of 

genome-wide data gave rise to additional approaches that rely on the correlation structure of 

genetic information to identify cryptic population structure. EIGENSTRAT (Price et al., 

2006) is an example of an approach that uses genome-wide data to infer principal 

components of population membership. Subjects are assigned a score for each of these 

principal components representing their membership in a given population cluster. These 

scores can then be used in all subsequent analyses to account for population structure. This 

process is automated in PLINK 2 and the cluster PC scores are included as covariates in 

subsequent analyses to account for population stratification (Chang et al., 2015). In practice, 

to reduce the computational intensity and avoid using redundant information from SNPs in 

linkage disequilibrium (i.e., non-randomly associated) investigators frequently select a 

subset of SNPs randomly across the genome to estimate stratification using the PCA 

approach. Although these may or may not be a priori identified ancestry information 

markers, it has been shown that “randomly” selected SNPs perform equally well (Montana 

& Pritchard, 2004). Several investigators (Choudhry et al., 2006; Sankararaman, Sridhar, 

Kimmel, & Halperin, 2008) have noted that differences in global (genome-wide) versus 

local (at a gene or LD block) ancestry exist, especially in admixed populations (e.g., 

African-American). Consequently, methods have been developed to estimate local ancestry, 

or the proportion of ancestry at each SNP attributable to known reference populations. This 

approach can be applied in a genome-wide context (WinPOP/LAMP; (Pasaniuc, 

Sankararaman, Kimmel, & Halperin, 2009; Pasaniuc et al., 2011; Sankararaman et al., 

2008)) to estimate proportions of local ancestry at each region and those estimates used to 

account for stratification based on those mixing proportions in subsequent tests in specific 

candidate regions. Importantly, Keller (Keller, 2014), suggests that although including these 

marker-based variables in linear models examining moderation of specific genetic 

associations (e.g., gene-by-intervention effects) effectively removes the confounding 

influence of population stratification, this is only true with respect to main effects. Thus, 

fully accounting for the effect of population stratification on an interaction requires the 

inclusion of all stratification related product terms (e.g., gene-by-stratification and 

intervention-by-stratification effects).

Genotype Imputation

There are numerous approaches to direct imputation of genotypes. Initially, the goal of such 

approaches was to exploit linkage disequilibrium to allow the testing of ungenotyped 

markers (Clark & Li, 2007). For example, a known, functional SNP may be highly 
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correlated with multiple nearby genotyped SNPs. Given an accurate reference panel as the 

source of correlation between markers, the un-genotyped marker can be imputed and tested 

for association (Clark & Li, 2007). As GWAS data became widely available, the use grew 

with the goal of creating common marker sets to allow meta-analysis of datasets genotyped 

on different GWAS panels. These approaches rely on assigning genotypes above a specified 

level of certainty and subsequent analysis, using standard approaches, of the resultant 

inferred genotypes (Lin & Huang, 2007). Genome-wide SNP imputation is commonly 

performed using Impute2 (Howie, Donnelly, & Marchini, 2009) or MACH (Li, Willer, Ding, 

Scheet, & Abecasis, 2010) on data that are pre-phased using SHAPEIT (Delaneau, Zagury, 

& Marchini, 2013). Pre-phasing refers to the computational process of constructing 

haplotypes, or linear combinations of alleles along a chromosome, prior to imputation. The 

primary advantage of pre-phasing is a dramatic improvement in the speed of imputation. The 

1000 Genomes Project sample is commonly used as a reference (1000 Genomes Project 

Consortium et al., 2010). In samples where diverse genetic backgrounds are present, it is 

common to use multiple or all reference samples within the 1000 Genomes Project. 

Importantly, each approach to imputation generates a measure of imputation confidence 

which can be used in subsequent tests to account for uncertainty. A typical approach is to 

recode the genotype to capture uncertainty. For example, two alleles imputed with 99% 

certainty would be coded as .99 and summed to create a genotype 1.98, representing two 

nearly certain alleles comprising a homozygous genotype.

Statistical Model: Main Effects

Individual SNP or epigenetic marker association analyses can be performed by modeling 

genotype counts or methylation signature (or change) in linear or logistic models. In some 

models including genotype data there may be an a priori motivation for collapsing genotype 

groups to compare two, instead of three, genotype groups. In its simplest form this test, 

commonly termed the measured genotype analysis (Boerwinkle, Chakraborty, & Sing, 

1986), models the influence of genotypic variation at a given locus on variation in the 

quantitative trait, essentially a one-way ANOVA. The extension to logistic and linear 

regression for genetic association testing for discrete and continuous outcome variables is 

common and appropriate. It is typical to code the genotype as a trichotomous indicator 

(0,1,2). This approach provides a distinct advantage in that it can easily be extended to 

incorporate measured ancestry covariates and environmental moderators or mediators. When 

imputed SNPs are used, it is common to replace the genotype predictor with uncertainty-

adjusted dosage. The use of linear mixed models (LMM) for genetic association analysis has 

grown rapidly in recent years to allow for valid tests of the relationship between a measured 

SNP and phenotypic outcome and are especially useful in prevention trials, where 

longitudinal data are collected (Eu-Ahsunthornwattana et al., 2014). Simpler and more 

complicated models can be estimated using, for example, lme4 in R (Bates, Maechler, 

Bolker, & Walker, 2014) with genotype predicting longitudinal methylation outcomes and/or 

methylation predicting subsequent behavioral outcomes. An additional advantage of using 

linear/logistic models is the easy extension to explore mechanisms (e.g., mediation or 

moderation) of discovered associations. For example, by employing the mediation package 

in R, specific indirect pathways wherein methylation serves as a mediator of environmental 
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influence(s) on subsequent behavior(s) could also be tested (Tingley, Yamamoto, Hirose, 

Keele, & Imai, 2014).

Incorporating biological information

A wealth of extant biological information, including previous GWAS of similar traits, 

knowledge of polymorphism function, gene regulation, tissue specific expression patterns 

and biological organization of genes into pathways can be leveraged to improve our 

etiological understanding of disease and behavior. For example, an investigator may want to 

prioritize sites that are epigenetically modified during development in examining the 

potential mediators of the impact of an intervention or to focus on the genes likely to be 

involved in a disorder that arises during a particular developmental period (Birnbaum, Jaffe, 

Hyde, Kleinman, & Weinberger, 2014).

Prior information can be harnessed in multiple ways to increase the power of genetic 

association testing. While there are robust developments in methodology that allow for the 

inclusion of functional information, we highlight an existing approach that incorporates 

functional information while correcting for multiple testing. The weighted FDR (False 

Discovery Rate) allows for the inclusion of a prior value in the FDR (Roeder, Bacanu, 

Wasserman, & Devlin, 2006). This prior allows additional information (previous GWAS 

findings, biological plausibility, etc) to be included as a weight in the calculation of the FDR 

potentially influencing the relative ranks of p-values of a new set of analyses. For instance, 

investigators can up-weight SNPs with evidence a significant impact on expression or 

methylation variation in the brain. The approach was recently used, with success, in an 

‘informed GWAS’, or iGWAS, to include prior information from previous genome-wide 

scans in a novel analysis (Fortney et al., 2015).

Great advances are occurring in evaluating functional significance of genomic regions and 

variants. Variations found by genome sequencing can be evaluated based on functional 

predictions, relevance to developmental mechanisms, frequency in population and disease 

databases, previous GWAS evidence, or known effect on expression. Noncoding variants can 

be evaluated based on epigenetic signatures derived from specific resources including 

ENCODE and Braincloud. Existing expression and methylation data to allow the discovery 

eQTLs and meQTLs at specific developmental periods in brain is available in BrainCloud 

(Colantuoni et al., 2011; Jaffe et al., 2014; Numata et al., 2012). Relevant functional data, 

frequently freely available, will allow for more prudent hypothesis testing than is currently 

routine and wFDR allows one to place a higher prior probability on genetic variants with 

prior evidence of function relevant to the trait of interest.

Polygenic/Pathway Approaches

Due to the individually small effect sizes of contributing loci and stringent statistical 

significance criterion of GWAS most modest effect size polymorphisms will not be deemed 

“significant” and “replicated” in many GWAS (Purcell et al., 2009). Multiple approaches to 

aggregating those effects have been developed, thereby increasing the power to detect a 

polygenic signal and aiding in understanding the nature of complex traits. Purcell and 
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colleagues (Purcell et al., 2009) used an approach in which two stage GWAS data were used 

to select a set of “independent” SNPs in linkage equilibrium that generated p-values below 

some arbitrary threshold (PT) in one sample as a discovery stage. Those SNPs were then 

used to create polygenic sum scores, with each allele weighted by the logarithm of the odds 

ratio from the discovery sample, to be tested in a second sample. The terms “polygenic 

scores” (PGS), “genetic risk scores” (GRS) and “polygenic risk scores” (PRS) are now used 

interchangeably to describe metrics comprising a large number of SNPs pooled together to 

represent a measured set of variants underlying a particular trait or disease. Dudbridge 

(Dudbridge, 2013) examined the power and predictive accuracy of polygenic scores for 

discrete and continuous traits and found that large discovery samples, which best separate 

the true from null effects at the tail of the p-value distribution, yield the most precise 

polygenic scores. In the post-GWAS era, the use of existing GWAS results, such as those 

from the Psychiatric Genomics Consortium, can be used as “discovery” samples form which 

to generate polygenic scores for a novel study. Tools for automated creation of polygenic 

scores are available in the Plink 2 software package (Chang et al., 2015).

In addition to using polygenic scores as predictors in statistical models testing the impact of 

many genetic influences on a particular outcome, approaches have been developed to 

estimate what could accurately be termed “marker-based” or “molecular” heritability. The 

general approach of this method uses genome-wide markers to examine deviation from 

expected genetic-phenotypic similarity (Visscher et al., 2006). Methods such as genome-

wide complex trait analysis (GCTA) rely on population-based samples with available GWAS 

data (Yang et al., 2011). In GCTA, a genetic relationship matrix is derived from all available 

SNPs and used to estimate the proportion of phenotypic variation accounted for by the 

genome-wide genetic differences. Importantly, while this method can generate an estimate 

of the phenotypic variation accounted for by genetic differences, it does not identify 

specifically which variants or pathways account for it. Extensions of the method claim to 

improve accuracy by correcting for linkage disequilibrium, as opposed to pruning out 

correlated (but possibly true independent effect) SNPs (Vilhjalmsson et al., 2015) or by 

relying on HaploSNPs (Bhatia et al., 2015), large shared segments in high LD that can be 

recoded into a regional genotype. Overall, GCTA and its extensions would be useful in 

describing and testing the polygenic architecture of a trait, for example response to treatment 

or intervention, but have limited utility in defining the specific genes or pathways involved.

A more useful approach for prevention, intervention, and treatment genetic studies are those 

that jointly test multiple genetic predictors that are grouped in the same biological pathways. 

The basic motivation for pathway-based analyses is the high likelihood that genetic 

associations with an outcome will co-occur in SNPs grouped within the same biological 

pathway. There are two broad classes of pathway analysis: those that test whether an excess 

of statistically significant results occur in SNPs in a pathway and those that test whether the 

top signals are more closely related biologically than by chance. Commonly used 

approaches include DAPPLE (Rossin et al., 2011), Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005), ALIGATOR (Holmans et al., 2009), MAGENTA (Segrè et al., 

2010), FORGE (Pedroso et al., 2012) and INRICH (Lee, O’Dushlaine, Thomas, & Purcell, 

2012). Although varying in methodology, these approaches rely on gene sets or pathways 

defined in specific databases (e.g., KEGG, Gene Onotology) to organize SNPs for excess 
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statistical significance within a pathway, while accounting for potential confounders like 

gene size and LD pattern within those genes. In addition to differences among the 

methodologies, it is also important to note that an inherent limitation of these approaches is 

the accuracy with which genes are grouped into pathways. Consequently, given the relative 

strengths and weaknesses of some existing pathway-based approaches and pathway 

databases, a combined rank approach has recently been developed for aggregating data 

across multiple approaches (Network and Pathway Analysis Subgroup of Psychiatric 

Genomics Consortium, 2015). Importantly, these methods can be applied to specific 

candidate pathways, for example “stress response”, if a particular set of genes is thought to 

impact an outcome of interest.

Methylation

Epidemiologic studies have identified specific childhood environmental exposures as 

substantial risk factors for subsequent behavioral disorders. Epigenetic processes mediate 

the impact of environmental influences (e.g., life experiences) on risk of illness through 

regulation of gene expression and function. The role of stressors in epigenetic variation in 

animal models is well established but extant human epigenetic studies are relatively small 

and typically rely on simple phenotypes (Tsankova, Renthal, Kumar, & Nestler, 2007). 

However, preliminary studies reporting associations between methylation and aspects of 

addiction (Hopf & Bonci, 2010), prenatal stress (Oberlander et al., 2008), childhood abuse 

(McGowan et al., 2009), PTSD (Uddin et al., 2010), and depression (Uddin et al., 2011) 

provide motivation for the inclusion of epigenetic measures in exploration of the relationship 

between intervention and later behavioral outcomes. Although acquired adverse epigenetic 

changes were once thought to be permanent, new evidence suggests they are plastic and 

potentially reversible (Kelly, De Carvalho, & Jones, 2010), opening the possibility for the 

impact of targeted interventions.

The role of methylation as a relatively stable marker of promoter-mediated regulation of 

gene expression makes it a logical target for understanding the mechanisms of 

environmental exposure. Moreover, methylation is known to vary both between and within 

individuals assessed at multiple time-points (Langevin et al., 2011). Evidence suggests 

several important driving forces behind differential methylation including, underlying 

genetic variation (meQTLs) (Smith et al., 2014), life experiences, differential tissue and cell-

types, and chronological age (Horvath, 2013). Variation in DNA methylation has been 

investigated as a mediator of the physiologic responses to acute and chronic exposures, 

including environmental adversity or response to intervention/prevention. Longitudinal data 

allows for the examination of change in epigenetic profiles potentially reflecting response to 

an intervention which potentially confer liability to outcome phenotypes. Identification of 

these mechanisms will inform prevention strategies at the most critical point(s) in the 

developmental risk trajectory.

Accurate measurement of DNA methylation provides the potential for a molecular record of 

response to the environment. Development of novel array technology for surveying CpG 

methylation across the genome has led to an explosion in the study of the relationship 

between the epigenome and behavior. While these arrays can be used with any tissue type, 
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the most common use is in whole blood samples. Consequently, our discussion here assumes 

use of whole blood samples. Epigenomic microarray data present a set of additional 

challenges beyond those posed by genetic microarray data. Comprehensive discussion is 

presented elsewhere but, in short, quality assessment, scaling and normalization, and 

removal of batch and other technical artifacts must be performed prior to analysis using 

packages such as minfi (Aryee et al., 2014). A particularly important aspect of methylation 

analysis is the removal confounding due to cellular heterogeneity. Importantly, even within a 

sample of lymphocytes, each cell type (e.g., B cell, T cell, NK cell) will have a unique 

epigenomic profile and heterogeneity in the relative cell proportions between individuals can 

lead to spurious results. Cellular heterogeneity is frequently corrected using the approach of 

Houseman and colleagues (Houseman et al., 2012). After correction and normalization, a 

quantitative metric representing percent methylation can be used as a dependent or 

independent variable in subsequent analysis.

Gene-Environment interplay

Integration of the behavioral sciences with genetics necessitates the simultaneous testing of 

the impact of genes and environment on phenotypic outcome. A usual approach is to 

explicitly test for an interaction between a specific genetic variant and an environment 

variable (GxE), whether or not a specific a priori hypothesis exists. While generating a host 

of apparently significant and often high profile findings, this approach has been met with 

non-replication and a great deal of criticism. While these issues are discussed in depth 

elsewhere, we will briefly mention several pitfalls to avoid. As with all statistical model 

fitting, it is important to be aware of distributional assumptions. However, given awareness 

of the potential impact of violations of distributional assumptions (e.g., Gaussian) in 

environmental measures on subsequent testing of interaction effects often leads investigators 

to impose artificial thresholds (e.g., median splits) on environmental indicators, 

consequently reducing statistical power. We recommend the use of quantile normalization as 

an alternative approach (Irizarry et al., 2003). Some investigators attempt to rely on methods 

that omit the main effects of the gene and environment and model only the interaction. 

Discussed elsewhere (Keller, 2014), this approach will yield inaccurate results. It is essential 

to include the main effect of any variable in a model that tests for its interaction with another 

variable to avoid an increase in Type I error. This increase in Type I error is magnified in 

models where gene-environment correlation is present (rGE). Recognizing the potential for 

spurious results, many statistical packages (including R), prohibit users from directly 

modelling interactions alone. A workaround used by some investigators is to pre-compute 

the interaction term (literally G × E) and test it as the lone independent variable in the 

model. This leads to highly spurious results when there are marginal effects of the gene or 

environment but no effect of GxE. Caution is advised when using this approach. It is well 

known that mean-centering of (quasi)continuous variables is requisite for removing any 

collinearity between an interaction (i.e., product) term and its component predictors, and 

avoids spurious results (Aiken and West 1991). Given proper treatment of genetic and 

environmental indicators, GxE interaction can be formally tested in many statistical models, 

including linear mixed models.
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Interpretation of a statistically significant GxE interaction is of particular interest. In the 

context of behavioural outcomes, two competing models exist for explaining gene-

environment interplay. The diathesis stress model (Monroe & Simons, 1991) and differential 

susceptibly model (Belsky, 1997). Others have referred to these as fan-shaped vs cross-over 

interactions, respectively, due to their plotted appearance (Roisman et al., 2012). In the 

differential susceptibility model a particular genotype will perform significantly better under 

one environmental condition versus other genotypes and will also perform significantly 

worse than other genotype under an alternative environmental condition (a cross-over). In 

the diathesis-stress model, genotypes differ under only one environmental condition (a fan-

shape). Frequently investigators plot interactions with the environment on the x-axis and 

phenotype on the y-axis, with separate lines per genotype, and draw conclusions based on 

visual inspection. However, formal statistical procedures exist for determining regions of 

significance, values of the environmental exposure under which genotypes differ 

significantly on phenotypic measures. In the instance of discrete environmental measures, 

this approach is simple since it involves comparing genotypes on phenotypic measure at 

each level of the environment to determine where they differ significantly. For continuous 

measures of exposure this can be reformulated as the “pick-a-point” or simple slopes 

approach, where significant differences in mean or slope can be tested at specific values of 

the continuous environment (Rogosa, 1980). The obvious weakness of this approach is its 

reliance on selection of arbitrary environmental values for testing. A preferred approach 

relies on the calculation of regions of significance or the range of values of the environment 

where the genotype groups differ significantly on phenotype values. As reviewed in Preacher 

et al (Preacher, Curran, & Bauer, 2006), this can be accomplished using the Johnson-

Neyman (Johnson & Neyman, 1936) approach or the use of confidence bands to identify the 

range of environmental measures on which the values differ on slope.

An important consideration in the context of gene-by-intervention analyses is that the 

differential susceptibility model is not specifically testable, as there is no “negative” 

treatment condition under which the crossover can be observed. More comprehensive 

treatments of the topic are available elsewhere (for example, (Manuck & McCaffery, 2014))

Genetics within Randomized Control Trials

Prevention trials provide a unique opportunity for researchers to explore gene-environment 

interplay, particularly within the context of differential susceptibility (Bakermans-

Kranenburg & van IJzendoorn, 2015). The randomization of participants to trial arms allows 

for careful evaluation of the role of genetics as well as the role of the environment. This is 

specifically relevant because of the careful manner in which the environment is controlled, 

thus limiting potential gene-environment correlation. Further, these trials generally provide 

rich phenotypic information for more careful modelling. There are some limitations, the 

largest being the limited sample sizes. Researchers can improve the power associated with 

these statistical tests by limiting the number of genetic regions explored through use of Post-

GWAS candidate selection, polygenic scoring or pathway analysis. Previous work has 

explored differential susceptibility utilizing meta-analytic methods, and demonstrated the 

remarkable increase in power for detecting GxE in intervention trials (Bakermans-

Kranenburg & Van IJzendoorn, 2015).
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Conclusion

Inclusion of genetic and epigenetic measures in longitudinal prevention studies will allow 

for the elucidation of the mechanism(s) by which preventive measures operate, including the 

detection of biological moderators and/or mediators of effectiveness. Multiple steps must be 

taken to ensure valid results. Appropriate quality control steps, at the SNP and individual 

level, must be taken to avoid inclusion of problematic genetic markers and contaminated or 

swapped individual samples. Careful imputation of markers using a valid reference panel 

will allow for the testing of nearly all genomic variation, while accounting for the 

uncertainty inherent to imputation. Proper approaches to accounting for genetic ancestry 

avoids spurious association due to population stratification. Ancestry principal components 

can be used as covariates in subsequent models testing genotype-phenotype relationships to 

prevent false positive results due to stratification. Polygenic scoring is a powerful approach 

to capturing composite genetic risk and may be useful for examining the impact of 

prevention or intervention efforts across the biological risk spectrum. Inclusion of polygenic 

risk as the lone genetic predictor, or in addition to a single SNP, in association testing is a 

valid strategy for jointly testing association. The growth of large scale curated databases of 

gene function, tissue specific and developmental timing of expression, methylation sensitive 

sites, and genomic functional annotations provide relevant prior information that can be used 

in weighted hypothesis testing approaches such as the weighted FDR. The increased 

availability of arrays to provide genome-wide indicators of baseline and change in site-

specific methylation is a boon to those interested in exploring the mechanisms by which 

intervention may serve to impact the genome. As with genotype data, great care must be 

taken with methylation array data to ensure that technical artefacts are removed and data are 

properly normalized before conducting association tests. Since methylation signals can 

change over time, a new set of mechanistic hypotheses, including whether or not a particular 

site mediates the impact of an intervention, are possible. Lastly, GxE testing is at the core of 

inclusion of genetic measures in intervention and prevention studies (i.e., does modifying the 

environment impact outcome differently by genotype). Consequently, safeguards must be 

taken to avoid the generation of spurious results.

Acknowledgments

Funding. This work was supported by National Institute on Drug Abuse (NIDA) Grants R01DA036525 and 
R01DA039408, and National Institute on Alcoholism and Alcohol Abuse Grant K01AA020333.

References

Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, … McVean GA. 1000 Genomes 
Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 
2010; 467(7319):1061–1073. DOI: 10.1038/nature09534 [PubMed: 20981092] 

Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control 
in genetic case-control association studies. Nature Protocols. 2010; 5(9):1564–1573. [PubMed: 
21085122] 

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: 
A flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation 
microarrays. Bioinformatics (Oxford, England). 2014; 30(10):1363–1369. DOI: 10.1093/
bioinformatics/btu049

Latendresse et al. Page 12

Prev Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bakermans-Kranenburg MJ, van IJzendoorn MH. The hidden efficacy of interventions: Gene× 
environment experiments from a differential susceptibility perspective. Annual Review of 
Psychology. 2015; 66:381–409.

Bates D, Maechler M, Bolker B, Walker S. Lme4: Linear mixed-effects models using eigen and S4. R 
Package Version. 2014; 1(7)

Belsky J. Variation in susceptibility to environmental influence: An evolutionary argument. 
Psychological Inquiry. 1997; 8(3):182–186.

Bhatia G, Gusev A, Loh P, Vilhjálmsson BJ, Ripke S, Purcell S, … Kendler KS. Haplotypes of 
common SNPs can explain missing heritability of complex diseases. bioRxiv. 2015 022418. 

Birnbaum R, Jaffe AE, Hyde TM, Kleinman JE, Weinberger DR. Prenatal expression patterns of genes 
associated with neuropsychiatric disorders. American Journal of Psychiatry. 2014

Boerwinkle E, Chakraborty R, Sing C. The use of measured genotype information in the analysis of 
quantitative phenotypes in man. Annals of Human Genetics. 1986; 50(2):181–194. [PubMed: 
3435047] 

Brody GH, Yu T, Chen E, Beach SR, Miller GE. Family-centered prevention ameliorates the 
longitudinal association between risky family processes and epigenetic aging. Journal of Child 
Psychology and Psychiatry. 2015

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, … Samani NJ. Genome-
wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. 
Nature. 2007; 447(7145):661–678. [PubMed: 17554300] 

Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, … Poulton R. Influence of life 
stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (New York, NY). 
2003; 301(5631):386–389. DOI: 10.1126/science.1083968

Chang CC, Chow CC, Tellier L, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to 
the challenge of larger and richer datasets. Gigascience. 2015; 4(7)

Choudhry S, Coyle NE, Tang H, Salari K, Lind D, Clark SL. … Genetics of Asthma in Latino 
Americans GALA Study. Population stratification confounds genetic association studies among 
latinos. Human Genetics. 2006; 118(5):652–664. DOI: 10.1007/s00439-005-0071-3 [PubMed: 
16283388] 

Clark AG, Li J. Conjuring SNPs to detect associations. Nature Genetics. 2007; 39(7):815–816. 
[PubMed: 17597769] 

Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, … Kleinman JE. Temporal dynamics and 
genetic control of transcription in the human prefrontal cortex. Nature. 2011; 478(7370):519–523. 
DOI: 10.1038/nature10524 [PubMed: 22031444] 

Delaneau O, Zagury J, Marchini J. Improved whole-chromosome phasing for disease and population 
genetic studies. Nature Methods. 2013; 10(1):5–6. [PubMed: 23269371] 

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999; 55(4):997–1004. 
[PubMed: 11315092] 

Dick DM, Agrawal A, Keller MC, Adkins A, Aliev F, Monroe S, … Sher KJ. Candidate gene-
environment interaction research: Reflections and recommendations. Perspectives on 
Psychological Science : A Journal of the Association for Psychological Science. 2015; 10(1):37–
59. DOI: 10.1177/1745691614556682 [PubMed: 25620996] 

Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013; 
9(3):e1003348. [PubMed: 23555274] 

Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment 
interaction research in psychiatry. American Journal of Psychiatry. 2011

Eu-Ahsunthornwattana J, Miller EN, Fakiola M, Jeronimo SM, Blackwell JM, Cordell HJ. Wellcome 
Trust Case Control Consortium 2. Comparison of methods to account for relatedness in genome-
wide association studies with family-based data. PLoS Genet. 2014; 10(7):e1004445. [PubMed: 
25033443] 

Farrell M, Werge T, Sklar P, Owen M, Ophoff R, O’donovan M, … Sullivan PF. Evaluating historical 
candidate genes for schizophrenia. Molecular Psychiatry. 2015; 20(5):555–562. [PubMed: 
25754081] 

Latendresse et al. Page 13

Prev Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fortney K, Dobriban E, Garagnani P, Pirazzini C, Monti D, Mari D, … Owen AB. Genome-wide scan 
informed by age-related disease identifies loci for exceptional human longevity. PLoS Genet. 
2015; 11(12):e1005728. [PubMed: 26677855] 

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, … Pato CN. 
Assessing the impact of population stratification on genetic association studies. Nature Genetics. 
2004; 36(4):388–393. [PubMed: 15052270] 

Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P, … Craddock N. Gene ontology 
analysis of GWA study data sets provides insights into the biology of bipolar disorder. American 
Journal of Human Genetics. 2009; 85(1):13–24. DOI: 10.1016/j.ajhg.2009.05.011 [PubMed: 
19539887] 

Hopf FW, Bonci A. Dnmt3a: Addiction’s molecular forget-me-not? Nature Neuroscience. 2010; 13(9):
1041–1043. DOI: 10.1038/nn0910-1041 [PubMed: 20740031] 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biology. 2013; 14(10):
3156.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, … Kelsey KT. 
DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 
2012; 13:86-2105-13-86.doi: 10.1186/1471-2105-13-86 [PubMed: 22568884] 

Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next 
generation of genome-wide association studies. PLoS Genet. 2009; 5(6):e1000529. [PubMed: 
19543373] 

Hutchison KE, Stallings M, McGeary J, Bryan A. Population stratification in the candidate gene study: 
Fatal threat or red herring? Psychological Bulletin. 2004; 130(1):66. [PubMed: 14717650] 

Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic 
association studies. Nature Genetics. 2001; 29(3):306–309. [PubMed: 11600885] 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, 
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 
(Oxford, England). 2003; 4(2):249–264. DOI: 10.1093/biostatistics/4.2.249

Jaffe AE, Gao Y, Tao R, Hyde TM, Weinberger DR, Kleinman JE. The methylome of the human 
frontal cortex across development. bioRxiv. 2014; doi: 10.1101/005504

Johnson PO, Neyman J. Tests of certain linear hypotheses and their application to some educational 
problems. Statistical Research Memoirs. 1936

Keller MC. Gene× environment interaction studies have not properly controlled for potential 
confounders: The problem and the (simple) solution. Biological Psychiatry. 2014; 75(1):18–24. 
[PubMed: 24135711] 

Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nature 
Biotechnology. 2010; 28(10):1069–1078. DOI: 10.1038/nbt.1678

Langevin SM, Houseman EA, Christensen BC, Wiencke JK, Nelson HH, Karagas MR, … Kelsey KT. 
The influence of aging, environmental exposures and local sequence features on the variation of 
DNA methylation in blood. Epigenetics : Official Journal of the DNA Methylation Society. 2011; 
6(7):908–919.

Lee PH, O’Dushlaine C, Thomas B, Purcell SM. INRICH: Interval-based enrichment analysis for 
genome-wide association studies. Bioinformatics (Oxford, England). 2012; 28(13):1797–1799. 
DOI: 10.1093/bioinformatics/bts191

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using sequence and genotype data to estimate 
haplotypes and unobserved genotypes. Genetic Epidemiology. 2010; 34(8):816–834. [PubMed: 
21058334] 

Lin DY, Huang BE. The use of inferred haplotypes in downstream analyses. American Journal of 
Human Genetics. 2007; 80(3):577–579. [PubMed: 17380613] 

Maher BS. Polygenic scores in epidemiology: Risk prediction, etiology, and clinical utility. Current 
Epidemiology Reports. 2015; 2(4):239–244. [PubMed: 26664818] 

Manuck SB, McCaffery JM. Gene-environment interaction. Annual Review of Psychology. 2014; 
65:41–70.

Latendresse et al. Page 14

Prev Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, … Meaney MJ. Epigenetic 
regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature 
Neuroscience. 2009; 12(3):342–348. DOI: 10.1038/nn.2270 [PubMed: 19234457] 

Monroe SM, Simons AD. Diathesis-stress theories in the context of life stress research: Implications 
for the depressive disorders. Psychological Bulletin. 1991; 110(3):406. [PubMed: 1758917] 

Montana G, Pritchard JK. Statistical tests for admixture mapping with case-control and cases-only 
data. American Journal of Human Genetics. 2004; 75(5):771–789. [PubMed: 15386213] 

Munafò MR, Durrant C, Lewis G, Flint J. Gene× environment interactions at the serotonin transporter 
locus. Biological Psychiatry. 2009; 65(3):211–219. [PubMed: 18691701] 

Musci RJ, Masyn KE, Uhl G, Maher B, Kellam SG, Ialongo NS. Polygenic score× intervention 
moderation: An application of discrete-time survival analysis to modeling the timing of first 
tobacco use among urban youth. Development and Psychopathology. 2015; 27(01):111–122. 
[PubMed: 25640834] 

Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-
wide association study analyses implicate neuronal, immune and histone pathways. Nature 
Neuroscience. 2015; 18(2):199–209. DOI: 10.1038/nn.3922 [PubMed: 25599223] 

Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, … Lipska BK. DNA methylation 
signatures in development and aging of the human prefrontal cortex. American Journal of Human 
Genetics. 2012; 90(2):260–272. DOI: 10.1016/j.ajhg.2011.12.020 [PubMed: 22305529] 

Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to 
maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and 
infant cortisol stress responses. Epigenetics : Official Journal of the DNA Methylation Society. 
2008; 3(2):97–106.

Pasaniuc B, Sankararaman S, Kimmel G, Halperin E. Inference of locus-specific ancestry in closely 
related populations. Bioinformatics (Oxford, England). 2009; 25(12):i213–21. DOI: 10.1093/
bioinformatics/btp197

Pasaniuc B, Zaitlen N, Lettre G, Chen GK, Tandon A, Kao WH, … Price AL. Enhanced statistical 
tests for GWAS in admixed populations: Assessment using african americans from CARe and a 
breast cancer consortium. PLoS Genetics. 2011; 7(4):e1001371.doi: 10.1371/journal.pgen.
1001371 [PubMed: 21541012] 

Pedroso I, Lourdusamy A, Rietschel M, Nöthen MM, Cichon S, McGuffin P, … Breen G. Common 
genetic variants and gene-expression changes associated with bipolar disorder are over-represented 
in brain signaling pathway genes. Biological Psychiatry. 2012; 72(4):311–317. [PubMed: 
22502986] 

Preacher KJ, Curran PJ, Bauer DJ. Computational tools for probing interactions in multiple linear 
regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral 
Statistics. 2006; 31(4):437–448.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nature Genetics. 2006; 
38(8):904–909. [PubMed: 16862161] 

Pritchard JK, Donnelly P. Case-control studies of association in structured or admixed populations. 
Theoretical Population Biology. 2001; 60(3):227–237. [PubMed: 11855957] 

Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in 
association studies. American Journal of Human Genetics. 1999; 65(1):220–228. [PubMed: 
10364535] 

Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common 
polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009; 
460(7256):748–752. [PubMed: 19571811] 

Risch N, Herrell R, Lehner T, Liang K, Eaves L, Hoh J, … Merikangas KR. Interaction between the 
serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-
analysis. Jama. 2009; 301(23):2462–2471. [PubMed: 19531786] 

Roeder K, Bacanu SA, Wasserman L, Devlin B. Using linkage genome scans to improve power of 
association in genome scans. American Journal of Human Genetics. 2006; 78(2):243–252. 
[PubMed: 16400608] 

Latendresse et al. Page 15

Prev Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rogosa D. Comparing nonparallel regression lines. Psychological Bulletin. 1980; 88(2):307.

Roisman GI, Newman DA, Fraley RC, Haltigan JD, Groh AM, Haydon KC. Distinguishing differential 
susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. 
Development and Psychopathology. 2012; 24(02):389–409. [PubMed: 22559121] 

Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, … Daly MJ. Proteins encoded in 
genomic regions associated with immune-mediated disease physically interact and suggest 
underlying biology. PLoS Genetics. 2011; 7(1):e1001273.doi: 10.1371/journal.pgen.1001273 
[PubMed: 21249183] 

Sankararaman S, Sridhar S, Kimmel G, Halperin E. Estimating local ancestry in admixed populations. 
American Journal of Human Genetics. 2008; 82(2):290–303. DOI: 10.1016/j.ajhg.2007.09.022 
[PubMed: 18252211] 

Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D. Diagram Consortium & Magic Investigators. 
Common inherited variation in mitochondrial genes is not enriched for associations with type 2 
diabetes or related glycemic traits. PLoS Genet. 2010; 6(8):e1001058. [PubMed: 20714348] 

Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, … Conneely KN. Methylation 
quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, 
and tissue type. BMC Genomics. 2014; 15 145-2164-15-145. doi: 10.1186/1471-2164-15-145

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, … Mesirov JP. Gene set 
enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 
profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 
102(43):15545–15550. 0506580102 [pii]. [PubMed: 16199517] 

Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: 
Practical considerations. Nature Reviews Genetics. 2002; 3(5):391–397.

Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation 
analysis. 2014

Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nature 
Reviews Neuroscience. 2007; 8(5):355–367. DOI: 10.1038/nrn2132 [PubMed: 17453016] 

Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R, … Galea S. Epigenetic 
and immune function profiles associated with posttraumatic stress disorder. Proceedings of the 
National Academy of Sciences of the United States of America. 2010; 107(20):9470–9475. DOI: 
10.1073/pnas.0910794107 [PubMed: 20439746] 

Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S. Epigenetic and 
inflammatory marker profiles associated with depression in a community-based epidemiologic 
sample. Psychological Medicine. 2011; 41(5):997–1007. DOI: 10.1017/S0033291710001674 
[PubMed: 20836906] 

Vandenbergh DJ, Schlomer GL, Cleveland HH, Schink AE, Hair KL, Feinberg ME, … Redmond C. 
An adolescent substance prevention model blocks the effect of CHRNA5 genotype on smoking 
during high school. Nicotine & Tobacco Research : Official Journal of the Society for Research on 
Nicotine and Tobacco. 2016; 18(2):212–220. DOI: 10.1093/ntr/ntv095 [PubMed: 25941207] 

Vilhjalmsson B, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, … Do R. Modeling linkage 
disequilibrium increases accuracy of polygenic risk scores. bioRxiv. 2015 015859. 

Visscher PM, Medland SE, Ferreira M, Morley KI, Zhu G, Cornes BK, … Martin NG. Assumption-
free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. 
PLoS Genet. 2006; 2(3):e41. [PubMed: 16565746] 

Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, … Visscher PM. 
Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genetics. 
2011; 43(6):519–525. DOI: 10.1038/ng.823 [PubMed: 21552263] 

Zandi PP, Wilcox HC, Dong L, Chon S, Maher B. Genes as a source of risk for mental disorders. 
Public Mental Health. 2012:201.

Zaykin DV, Zhivotovsky LA. Ranks of genuine associations in whole-genome scans. Genetics. 2005; 
171(2):813–823. [PubMed: 16020784] 

Latendresse et al. Page 16

Prev Sci. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Quality Control
	Population Stratification
	Genotype Imputation
	Statistical Model: Main Effects

	Incorporating biological information
	Polygenic/Pathway Approaches
	Methylation
	Gene-Environment interplay
	Genetics within Randomized Control Trials
	Conclusion
	References

