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Abstract

Contemporary theories of associative learning are increasingly complex, which necessitates the 

use of computational methods to reveal predictions of these models. We argue that comparisons 

across multiple models in terms of goodness of fit to empirical data from experiments often reveal 

more about the actual mechanisms of learning and behavior than do simulations of only a single 

model. Such comparisons are best made when the values of free parameters are discovered 

through some optimization procedure based on the specific data being fit (e.g., hill climbing), so 

that the comparisons hinge on the psychological mechanisms assumed by each model rather than 

being biased by using parameters that differ in quality across models with respect to the data being 

fit. Statistics like the Bayesian information criterion facilitate comparisons among models that 

have different numbers of free parameters. These issues are examined using retrospective 

revaluation data.
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1. Introduction: Models and computational simulations

Acceptance or rejection of quantitative models of associative learning should be informed by 

how well a model fits the available data relative to alternative models. We propose that tests 

of associative models should be based on formal comparative model selection procedures 

and statistics. For example, human category learning researchers who have made claims 
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about the merits of exemplar- and prototype-based models of category judgments for years 

have bolstered their assertions with such simulations. For them, it is not sufficient to show 

that a model simply provides a good fit to data from empirical procedures. Instead, their 

modeling procedures usually include comparisons between models (e.g., Minda & Smith, 

2001; Nosofsky & Zaki, 2002). Similarly, a few researchers interested in animal learning 

have in fact adopted these techniques (e.g., Cheung, Neisewander, & Sanabria, 2012; Simen, 

Balci, de Souza, Cohen, & Holmes, 2011). However, this approach seems to be largely 

absent from the basic Pavlovian literature (e.g., see the 2012 special issue of Learning & 
Behavior). To be sure, modelers disagree concerning best practices for such comparisons 

(e.g., Olsson, Wennerholm, & Lyxzen, 2004) and the present article does not aim to resolve 

those disagreements because such comparisons are almost absent from the associative 

learning literature. Instead, we merely propose that claims about associative models could be 

better assessed if they were considered in the framework of a comparative model selection 

method that includes both an optimization procedure for identifying best-fitting parameters 

(e.g., hill climbing) and a statistical analysis of simulation results that controls for differing 

numbers of free parameters across models.

A mathematical model of behavior allows researchers to precisely instantiate a theory as a 

system of equations. Computational models facilitate assessment of theories by producing 

quantitative predictions that can be scaled to the response measurements used in 

experimental procedures (e.g., choice behavior, response rate, or response magnitude). Such 

computer-aided simulations are necessary because contemporary models of learning and 

behavior are quite complex. Thus, the predictions of an associative model as well as the 

parameter dependence of it are frequently difficult to ascertain without conducting 

simulations. The complexity of most learning models is often necessitated by seemingly 

discrepant empirical findings. For example, when multiple cues are reinforced in compound, 

competition among the cues is often observed (e.g., overshadowing, Pavlov, 1927; blocking, 

Kamin, 1968); however, facilitation can occur in select circumstances (e.g., potentiation; 

Rusiniak, Hankins, Garcia, & Brett, 1979). And when multiple cues are presented in 

compound without reinforcement and one of those cues is separately reinforced, either 

excitatory behavioral control (second-order conditioning) or inhibitory behavioral control 

(Pavlovian conditioned inhibition) by the nonreinforced cue can result (Pavlov, 1927). 

Further complicating any theoretical analysis of the empirical literature is the fact that 

attempts to replicate even widely cited empirical effects have not been universally successful 

(e.g., Maes et al., 2016).

Early models of associative learning (e.g., Rescorla & Wagner, 1972) explained only a 

relatively small category of associative effects, centrally cue competition and conditioned 

inhibition. Such models are so simple that their predictions can often be derived either 

analytically or intuitively. For example, the Rescorla-Wagner model assumes that animals 

learn and respond based on a n x 1 array of associations to a given unconditioned stimulus 

(US), where n equals the number of cues. Anticipation of the blocking effect is easily 

derived from the system of equations in the Rescorla-Wagner model. Assuming that Phase 1 

training was asymptotic (i.e., VA = λ), the change in associative strength for B (ΔVB) in the 

experimental group on the first trial of Phase 2 is
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(1)

where αB is the associability of B, βUS is the associability of the US, and λ is the maximum 

associative strength supportable by the US. Thus, the prediction is that an unsurprising US 

will fail to produce learning with respect to B. Computational modeling is not necessary in 

this situation because the predictions of the Rescorla-Wagner model can readily be arrived at 

‘intuitively.’ Occasionally, an elegant closed-form solution to a model can be derived 

analytically (e.g., Yamaguchi, 2006). However, the assumptions of these closed solutions are 

not always consistent with the empirical procedures used in experimental tests of those 

models. For example, predictions based on some closed solutions to the Rescorla-Wagner 

model assume that training has reached asymptote and that all trial types are presented in 

random order (Danks, 2003). Thus, closed solutions to a model can result in a weakened 

connection between the assumptions of the model and the empirical procedures that the 

model is intended to simulate. This is not a weakness of the Rescorla-Wagner model, but it 

is weakness in the use of closed solutions to derive predictions from the Rescorla-Wagner 

model.

Moreover, early, more intuitive models of associative learning, such as the Rescorla-Wagner 

model, fail to explain behavior in many well-documented ways. For example, the Rescorla-

Wagner model fails to explain latent inhibition (Lubow & Moore, 1959), spontaneous 

recovery from extinction (Pavlov, 1929), retrospective revaluation (Kaufman & Bolles, 

1981), taste-odor potentiation (Rusiniak, Hankins, Garcia, & Brett, 1979), and backward 

blocking (Shanks, 1985; for reviews, see Miller, Barnett, & Grahame, 1995; Witnauer, 

Urcelay, & Miller, 2014). Additionally, the Rescorla-Wagner model does not explain cue 

facilitation effects such as potentiation or second-order conditioning. In blocking situations, 

the model fails to explain a number of different observations. Blocking is sometimes reduced 

with posttraining extinction of the blocking cue (i.e., retrospective revaluation; e.g., 

Blaisdell, Gunther, & Miller, 1999). Blocking does not occur after massed elemental trials 

(Wheeler & Miller, 2007) or with a long retention interval between compound training and 

testing (Piñeno, Urushihara, & Miller, 2005). Blocking also depends on the number of 

compound trials; the effect is reduced with large numbers of compound training trials 

(Azorlosa & Cicala, 1986). Moreover, blocking fails to occur when the target stimulus is 

trained in compound with two previously independent excitors (Witnauer, Urcelay, & Miller, 

2008). Thus, contemporary models of associative learning have been revised. For example, 

revisions of the Rescorla-Wagner model have been developed to explain retrospective 

revaluation (e.g., Van Hamme & Wasserman, 1994) and second-order conditioning (e.g., 

Piñeno, 2007). However, these revised models are necessarily more complex than their 

predecessors and their predictions must be derived using computational (instead of 

analytical or intuitive) methods.

Contemporary associative theories often consider the role of within-compound associations 

(e.g., Van Hamme & Wasserman; Stout & Miller, 2007), microelements (Ludvig, Sutton, & 

Kehoe, 2008), or both (Wagner, 1981). Simulations of these models become computationally 

intensive when they are applied to experiments with multiple cues, many trials, or an 
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approximation of real time representation of events within a trial. In contrast to the 

simplicity of the Rescorla-Wagner model, the Van Hamme and Wasserman (1994) model’s 

dependence on within-compound associations implicitly assumes that, given a single US, 

animals learn and respond based on an n x n+1 array of associations, where n is the number 

of cue elements. It is difficult for modelers to derive the predictions of this model in 

experimental situations (which have increased in complexity, along with the number of 

models that they attempt to differentiate) without computational methods. For example, 

Rescorla’s (2000) illuminating observation that excitors gain less behavioral control than 

inhibitors, when they are compounded and paired with a US, is based on a procedure that 

included six different stimuli (including the training context) and an outcome. In this 

situation, the Rescorla-Wagner (1972) model assumes that the critical contents of learning 

are limited to six different associations (i.e., a six-element vector representing the associative 

strength of each cue with the US). In contrast, Van Hamme and Wasserman’s extension of 

the Rescorla-Wagner model assumes that animals learn and respond based on a complete 

unidirectional associative matrix where each row represents a ‘sending cue’ and each 

column represents a ‘receiving stimulus’. Thus, the Van Hamme and Wasserman model 

assumes that the critical contents of learning includes up to 42 (6 x 7) different associations 

in Rescorla’s (2000) experiments.

Another problem with many conventional empirical papers in the study of associative 

learning is that they often use null hypothesis significance testing as the primary quantitative 

technique for making theoretical inferences based on behavioral data. This approach is of 

limited value because comparisons between observed effects and null hypotheses usually fail 

to quantitatively assess the specific theoretical prediction in question. That is, using this 

technique, hypotheses are dichotomously either not supported or viewed as viable without 

assessing the degree to which the observed behavior conformed to predictions of the model. 

Rodgers (2010) reviewed the problems with null hypothesis testing and argued that 

comparative computational modeling is emerging as an important family of techniques for 

overcoming this and other related problems. In reality, this movement is far from new as in 

some areas of psychology (e.g., category learning) researchers have been using these 

alternative techniques for decades (e.g., Kruschke, 1992). In this context, simulations are 

important because they introduce quantitative rigor to the difficult task of relating data to 

specific theories.

Intuitive and analytical methods of relating a model to the null hypothesis are inadequate as 

they usually assess only ordinal differences. Computational models allow researchers to 

derive precise, numerical predictions that can be quantitatively compared to observed 

behavior. Most researchers in associative learning are well aware of the existence of these 

methods, but rarely employ them. Moreover, when they do, they are usually applied to a 

single model rather than a comparison across models (e.g., Learning & Behavior’s 2012 

Special Issue on Computational Models of Classical Conditioning). However, in practice 

theoretically driven empirical research often does not actually employ computational 

methods at all (e.g., Melchers, Lachnit, & Shanks, 2004), which is problematic because 

investigators might err concerning what a given model predicts. The purpose of this paper is 

to highlight the merits of quantitative comparative model testing and provide an example. 

There are several different general computational methods available to researchers, some of 
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which more readily permit direct comparisons across models than others. These methods 

differ with respect to how free parameters are selected. Free parameters can be optimized 

post hoc or selected a priori. Centrally, we argue that parameters should be optimized on a 

post hoc basis when simulations are used to compare models with respect to goodness of fit 

to observed behavior.

2. Model comparison and selection

The scientific method depends on selective, empirically-based rejection of some theories 

relative to others. Computational methods can inform this process. When one mathematical 

model fits a behavioral data set better than another, we learn something about the theoretical 

processes underlying that behavior. This process is made more difficult by the fact that 

models are intentionally simplified systems. For example, the Rescorla-Wagner model 

makes many simplifying assumptions (which are ideally constant across models being 

compared) concerning perception, attention, memory, and decision making. If the Rescorla-

Wagner model fails to fit a data set, is that failure caused by the model’s critical theoretical 

ideas (error detection and reduction) or is it caused by the model’s simplifying assumptions? 

We propose that model comparison can assist researchers in answering this question. 

Comparing two (or more) models with similar simplifying assumptions and different critical 

theoretical principles allows a potentially illuminating computational comparison of 

principles. In the same way that an empirical experiment compares experimental and control 

conditions that are well-matched on some variables and different on (ideally) one target 

variable, a ‘computational experiment’ compares models that are well-matched in their 

simplifying assumptions and different in their theoretical assumptions. In this situation, a 

distinct superiority of one model over another is more likely to reflect a problematic 

theoretical assumption than a problematic simplifying assumption, at least with respect to 

the data set at hand. Importantly, the goal of this strategy is not to select a ’winner;’ this 

strategy does not confirm a single model or class of models. The strategy will at best only 

identify models that might be rejected on the basis of data, and then only with respect to the 

procedures used to generate the data set in question.

Ultimately, simulations of a data set using a single model can at best tell us only the amount 

of variance between conditions that the model can explain. Should we be content with 90%, 

95%, or only 99%? Such criteria do not allow us to either falsify or fail to falsify a model, 

and in fact that is not conceptually possible by simulating only one model. The important 

question is how well a model performs relative to alternative models. We view comparative 

modeling as a more conservative strategy than simulating a single model because it can 

identify experiments that are well-fit by two or more competing models. Consider the 

blocking phenomenon. All contemporary associative models predict blocking (which is not 

surprising because a model that failed to would not be entertained). Thus, a ‘successful’ 

simulation of blocking using a contemporary model (e.g., Stout & Miller, 2007; Harris, 

2006) would be uninformative in choosing among models. That is, if simulations of a 

contemporary model were compared to Rescorla-Wagner model simulations, both models 

would explain the basic blocking effect and we would be forced to accept the Rescorla-

Wagner model based on its greater simplicity (i.e., far fewer free parameters). Thus, failures 

to falsify are only compelling in the context of less successful alternative models. Otherwise, 
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we must always accept the simplest model (i.e., formally, model selection reduces to 

selecting the simplest ‘successful’ model). Notably, this points to the need for Pavlovian 

researchers to continually update the empirical benchmarks against which a model’s 

predictions are compared. Such revisions to empirical benchmarks should be informed by 

formal modeling procedures as those procedures are best able to reveal the empirical effects 

that have the potential to differentiate among models. We have used retrospective revaluation 

(e.g., Kaufman & Bolles, 1981) and counteraction effects (Wheeler & Miller, 2008) to 

differentiate among models (e.g., Witnauer & Miller, 2011; Witnauer, Urcelay, & Miller, 

2014). However, formal, simulation-based comparisons between models are almost absent 

from the animal learning literature (e.g., Kutlu & Schmajuk, 2012). Formal model 

comparison is the most appropriate strategy for differentiating among models when multiple 

models are able to explain some empirical benchmark. For example, most associative 

models predict blocking but formal model comparisons have revealed that only some 

associative models are able to accurately predict the degree of blocking (usually incomplete) 

that is observed in most experiments (e.g., Witnauer et al., 2014). Moreover, even when 

reasonable empirical criteria seem to differentiate between models, researchers can 

underestimate the flexibility of models, which might lead to erroneous rejection of a 

potentially viable model.

Likewise, the falsification of a model depends on the context in which the falsification 

occurs. All mathematical associative models are, by definition, simplified implementations 

of some theory or system of principles that instantiate focal theoretical ideas. They are not 

meant to serve as complete descriptions of an animal’s cognitive and behavioral system. 

Thus, all models are inherently inaccurate. Associative models often oversimplify 

mechanisms of attention, memory, and perception that are known to contribute to behavior. 

The update equation (i.e., Vn+1 = Vn + ΔVn) that is ubiquitous in associative models 

deliberately oversimplifies the storage of information in memory in that it implies no 

retention of prior associative states. Comparisons across models are usually most 

illuminating when the models being compared subscribe to similar simplifying assumptions.

The capacity of a model to fit empirical data is most informative when it is compared to 

another model’s fit to the same data in the same manner that a group mean is most 

informative when it is compared to the means of other groups that have been differentially 

treated. In these situations, researchers compare models based on goodness of fit to data, 

weighted by simplicity (usually captured by the number of free parameters). The enormous 

potential of this strategy was well-described by Rodgers (2010). He argued that simulations 

could be designed in a manner similar to the way that experiments are designed. 

Comparisons between fits of models can be used to evaluate contrasting theoretical 

principles. Like comparisons between experimental conditions with tightly controlled 

differences in treatment, comparisons between models with clearly defined differences and 

similarities in structure can inform concerning the mechanisms of behavior. Witnauer and 

Miller (2011) attempted this with their treatment of two models of retrospective revaluation. 

They compared the original Van Hamme and Wasserman (1994) model and the Within-

Compound model (a distinct variant of the Van Hamme & Wasserman model) that differ 

systematically in their treatments of absent cues. Both models assume that representations of 

absent cues are activated (i.e., retrieved) by presentation of their associates. The original Van 
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Hamme and Wasserman model assumes that the salience of an absent cue is a constant 

(negative) fraction of the salience of the same cue when it is presented. In contrast, the 

Within-Compound model assumes that the salience of an absent cue is proportional to the 

amount of activation of the absent cue achieved through the within-compound association. 

The two models share the important psychological assumption of Van Hamme and 

Wasserman that the associative strength of absent cues can be modified, which is a 

significant departure from the original Rescorla-Wagner model on which they are based. 

Across many simulations, comparisons between these models revealed that the Within-

Compound model provided a better fit to experimental results, which suggests that the 

strength of the within-compound association mediates the strength of retrospective 

revaluation. Thus, using computational modeling to fit theoretical models to empirical data 

can illuminate the mechanisms underlying effects.

3. Parameter selection and quantifying procedural variables

In some situations, the values of parameters are strongly constrained by previously 

established theoretical principles or empirical findings. For example, in Hodgkin and 

Huxley’s (1952) biophysical model of the membrane of a neuron, the values of many of the 

parameters were already known from independent prior research. The value of the sodium 

reversal potential is calculated based on, among other things, the temperature of the 

experimental apparatus and the intracellular and extracellular concentrations of sodium ions. 

Unfortunately, such precision is often difficult in associative modeling because the 

parameters are rarely closely linked to readily measurable physical variables. Even salience 

parameters, which are related to the physical intensity of a stimulus, are not perfectly related 

to any single physical dimension of a stimulus. For example, the salience of an acoustic 

stimulus is determined by many physical dimensions of the stimulus (e.g., amplitude, 

frequency, timbre, and duration) as well as state variables of the subject (e.g., arousal), all of 

which often vary from one experimental preparation to another. Similar problems exist in 

other sensory modalities. Thus, associative models often use free parameters to represent 

variables like salience, which are (by definition) permitted to vary in a way that can 

influence the predictions of the model. Free parameters also assist in quantifying abstract 

parameters like associability that are often superficially viewed as being closely linked to 

variables like salience, but are clearly far removed from being determined entirely by readily 

measurable aspects of the physical stimulus. Ideally, one should work toward developing 

models that produce parameter- and procedure-invariant predictions, but only to the extent 

that the data are invariant. Including more data in the optimization procedure is one way to 

constrain a model’s predictions and work towards parameter invariance. The values of some 

parameters are estimable only by procedures that fit the model to empirical data. 

Researchers in associative learning often omit such procedures and, instead, intuitively 

select parameters and then simulate multiple data sets with a single model without changing 

parameters. If the observed pattern of behavior resembles the pattern of results predicted by 

the model, researchers argue that the model successfully predicted the data. This is 

sometimes misleading for at least two reasons. The first concerns how procedural variables 

are quantified, and the second concerns the selection of parameters. Here we sequentially 

address these two issues.
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There are many experimenter-controlled procedural variables that must be quantified before 

a computational model can generate predictions, and how this quantification is implemented 

can have enormous influence on the model’s goodness of fit. Moreover, the consequences of 

these decisions can differ markedly across models. Two examples of such variables are how 

to treat intertrial intervals, and how many trials to assume have occurred. Intertrial intervals 

can be ignored, each can be treated as one context extinction trial independent of the length 

of the intertrial interval, or even as a number of context extinction trials with the number of 

trials being a direct function of the length of the intertrial interval which is possibly 

measured in terms of the duration of trials in which punctate stimuli (i.e., conventional CSs 

and USs) are presented. The literature reveals instances of each of these three strategies.

With respect to number of trials, one might think that matching number of trials in a 

simulation to the actual number of trials that were administered in the experiment being 

simulated would be the only acceptable option, but modelers often deviate from this. For 

example, Kutlu and Schmajuk (2012) used the SLGK model (presented in Kutlu & 

Schmajuk) to simulate Blaisdell et al.’s (1999) demonstration of recovery from blocking. In 

Blaisdell et al.’s critical experiment, rats received Phase 1 training consisting of 12 

elemental (A+ or D+) conditioning trials. In Phase 2, compound training consisted of 4 AX+ 

trials for all subjects. Thus, X was either potentially blocked by A (when Phase 1 consisted 

of A+ trials) or overshadowed by A (when Phase 1 consisted of D+ trials). In Phase 3, rats 

received either 800 A-alone trials or a treatment designed to control for exposure to the 

experimental apparatus. Blaisdell et al. observed less responding when compound training 

was preceded by A+ trials (i.e., blocking) and, critically, they observed a recovery from 

blocking when Phase 2 training was followed by A-alone trials. In Kutlu and Schmajuk’s 

simulations of Blaisdell et al., they used the same set of parameters that they had used from 

prior simulations of other data sets despite the parameter values being initially derived from 

eye blink conditioning data. Kutlu and Schmajuk’s simulations involved 40 Phase 1 trials 

and 20 Phase 2 trials. Thus, both the absolute numbers of trials and the ratio of different trial 

types were distorted compared to the empirical work. To our knowledge, researchers have 

not yet attempted to replicate Blaisdell et al.’s recovery from blocking effect in the type of 

eye blink conditioning procedure that provided the basis for Kutlu and Schmajuk’s choice of 

free parameters. Thus, it remains possible that the SLGK model erroneously predicts 

recovery from blocking in a procedure that does not actually replicate the effect as it was 

observed in a conditioned suppression procedure. Clearly, this is neither an a priori 
technique nor a rigorous method for comparing the SLGK model’s predictions to the results 

of experiments. Moreover, nothing was said about how the number of trials in each phase 

was decided. This is especially problematic in cue competition situations because 

competition among cues often wanes with extensive compound training (e.g., Stout, 

Arcediano, Escobar, & Miller, 2003).

In addition to translating empirical procedures (such as number of trials and characterization 

of intertrial intervals) to simulations, modelers must select values for free parameters. 

Ideally, modelers would describe the predictions of a model across parameter space. For 

example, grid search algorithms involve repeating simulations across an equally spaced and 

large subset of parameter space. However, most contemporary associative models have too 

many free parameters to allow for a sufficiently fine-grained parsing of parameter space. 

Witnauer et al. Page 8

Behav Processes. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, values for free parameters are usually either arbitrarily set (i.e., based on intuition) or 

selected based on optimization procedures. Intuitively selected parameters are usually 

initially used to assess the general functioning of the model. But with more mature models, 

parameters are almost always determined by some sort of procedure that optimizes the fit of 

the model to some data set. In practice, the method for selecting the free parameters is 

seldom reported (e.g., most of the models discussed in the 2012 Learning & Behavior 
Special Issue on Computational Models of Classical Conditioning). However, unbiased 

comparisons among models require that the free parameters of all models being compared 

be equally optimal across models. Most predictions are parameter dependent even in simple 

models (e.g., Van Hamme & Wasserman, 1994). When arbitrary values are used for the free 

parameters of a model, differences in the fits of the models to the data can be attributed 

either to differences across the models in the optimality of the parameters with respect to the 

data set in question or to the psychological principles reflected in the equations. Of course, it 

is the differences in psychological principles in which we are interested, but differences in 

optimality of parameters across models can seriously confound such comparisons. Parameter 

optimization (e.g., through hill climbing) using the precise data set in question reduces this 

problem because, in principle, the technique finds the best (or near best) set of parameters 

for each of the models; thus, there should be no systematic difference in the optimality of the 

parameters of the different models. Notably, the optimality of the parameters discovered by 

parameter optimization depends on the nature of the optimization problem and the 

optimization algorithm. Some optimization problems are susceptible to issues like local 

minima and plateaus, which make it less likely that the parameters discovered are optimal. 

However, generally if one model provides a poorer fit to data than another model given 

optimal parameters for both models, the simulations reveal something about the 

psychological constructs captured by the models.

In principle, one can use parameter optimization to conduct post hoc or a priori simulations. 

An a priori approach uses hill climbing (or other optimization techniques) to find the best-

fitting parameters for data set 1 (the optimized data set). Those best-fitting parameters are 

then used to make a priori predictions concerning a second experiment (so-called cross 
validation). The predictions are then compared to the results of the second experiment (the 

target data set). The biggest problem with this strategy is that it, like arbitrary parameter 

selection, is unlikely to produce equally optimal parameters with respect to the target data 

set for each model being compared. Thus, if the parameters derived from fitting to the 

optimized data set fail to allow a model to explain the key results in the target data set, one 

cannot unarguably conclude that the model fails to explain the target data set or, more 

importantly, that the model cannot explain both the optimized and target data sets. That is, 

other parameters may better fit the target data set without appreciably impairing the fit to the 

optimized data set. Consequently, this strategy is useful only when claims are being assessed 

about the predictive potential of a model given these specific parameters. To be sure, cross-

validation is essential in applied predictive modeling, where the aim is to develop a 

statistical or predictive model and a set of parameters that will generalize to new data. 

However, the value of this procedure in experimental modeling is limited because the 

predictive potential of the model is not exhaustively tested by using a priori best-fitting 

parameters. There is no reason to expect a priori that a single model would or would not be 
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selectively penalized by the use of cross-validation procedures. However, cross-validation 

procedures limit the flexibility of the model in fitting an empirical effect so a difference 

between models with respect to their performance in cross-validation tests does not mean 

that a model is unable to explain an effect. In our view, the theoretical basis of the model is 

best tested using post hoc parameters. Obviously post hoc parameter selection greatly 

improves the fit of each model, but not necessarily equally so across models. However, in so 

doing, models can be compared on a level playing field of parameters that are optimal for 

each model. In this case, differences in the goodness of fit of each model to the data set of 

interest are not biased by the specific values of free parameters. Thus, differences between 

models in goodness of fit can be assumed to arise uniquely from the models’ positing 

different psychological constructs.

Post hoc parameter selection uses hill climbing to find the best-fitting parameters for the 

target data set rather than using parameters that were discovered by a hill climbing 

procedure applied to a different data set. The use of this former technique is ubiquitous in 

most areas of human cognitive science. In fact, some of the most important computational 

modeling work in category learning has involved post hoc parameter selection (e.g., 

Kruschke, 1992). This method provides several advantages relative to the a priori and 

arbitrary methods of parameter selection. The most meaningful simulation results are 

falsifications. That is, the scientific method does not allow for theories or models to be 

confirmed. Instead, scientific advancements are achieved through falsification of theories or 

models. In our view, the most compelling falsifications of a model occur when the values of 

free parameters in the model are presumably optimal for the target data set. A bad fit of a 

model to the data set (relative to other models) implies that it is impossible for the model to 

explain an experimental result through any subsequent improvement in parameters. 

Moreover, the use of optimal parameters facilitates comparisons between models. In 

addition, the a priori parameter selection method fundamentally relies on a between-

experiment comparison, which assumes that the procedures used to produce the optimized 

data set are comparable to those used to produce the target data set, or at least that 

procedural differences have no impact on parameters. Post hoc parameter selection 

eliminates this assumption. In principle, there are two types of parameters, those that reflect 

psychological processes alone and those that hinge at least in part on specific procedures 

used in an experiment. However, at the current stage of development of models of learning, 

it is doubtful that even those parameters that in principle reflect purely psychological 

processes are truly independent of procedures. Obviously post hoc parameter selection will 

result in better fits for each model, but in so doing it will minimize bias across models that 

might otherwise exists.

4. Penalizing for Number of Parameters and Criteria for Selecting Models

Parameter selection techniques like hill climbing identify only the best-fitting parameters. 

Thus, these procedures are but a first step in comparing models. After the best-fitting 

parameters are identified, statistical comparisons between the fits of models are needed. The 

simplest statistic describing the fit of a model is SSE, which is the sum of the squared 

deviations between a model’s numerical predictions and empirical observations, i.e.,
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(2)

SSE is often (although not always) the variable that is optimized in hill climbing algorithms. 

However, comparing SSE values is problematic when the models used to produce those 

values differ in their numbers of free parameters. All other things being equal, more free 

parameters allows models to achieve a better fit to data. Thus, statistical comparisons 

between models need to quantify the fit of each model’s predictions to the target empirical 

observations taking into consideration the number of free parameters that each model uses to 

fit those observations. The Bayesian Information Criterion (BIC) is a statistic that can be 

used to compare models with different numbers of free parameters. The BIC assumes that:

(3)

where n represents the number of data points that were simulated and P is the number of free 

parameters used to fit the data (Waekliem, 2004). Effectively, n * log (SSE/n) represents a 

badness-of-fit measurement and the far-right term (P * log [n]) represents a penalty for 

model complexity. The Akaike Information Criterion (AIC) is similar to the BIC, but with 

slightly different statistical assumptions. The AIC assumes that

(4)

BIC and AIC statistics are useful because they penalize models for each free parameter, 

thereby compensating for the better fit that comes from using more free parameters 

independent of any relationship to underlying psychological processes. For example, in a 

Fourier analysis a complex waveform can be better fit using more component frequencies, 

all other things being equal. Similar principles apply to the number of free parameters in a 

model. BIC and AIC statistics often agree on the ordinal rankings of models. The 

similarities between equations 3 and 4 might cause one to conclude that BIC and AIC are 

interchangeable. However, BIC and AIC were developed to select models with different 

attributes in idealized situations (e.g., based on Monte Carlo simulations).

The AIC statistic emerges from statistics that summarize the distance between a target 

model and the true model (i.e., the psychological process as it exists in nature). 

Unfortunately, the true model is usually unknown in psychological research; thus, it is 

impossible to compute the distance between a target model and the true model. The AIC 

statistic is an unbiased estimator of the distance between a candidate model and an unknown 

true model that permits comparisons between models. The candidate model that produces 

the lowest AIC value corresponds to the best model in the set of models being compared. 

Importantly, the AIC statistic cannot indicate that a model is good in an absolute sense – it 

can only be used in model comparisons. The AIC statistic assumes that 2P is an unbiased 

estimator of the loss of information incurred by adding free parameters. Unfortunately, this 
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assumption is true only in select situations. For example, when P is large relative to n, 2P is 

systematically less than the actual loss of information and researchers should use the 

corrected AIC (i.e., AICC), which converges with simple AIC for models with small 

numbers of parameters and large numbers of observations but otherwise applies a greater 

penalty for model complexity. BIC is guaranteed to select the true model when it is included 

in the set of candidate models as n →∞. In fact, BIC has the peculiar property of applying a 

greater penalty for free parameters with increases in the number of observations [i.e., P * 

log(n)]. A detailed discussion of the differences between BIC and AIC is beyond the scope 

of this paper (see Vriez, 2012, for a discussion).

In situations in which there is disagreement between the BIC and AIC, it is best to report 

both statistics. Both are measures of fit for each model that ‘correct’ for differences across 

models in the number of free parameters (albeit through different functions) and hence 

prevent overfitting by adding free parameters. Lower values of BIC and AIC indicate a 

better score for the model. While it is possible to compare models based solely on their 

BIC/AIC scores, in our view it is best to use the BIC/AIC statistics to supplement an 

analysis of a model’s ordinal predictions. For example, in a data set consisting of 

conventional Pavlovian acquisition, blocking, overshadowing, and backward blocking 

effects, one would observe only a small difference between the BIC/AIC values produced by 

the Rescorla-Wagner (1972) model and Van Hamme and Wasserman’s (1994) model of 

retrospective revaluation. However, close inspection of the ordinal differences in these 

models’ predictions would reveal that only the Van Hamme and Wasserman model succeeds 

in explaining the ordinal relationship constituting backward blocking (e.g., Shanks, 1985). 

Thus, the BIC/AIC statistics should be used in conjunction with an evaluation of the ordinal 

differences in the models’ predictions. In addition to such qualitative comparisons between 

predictions and observations, it is possible to quantitatively compare fits based on AIC 

scores. There are several ways to accomplish this (Burnham & Anderson, 2002), but the 

simplest statistic for comparing AIC values is ΔAIC, which is the difference between the 

AIC score of a model (i) and the lowest AIC score in a set of candidate models. Thus, ΔAICi 

= AICi – AICmin. Higher values of ΔAIC indicate less support for a model (see Cheung, 

Neisewander, & Sanabria, 2012, for an application).

For meaningful fits of each model to data, there obviously needs to be a basis for expecting 

that a single set of parameters is applicable across the data set in question. For example, all 

of the data should have been collected using the same measurements, stimuli, apparatus, and 

species. For the same reason that it is inappropriate to compare data points from different 

papers in an ANOVA, it is potentially misleading to pool data points from different papers in 

calculating SSE for a hill climbing procedure. We take the middle-ground and assume that 

most experiments within a paper (provided they are conducted in the same preparation) are 

sufficiently comparable to be included in the same hill climbing exploration.

Research in associative learning frequently tests the predictions of theories. Researchers 

often interpret the results of an experiment as falsifying one or more models and failing to 

falsify a different set of models. In actuality, a model can only explain or fail to explain the 

results of an experiment better than a different model. In principle, there are four possible 

outcomes of model testing: (1) a researcher claims that a model fails to explain the data 
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better than or equal to other models and the model actually fails to explain the data better 

than or equal to other models, (2) a researcher claims that a model explains the data better 

than or equal to other models and the model actually explains the data better than or equal to 

other models, (3) a researcher claims that a model fails to explain the data better than or 

equal to other models but the model actually explains the data better than or equal to other 

models (Type 1 error), and (4) a researcher claims that a model explains the data better than 

or equal to other models but the model actually fails to explain the data better than or equal 

to other models (Type 2 error). Thus, model testing, like null hypothesis statistical testing, 

creates the opportunity for two types of errors. Type 1 errors are reduced (relative to research 

that omits simulations or uses a fixed set of parameters) by using hill climbing to allow a 

model optimal flexibility in explaining the data. Type 2 errors are reduced by basing 

comparisons on a statistic (e.g., BIC or AIC) that penalizes models for using more 

parameters, which could result in the rejection of an unduly complex model in favor of 

simpler models. In our view, Type 1 errors in model testing (3; rejecting a model when the 

model actually explains the data) are more egregious than Type 2 errors because revisions of 

models and, more generally, scientific progress depends critically on the falsification of 

models. Actual simulations of models are seldom reported in conventional empirical papers 

that were aimed at testing theories. Instead, researchers often intuit their way through the 

predictions of a model and relate them to empirical data. However, in our experience, this 

technique frequently underestimates the flexibility of the existing computational models, 

thereby increasing the likelihood of a Type 1 error. In the following exemplar simulations, 

we apply these procedures to data concerned with retrospective revaluation.

5. An application to retrospective revaluation

After training a target cue (X) in compound with a companion cue (A), associative inflation 

or deflation of A often results in changes in the response potential of the absent target cue 

(Kaufman & Bolles, 1981; for a review, see Miller & Witnauer, 2016). These retrospective 

revaluation effects are problematic for the original Rescorla-Wagner (1972) model (RWM), 

which does not allow for learning about absent cues. However, Wasserman and his 

collaborators (Van Hamme & Wasserman, 1994; Wasserman & Castro, 2005) proposed that 

retrospective revaluation could be explained by the RWM if it is modified so that the 

eligibility (aka associability) of an absent cue or CS to enter into association with the 

outcome is negative. In this framework, learning about an absent cue is based on 

mechanisms similar to those involved in learning about an omitted outcome when it is 

expected (e.g., extinction). Perhaps the simplest instantiation of this view is a model that 

uses separate values for the associabilities of present cues and absent cues (e.g., Danks, 

2003). Despite the simplicity of this model, previous simulations found a better fit to data 

using a slightly more complex set of rules for modeling the eligibility of absent cues to 

change their associative values (Witnauer & Miller, 2011). Specifically, a model that weights 

the associability of an absent cue by the degree to which that cue is activated through within-

compound associations provided a better fit to retrospective revaluation effects than a model 

that represents the associability of absent cues by a constant (negative) fraction of the 

associability of a present cue. The present simulations further explored this issue.
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5.1 Models

The defining equations of the models that were compared in the present simulations are 

listed in Table 1. We selected three relatively simple models of cue interaction and used 

them to simulate experiments on retrospective revaluation. The models were good 

candidates for comparison because they have similar numbers of free parameters and 

identical assumptions about stimulus representation (elemental), time (trial-wise), and the 

relationship between associative strength and performance. These models differ only with 

respect to their treatment of absent cues. The RWM assumes null learning about absent cues. 

The Within-Compound Model [WCM] and Conjoint Error Model [CEM] are different 

implementations of the Van Hamme and Wasserman (1994) model in that they assume that 

absent cues can be eligible to undergo associative changes. In principle, one could assume 

that the eligibility of an absent cue is a constant negative fraction of the cue’s associability 

when it is physically presented. Indeed, Wasserman and his colleagues (e.g., Wasserman & 

Castro, 2005) championed the idea that separate values for α be used on cue present (0 < 

αpresent < 1) and cue absent (−1 < αabsent < 0) trials. However, this model fails to explain the 

relationship between the strength of the within-compound association between the absent 

target and revalued cues and the degree of retrospective revaluation (Witnauer & Miller, 

2011). Two alternative models assume that (1) within-compound associations might 

contribute to retrospective revaluation by controlling the degree to which the representation 

of an absent cue is activated by previous companions or (2) within-compound associations 

might increase cue expectancy and, consequently, surprisingness of an omitted cue. In the 

present simulations, the WCM assumes that the associability of an absent cue is negatively 

related to its degree of activation through within-compound associations (see Witnauer & 

Miller, 2011). In contrast, the CEM assumes that learning about an absent cue occurs when 

the omission of the cue was unexpected. According to this view, associative changes are 

driven by the extent to which the US (or outcome) and the CS (or cue) are both unexpected. 

The CEM explains retrospective revaluation by assuming that the association between an 

absent target stimulus and the outcome changes because animals expect (but do not receive) 

the target stimulus based on the delivery of cues that were previously trained in compound 

with the target. For example, after an AX+ overshadowing treatment, associative deflation of 

A results in greater behavioral control by X than does deflation of an irrelevant control 

stimulus (recovery from overshadowing; e.g., Kaufman & Bolles, 1981; Matzel, 

Schachtman, & Miller, 1985).

Applied to recovery from overshadowing, all of the models in Table 1 assume that Phase 1 

AX+ trials establish X-Outcome, A-Outcome, X-A, and A-X associations. In Phase 2, A- 

trials produce unexpected omissions of both the outcome and X, and decrease in the 

strengths of the A-Outcome and A-X associations. The RWM assumes that both the A-X 

association and the unexpected omission of X are inconsequential with respect to both the 

X-Outcome association and subsequent behavioral control by X. The WCM assumes that 

activation of X through the A-X within-compound association results in the associability of 

X being negative and that the unexpected omission of the outcome results in strengthening 

of the X-Outcome association. Importantly, both the RWM and WCM assume that 

antecedent events are processed differently from outcomes. The CEM model rejects the view 

that antecedent events (i.e., cues) are fundamentally different from subsequent events (i.e., 
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outcomes) with respect to learning and information processing. Instead, it assumes that 

learning is determined by the degree to which the antecedent and the outcome are 

contiguous and conjointly unexpected. This is not a large departure from other acquisition-

focused models of retrospective revaluation (e.g., Witnauer & Miller, 2011) because the 

degree of CS expectation is based exclusively on within-compound associations. Indeed, the 

CEM captures the relatively old idea that both CSs and USs compete for a limited resource 

(e.g., Wagner, 1981; Dickinson & Burke, 1996), which we instantiated in a trial-wise, 

elemental model. We anticipated that the CEM would be able to explain several cue 

interaction phenomena that elude both the RWM and the WCM model.

The hill climbing algorithm used in the present simulations (the interior-point fmincon 

algorithm in the Matlab Optimization Toolbox) minimize the sum of the squared differences 

between the predictions of a model and the observed group means in an experiment. Thus, 

the predictions and observations need to be on the same scale. In principle, there are many 

ways to scale either the models’ predictions or the observations so that the sum of squared 

error can be computed. The results of the simulations reported here assumed that the scaled 

predictions by the model are proportionally related to responding (VX-O when only X is 

tested), thus the following scaling equation was used:

(5)

where Scaling is a free parameter that could take any nonnegative value. In simulations of 

lick suppression experiments, log10 of 5 was added to VX-O * Scaling because the lick 

suppression experiments that were simulated measured the amount of time required by 

animals to complete 5 cumulative seconds of drinking in the presence of a fear CS. Thus, the 

minimum of the scale was log10 of 5. Notably, more sophisticated scaling functions exist, 

especially in the interval timing and choice behavior literatures (e.g., Brackney & Sanabria, 

2015; Daniels & Sanabria, 2017; Kruschke, 2001).

5.2 Simulated experiments

We selected experiments to simulate that replicated basic retrospective revaluation effects or 

were claimed to challenge the revised Rescorla-Wagner model (e.g., Van Hamme & 

Wasserman, 1994). We structured the simulation procedures after the empirical procedures 

as closely as possible. For example, the models received the same number of trials as 

animals in the actual experiments. Moreover, the counterbalancing schemes used in 

empirical procedures were simulated by forcing counterbalanced cues to be represented by 

the same values for salience. The context was included as a cue in Pavlovian procedures that 

included a context change and one context extinction trial was interposed between each pair 

of trials except during extensive posttraining extinction treatments (e.g., McConnell et al., 

2009). When multiple test cues were assessed in counterbalanced order, we disabled 

learning during the test phase so that test-order effects would not influence the predictions of 

the models. Of course, predicted test-order effects could be compared to empirical data. 

Unfortunately, the series of experiments that we simulated did not report the results from 
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separate counterbalanced test orders. Thus, it is impossible to compare the models’ 

predictions to data in our specific application.

5.2.1. Simulation 1: Wasserman and Castro (2005)—Retrospective revaluation 

seems to depend on retrieval of information about absent cues during posttraining inflation 

or deflation of a companion cue. To test this view, Wasserman and Castro (2005; Table 2) 

conducted an experiment in which participants experienced recovery from overshadowing 

and backward blocking procedures, and were either informed or uninformed about the 

absence of the target cue during posttraining inflation and deflation. Their results revealed 

that retrospective revaluation is stronger when subjects are explicitly informed that the target 

cue is absent. In Simulation 1, we fit the RWM, WCM, and CEM to their results. 

Importantly, we assumed that the free parameter controlling the eligibility of an absent cue 

to undergo associative changes (k2) would be represented by different values between Group 

Informed and Group Uninformed. Inspection of the predictions by these models (Table 2) 

suggests that both the WCM and CEM are able to explain this result. Moreover, both the 

WCM and CEM provided best fitting predictions with values for k2 that were greater in 

Group Informed than in Group Uninformed. Notably, the CEM provided a better fit to the 

data than the WCM (Table 3), although both models were able to explain the critical ordinal 

differences in ratings observed by Wasserman and Castro.

5.2.2. Simulation 2: De Houwer & Beckers (2002)—The purpose of Simulation 2 was 

to compare the fits of the WCM and the CEM to data concerning first- and second-order 

recovery from overshadowing and backward blocking effects. In De Houwer and Beckers’ 

experiment, participants in a human contingency learning procedure received pairings of 

weapon cues with explosion outcomes (see Table 4). All participants received AB+ trials in 

Phase 1 and BC+ trials in Phase 2. After Phase 2, participants rated the effectiveness of 

weapon cue elements A, B, and C and two filler cues. In Phase 3, participants received either 

A+ trials or A- trials. After Phase 3, all elements were retested. A+ trials decreased 

participants’ ratings of the effectiveness of weapon B relative to the test of B that occurred 

after Phase 2; thus, A+ trials resulted in first-order backward blocking of B. Similarly, A- 

trials increased behavioral control by B relative to the previous test. Importantly, the 

opposite pattern of responding was observed in tests of cue C. A+ trials increased ratings of 

C’s effectiveness and A- trials decreased ratings of C’s effectiveness relative to the test after 

Phase 2. In Simulation 2, we expected the WCM to explain both the first-order retrospective 

revaluation effects (i.e., changes in ratings to B) and the second-order retrospective 

revaluation effects (i.e., changes in ratings to C). In previous simulations (Witnauer & 

Miller, 2011), the WCM was able to fit other instances of second-order retrospective 

revaluation by assuming that BC+ trials establish an inhibitory association between A and C. 

Thus, the WCM predicts a positive value for the associability of C based on the product of 

negative values of both ΣVi-A and k2 during A+ or A- trials.

Inspection of the predictions by the models reveals that both the CEM and WCM predicted 

the overall pattern of results observed by De Houwer and Beckers (2002). Specifically, both 

models predicted that A+ (A-) trials should decrease (increase) ratings of target cue B and 

increase (decrease) ratings of target cue C. However, neither model provided a good fit to all 
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of De Houwer and Beckers’ results. Specifically, both models failed to predict the nearly 

equivalent ratings of A, B, and C that were observed after Phase 2. Predicted ratings to B 

were greater than predicted ratings of C or A because B was trained in both Phase 1 and 

Phase 2. Moreover, predicted ratings of A were greater than predicted ratings of C because B 

should have blocked learning about C and B should have only overshadowed learning about 

A. The SSE, BIC, and AIC values in Table 3 indicate that the WCM provided a better 

statistical fit to the data than the CEM based mostly on the fits of the models to data from 

the first test session. The WCM (SSE = 3375.40) and the CEM (SSE = 3963.00) provide 

similar fits to the data from second test of A, B, and C.

5.2.3. Simulation 3: Grahame et al. (1994; Experiments 1 and 3)—Latent 

inhibition (LI) occurs when repeated nonreinforced pre-training exposure to a CS reduces 

subsequently trained behavioral control by the CS (Lubow & Moore, 1959). Several 

associative theories assume that LI is caused by acquisition of either a CS-context (e.g., 

Miller & Matzel, 1988) or context-CS (Wagner, 1981) association during nonreinforced 

presentations of the CS in the training context. In Grahame et al.’s (1994) Experiment 1, 

extinction of the training context after CS-US pairings reduced the strength of the LI effect. 

In a lick suppression procedure, groups of rats received either 120 nonreinforced 

presentations of the CS (X-) or a control procedure in the context of the subsequent CS-US 

pairings (X+). Orthogonally, subjects received extensive extinction of the context or a 

handling control after the CS-US pairings. Behavioral control by the CS was weaker in the 

group that received LI treatment and no context extinction than in the group that received 

control treatments before and after CS-US pairings. Importantly, the LI effect was attenuated 

when context extinction was delivered after CS-US pairings. Moreover, in Experiment 3, 

extinction of the CS-context association by presentation of the CS in a context distinctly 

different from that of preexposures prior to CS-US pairings decreased the strength of the LI 

effect.

Grahame et al.’s (1994) Experiments 1 and 3 and the results of Simulation 3 are summarized 

in Table 5. Unsurprisingly, the RWM provided a poor fit to Grahame et al.’s observations; 

the model explained only the difference in suppression to the target CS between Test 1 and 

Test 2 caused by extinction of the target CS on the first test trial. Both the WCM and CEM 

assume that CS-context associations can influence learning about a target CS; thus, we were 

centrally interested in whether Simulation 3 would reveal any difference between these two 

models. Inspection of Table 5 reveals that the CEM but not the WCM was able to explain the 

central results of Grahame et al.’s experiments, including the basic LI effect (lower predicted 

responding to X in the group that received preexposure to X), the increased behavioral 

control by X after extinction of training context extinction in the LI condition, and the 

increased behavioral control by X observed after extinction of the X-context association 

caused by presentations of X in a new context after preexposure to X. Thus, the CEM 

provided a better fit to the empirical data than the WCM and RWM (Table 3).

5.2.4. Simulation 4: McConnell et al. (2010; Experiments 2 and 3)—Simulation 2 

revealed that the WCM and CEM explain second-order retrospective revaluation in human 

contingency learning (see also Witnauer & Miller, 2011). The purpose of Simulation 4 was 
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to replicate this with a different procedure (lick suppression). Thus, we fit the RWM, WCM, 

and CEM to the results of McConnell et al.’s (2010) Experiments 2 and 3, which are 

summarized in Table 6. McConnell et al. replicated the observation that extinction of a target 

cue (X) in compound with a conditioned inhibitor (B) results in less behavioral control by X 

at test than if B is a neutral stimulus. Moreover, in Experiment 3, they demonstrated that 

deflation of the training excitor (A) previously used to train conditioned inhibition of B after 

extinction X results in a reduction in the protection from extinction effect relative to a group 

that received deflation of an irrelevant excitor (D). Notably, McConnell et al. embedded their 

experiment in a sensory preconditioning procedure; thus, the target cue and the other 

treatment cues were not directly paired with the US. Instead, target and treatment cues were 

paired or unpaired with a surrogate outcome (represented by “+” in Table 6), which was later 

paired with a footshock US. Because none of the models simulated are able to explain 

sensory preconditioning, the strength of the predicted response was assumed to be 

proportional to the strength of the associations between the cue and the surrogate outcome 

rather than the association between the cue and the US. The best-fitting predictions of the 

RWM, WCM, and CEM are reported in Table 6. Both the WCM and the CEM were able to 

explain McConnell et al.’s central results (extinction, protection from extinction, and 

reduced protection after deflation of the training excitor). The results summarized in Table 3 

confirm this impression. Specifically, both the WCM and, to a lesser extent, the CEM 

provided better statistical fits to the data than the RWM both with (SSE) and with (BIC and 

AIC) applying a statistical penalty for additional free parameters.

5.2.5. Simulation 5: McConnell et al., (2009)—The LI effect, like the extinction effect, 

can be attenuated when preexposure to X occurs in compound with a conditioned inhibitor 

prior to X+ trials. McConnell et al. (2009) identified the mechanisms underlying this effect 

by conducting the lick suppression experiments summarized in Table 7. In addition to 

observing both the basic LI effect and protection from LI effect (Experiment 1), McConnell 

et al. (Experiment 2) observed a reduction in the strength of the protection effect as a result 

of associative deflation of the conditioned inhibitor’s training excitor. In their critical groups, 

subjects received in Phase 1 A+ / AB- trials designed to establish B as a conditioned 

inhibitor. In Phase 2, subjects received 48 XB- trials, which resulted in stronger suppression 

to X than was observed after 48 X-. In Phase 3, subjects received extensive extinction of 

either A (the training excitor) or C (an irrelevant control CS). Extensive extinction of A 

reduced the protection from LI effect (i.e., increased suppression) relative to extensive 

extinction of C. Inspection of Table 7 reveals that the models differed widely with respect to 

their fits to the data. The RWM explained only the increased behavioral control by X 

observed after X was pretrained in the presence of a conditioned inhibitor. The mechanism 

underlying this prediction is similar to the mechanism that the model uses to predict 

superconditioning. The WCM predicted the effect of extinction of A on behavioral control 

by X; however, it failed to predict the basic LI effect. Lastly, the CEM explained almost all 

aspects of McConnell et al.’s data. In fact, the largest difference between McConnell et al.’s 

(2009) observations and the CEM’s predictions was in the group that received preexposures 

to the target stimulus in compound with a neutral stimulus. The CEM model predicted a 

larger protection effect by a neutral stimulus than was observed by McConnell et al. Based 

on the CEM being able to explain both protection from LI effect and the reduced protection 
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from LI achieved by extinction of A, the CEM provided a better fit to the data than the 

WCM and RWM.

5.3. Discussion of simulations

These simulations demonstrate that basic retrospective revaluation can be well explained by 

models that assume some role for within-compound associations in learning about absent 

cues. That is, slightly modified versions of RWM explain several phenomena (e.g., Lubow & 

Moore, 1951; Kaufman & Bolles, 1981) that are widely cited as incompatible with the 

RWM. Within the RWM framework, retrospective revaluation might occur because a 

treatment cue (e.g., an overshadowing cue in a recovery from overshadowing procedure) 

activates a representation of the absent target stimulus through a within-compound 

association during posttraining associative inflation or deflation (WCM). Alternatively, 

retrospective revaluation might be caused by the target cue being unexpectedly (based on 

within-compound associations) omitted during posttraining associative deflation or inflation 

(CEM). In Simulations 2 and 4, both the CEM and WCM were able to predict all of the 

critical differences between experimental conditions, although the WCM provided a slightly 

better fit with respect to SSE and BIC/AIC. However, Simulations 1, 3, and 5 revealed that 

the WCM explanation of retrospective revaluation is either incomplete or, more likely, 

wrong. The CEM seems to be a better model than the WCM, at least as applied to 

retrospective revaluation, because the CEM’s mechanism for explaining retrospective 

revaluation allows the model to also explain latent inhibition. That is, without any additional 

free parameters beyond those of the WCM, the CEM is able to explain both retrospective 

revaluation (including first- and second-order) and latent inhibition. More importantly, the 

higher-order retrospective revaluation effects observed by De Houwer and Beckers (2002) 

and McConnell et al. (2009; 2010) can be explained by variants of the Van Hamme & 

Wasserman (1994) model (CEM and WCM), even though the associative literature 

universally claimed that the Van Hamme and Wasserman model could not explain higher-

order retrospective revaluation. Thus, the present simulations highlight the importance of 

using actual simulations to support theoretical claims.

6. Limitations

This paper does not answer all questions concerning how to weigh the merits of different 

theories. Our central point concerns the selection of parameters when contrasting competing 

theories with respect to a specific data set. The result of such a comparison is not to 

completely reject the less adequate theory, but simply to acknowledge that it fares less well 

with the specific data set. We argue that post hoc selection of optimal parameters for each 

model levels the playing field by circumventing differences in goodness of fit that arise from 

differences across models in the appropriateness of free parameters set a priori. This is 

highly likely when the a priori parameters of the different models were initially selected 

based on different data sets for each model in question. Obviously, the use of post hoc 

parameters is a limitation because the predictions derived by simulation are more likely to be 

parameter dependent. However, this is not undesirable if those predictions are confirmed 

empirically and the procedural parameters that determine whether one or another effect is 

observed correspond to appropriate (or at least testable) model parameters. Additionally, this 
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does not mean that the model per se (the computational link between theory and data) is post 
hoc. For example, using best-fitting parameters in simulations of the Rescorla-Wagner 

(1972) model does not change the fact that the model is over forty years old and its 

formulation preceded the initial observation of many phenomena to which it is applied 

today. Thus, there is a very strong a priori component retained even when one uses the hill 

climbing procedure that we recommend when different models are being compared.

In the present simulations, we used a hill climbing algorithm (Matlab’s fmincon algorithm) 

that minimized SSE; specifically, we used the least-squared error (LSE) method of 

parameter estimation. Importantly, other methods for parameter estimation might be a better 

match for some simulations (see Myung, 2003, for a comparison). LSE assumes that 

prediction errors are random, normally distributed, and independent (Burnham & Anderson, 

2001), which is difficult to confirm. In contrast, MLE and Bayesian methods are less 

restrictive in their assumptions. Moreover, they reveal the likelihood of a combination of 

parameter (given a model and data), which is more informative than the SSE value 

uncovered by the LSE method. Bayesian methods assume that parameter estimation presents 

an inverse projection problem wherein the method aims to identify the probability of the 

model (M), given the data (D). Bayes theorem dictates that the p(M|D) = [p(D|M) * p(M)] / 

p(D). Of course, this method requires that assumptions be made about the prior distribution 

of parameters (Lee, 2008), which formalizes p(M). However, to our knowledge these prior 

distributions are unknown for the models used in the present simulations. One could make a 

relatively atheoretical assumption about the prior distribution (e.g., uniformity); however, 

other distributions seem reasonable (e.g., log normal; Cheung et al., 2012). Indeed, this issue 

is not trivial because model evaluation can depend critically on specific assumptions about 

the prior distribution (e.g., Vanpaemel, 2010), although such a simulation result would cast 

doubt on the predictive value of the model in question. That is, ideally a model’s predictions 

are relatively invariant with respect to the prior. While interesting and certainly worthy of 

investigation, this issue is outside of the scope of the present article. In procedures where the 

probability density function of observations can be easily specified (e.g., in fitting 

binomially distributed response data) and where the target models make predictions about 

the distributions of responses within a condition, the maximum likelihood estimation (MLE) 

method is better than the LSE method (e.g., Myung, 2003). Both the Bayesian and MLE 

methods are better than LSE because they provide an estimate of the most likely values of 

parameters given the data and not just the values of parameters that result in the lowest value 

for SSE. Indeed, one can appreciate the advantages of this approach by considering the 

results of the present simulations. Inspection of Table 3 indicates that best-fitting values of 

some free parameters were equal to unity in some simulations. Of course, this does not mean 

that those parameters are the most likely given the data. Instead, one can only conclude that 

those values provided the best fit with respect to SSE. Similarly, in Simulation 1 Groups 

Informed and Uninformed were simulated using different values for k1. The difference in 

best-fitting values for k1 was consistent with the psychological intuition that informing 

subjects about an absent cue should increase the cue’s eligibility during retrospective 

revaluation. However, the LSE method is not well-suited to reveal information about the size 

of that difference because the method does not inform concerning the likelihoods of those 

values. Instead, LSE is useful only in comparing the fits of models to group means when the 
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above mentioned assumptions are satisfied. In addition, Bayesian methods provide the 

distinct advantage of being able to replace null hypothesis significance tests for determining 

the effect of an experimental treatment (e.g., informing subjects about an absent cue) on a 

model’s free parameters (e.g., Kruschke, 2011).

A second potential criticism of this approach is that the method of controlling for number of 

free parameters (i.e., using the BIC/AIC) does not fully control for model complexity as a 

determinant model fit. This is potentially problematic as, all other things equal, some models 

are decidedly more complex than others. The BIC/AIC’s penalty for more free parameters 

assumes that all free parameters are equally important in determining the fit of model to 

data, whereas one could add free parameters to a model that do not appreciably improve the 

model’s fit. Importantly, post hoc parameter selection increases the flexibility of models, 

reducing the likelihood of falsification. However, we view this as a more conservative 

strategy than a priori parameter selection because a priori selection lends itself to erroneous 

falsification. Importantly, most of the papers in the 2012 Learning & Behavior Special Issue 

on Computational Models of Conditioning focused on the successes of models, instead of 

failures of models or differences in the failures of different models. For example, Kutlu and 

Schmajuk (2012) evaluated their model based on irreversible successes, which are those 

successful predictions that are relatively parameter independent (i.e., the model makes those 

predictions across a wide range of parameter values). Across 87 different cases, their model 

predicted effects or correlations that were similar to 94% of the observed effects or 

correlations that were simulated. However, their use of a fixed set of parameters causes us to 

wonder whether the model might explain 100% of the data with a better set of parameters. 

Of course, a model that explains 100% of the data might fail to make falsifiable predictions; 

thus, good fits to data are useful only in the context of comparisons between falsifiable 

models. More importantly, we can only wonder whether their model is more or less 

successful than competing associative models. Successfully explaining experimental results 

is, in our view, less important than comparing models.

Not all data sets have equal potential to differentiate among models. Surely the relative 

success or (more importantly) failure of one model compared to another model will depend 

in part on the selection of the empirical data to which the models are fit. There are several 

approaches to this problem, all of which are compatible with our proposed strategy of model 

selection and treatment of free parameters. First, theoretical papers often seek to apply a 

model to a wide range of previously published data sets (usually group means), which are 

often selected because they challenge some other model or category of models (e.g., see the 

2012 special issue of Learning & Behavior). Second, empirical papers sometimes include 

simulations of the new data. We see value in both of these strategies. Fitting previously 

published group means, as was done in the present example, ignores individual differences 

in behavior and leads to potentially misleading conclusions. The often-cited graded learning 

curve is a prominent example of exactly this in the animal learning literature. Specifically, 

while averaged data often reveal gradual changes in behavior across trials, inspection of the 

response patterns of individual subjects often reveals discontinuities in behavior (e.g., 

Donner & Hardy, 2015; Friedman, Massaro, Kitzis, & Cohen, 1995; Gallistel, Fairhurst, & 

Balsam, 2004). Thus, ideally modelers would fit models to the behavior of individuals rather 

than fitting models to group means. Model comparison, in conjunction with post hoc 
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parameter selection, can be constructively used in both situations. In principle, 

computational methods can be used to support any comparison between theories. But it is 

not obvious that doing so will be illuminating when the models being compared differ 

radically in intent; for example, McLaren and Mackintosh’s (2000) model addresses 

perception and attention, whereas Stout and Miller’s (2007) SOCR model addresses retrieval 

and response generation. However, researchers in other areas of cognitive psychology (e.g., 

category learning) have sometimes constructively compared computational implementations 

of highly dissimilar models (e.g., Johansen & Kruschke, 2005). Moreover, there are some 

demonstrations that under select conditions comparisons of highly dissimilar associative 

models can be informative (e.g., Denton & Kruschke, 2006; Perales & Shanks, 2003).

Post hoc parameter selection and computational methods in principle could be used to 

compare any two or more models. But not all comparisons will prove equally meaningful or 

informative. In general, models being compared should be well matched in their simplifying 

assumptions and ideally different in only one of their target theoretical assumptions. In 

practice, response rules are an area where models differ widely with respect to simplifying 

assumptions. For example, the Rescorla-Wagner (1972) model assumes a monotonic 

mapping of X-US associative strength onto the response potential of X. In contrast, Pineno’s 

(2007) revision of the Rescorla-Wagner model makes more sophisticated assumptions about 

the link between learning and performance. Hence, computational comparison of these two 

models is not apt to be illuminating. In our view, the inappropriateness of computational 

comparisons between models mismatched in simplifying assumptions is a failure in choice 

of models to be compared, rather than a weakness in our suggested procedures for 

comparing models.

As with selection of data sets, selecting which quantitative models to compare often follows 

the rules of thumb commonly used by researchers when they compare theories in empirical 

papers. That is, models are selected that were designed to address the variable of central 

interest, such as ‘attention.’ However, some investigators have suggested more formal 

guidelines for identifying models that should be compared. For example, Broadbent (1958) 

proposed an adaptive procedure for identifying models. According to this view, model 

comparisons should initially focus on simple models that represent widely different classes 

of models, whereas subsequent comparisons should tend toward progressively more 

complex models. Our approach is compatible with this approach (albeit silent on this 

particular issue) in that we are concerned not with which models to compare, but how to 

compare them.

One can conceive of situations in which post hoc parameter selection is inappropriate. 

Specifically, if consistent parameter values are well-established through multiple parametric 

experiments across a broad range of preparations and subsequent fitting procedures, then 

those parameter values might be used to predict (a priori) the results of subsequent 

experiments. Moreover, as we previously noted, if the models in question use parameters 

that have been determined from previously established theoretical principles and empirical 

findings external to the model in question (e.g., the Hodgkin & Huxley, 1952, model), then 

the post hoc optimizing of parameters that we suggest would be inappropriate. However, in 

our view these situations seldom apply to research in associative learning. More commonly, 
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post hoc parameter selection improves the extent to which models are matched in the 

appropriateness of their parameter values when fitting them to a common data set.

7. Conclusions

In summary, simulations involving comparisons between models are inherently more 

illuminating than simulations of a single model. Moreover, some simulation procedures are 

distinctly better than others in permitting researchers to compare associative models and 

complement our use of traditional inferential statistics (Rodgers, 2010). These procedures 

allow us to quantify and compare degrees of fit of different models to specific data sets, and 

to arrive at a more rigorous connection between data and theory. Model selection requires 

that the models be matched with respect to both their simplifying assumptions and the 

optimality of their free parameters, which can be achieved through optimization techniques 

such as hill climbing. Statistics like BIC/AIC facilitate comparisons among models with 

different numbers of free parameters. We acknowledge that there are limitations to the 

inferences that can be supported by this approach but, like other scientific methods, it is 

informative when applied with caution. Moreover, this approach to selecting parameters 

seems to permit less biased comparisons among models.

Acknowledgments

Preparation of this manuscript was supported by NIH grant MH 033881. We are grateful to Robert Perez, Cody 
Polack, and Julia Soares for comments on a preliminary version of the paper.

References

Azorlosa JL, Cicala GA. Blocking of conditioned suppression with 1 or 10 compound trials. Animal 
Learning & Behavior. 1986; 14:163–167.

Blaisdell AP, Gunther LM, Miller RR. Recovery from blocking achieved by extinguishing the blocking 
CS. Animal Learning & Behavior. 1999; 27:63–76.

Broadbent, DE. Perception and communication. Elmsford, NY, US: Pergamon Press; 1958. 

Brackney RJ, Sanabria F. The distribution of response bout lengths and its sensitivity to differential 
reinforcement. Journal of the Experimental Analysis of Behavior. 2015; 104:167–185. [PubMed: 
26377437] 

Burnham, KP., Anderson, DR. Model selection and multimodel inference: A practical information-
theoretic approach. 2. Secaucus, NJ: Springer; 2002. 

Cheung TH, Neisewander JL, Sanabria F. Extinction under a behavioral microscope: Isolating the 
sources of operant response rate. Behavioural Processes. 2012; 90:111–123. [PubMed: 22425782] 

Daniels CW, Sanabria F. Interval timing under a microscope: Dissociating motivational and timing 
processes in fixed-interval performance. Learning & Behavior. 2017; 45:29–48. [PubMed: 
27443193] 

Donner Y, Hardy JL. Piecewise power laws in individual learning curves. Psychonomic Bulletin & 
Review. 2015; 22:1308–1319. [PubMed: 25711183] 

Danks D. Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology. 2003; 
47:109–121.

De Houwer J, Beckers T. Second-order backward blocking and unovershadowing in human causal 
learning. Experimental Psychology. 2002; 49:27–33. [PubMed: 11975146] 

Denton SE, Kruschke JK. Attention and salience in associative blocking. Learning & Behavior. 2006; 
34:285–304. [PubMed: 17089596] 

Witnauer et al. Page 23

Behav Processes. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dickinson A, Burke J. Within-compound associations mediate the retrospective revaluation of 
causality judgements. Quarterly Journal of Experimental Psychology. 1996; 49B:60–80.

Friedman D, Massaro DW, Kitzis SN, Cohen MM. A comparison of learning models. Journal of 
Mathematical Psychology. 1995; 39:164–178.

Gallistel CR, Fairhurst S, Balsam P. The learning curve: implications of a quantitative analysis. 
Proceedings of the National Academy of Sciences. 2004; 101:13124–13131.

Grahame NJ, Barnet RC, Gunther LM, Miller RR. Latent inhibition as a performance deficit resulting 
from CS-context associations. Animal Learning & Behavior. 1994; 22:395–408.

Harris JA. Elemental representations of stimuli in associative learning. Psychological Review. 2006; 
113:584–605. [PubMed: 16802882] 

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to 
conduction and excitation in the nerve. Journal of Physiology. 1952; 117:500–544. [PubMed: 
12991237] 

Johansen MK, Kruschke JK. Category Representation for Classification and Feature Inference. Journal 
of Experimental Psychology: Learning, Memory, and Cognition. 2005; 31:1433–1458.

Kamin, LJ. “Attention-like” processes in classical conditioning. In: Jones, MR., editor. Miami 
Symposium on the Prediction of Behavior, 1967: Aversive Stimulation. Miami, FL: University of 
Miami Press; 1968. p. 9-31.

Kaufman MA, Bolles RC. A nonassociative aspect of overshadowing. Bulletin of the Psychonomic 
Society. 1981; 18:318–320.

Kruschke JK. ALCOVE: An exemplar-based connectionist model of category learning. Psychological 
Review. 1992; 99:22–44. [PubMed: 1546117] 

Kruschke JK. Toward a unified model of attention in associative learning. Journal of Mathematical 
Psychology. 2001; 45:812–863.

Kruschke JK. Bayesian assessment of null values via parameter estimation and model comparison. 
Perspectives on Psychological Science. 2011; 6:299–312. [PubMed: 26168520] 

Kutlu MG, Schmajuk NA. Solving Pavlov’s puzzle: Attentional, associative, and flexible configural 
mechanisms in classical conditioning. Learning & Behavior. 2012; 40:269–291. [PubMed: 
22927001] 

Larkin MJW, Aitken MRF, Dickinson A. Retrospective revaluation of causal judgments under positive 
and negative contingencies. Journal of Experimental Psychology: Learning, Memory, and 
Cognition. 1998; 24:1331–1352.

Lee MD. Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & 
Review. 2008; 15:1–15. [PubMed: 18605474] 

Lubow RE, Moore AU. Latent inhibition: The effect of nonreinforced pre-exposure to the conditional 
stimulus. Journal of Comparative and Physiological Psychology. 1959; 52:415–419. [PubMed: 
14418647] 

Ludvig EA, Sutton RS, Kehoe EJ. Stimulus representation and the timing of reward-prediction errors 
in models of the dopamine system. Neural Computation. 2008; 20:3034–3054. [PubMed: 
18624657] 

Maes E, Boddez Y, Alfei JM, Krypotos AM, D’Hooge R, De Houwer J, Beckers T. The elusive nature 
of the blocking effect: 15 failures to replicate. Journal of Experimental Psychology: General. 2016; 
145:49–71.

Matzel LD, Schachtman TR, Miller RR. Recovery of an overshadowed association achieved by 
extinction of the overshadowing stimulus. Learning and Motivation. 1985; 16:398–412.

McConnell BL, Miller RR. Protection from extinction provided by a conditioned inhibitor. Learning & 
Behavior. 2010; 38:68–79. [PubMed: 20065350] 

McConnell BL, Wheeler DS, Urcelay GP, Miller RR. Protection from latent inhibition provided by a 
conditioned inhibitor. Journal of Experimental Psychology: Animal Behavior Processes. 2009; 
35:498–508. [PubMed: 19839702] 

McLaren IPL, Mackintosh NJ. An elemental model of associative learning: I. Latent inhibition and 
perceptual learning. Animal Learning & Behavior. 2000; 28:211–246.

Witnauer et al. Page 24

Behav Processes. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Melchers KG, Lachnit H, Shanks DR. Within-compound associations in retrospective revaluation and 
in direct learning: A challenge for comparator theory. Quarterly Journal of Experimental 
Psychology B: Comparative and Physiological Psychology. 2004; 57B:25–53.

Miller RR, Barnet RC, Grahame NJ. Assessment of the Rescorla-Wagner model. Psychological 
Bulletin. 1995; 117:363–386. [PubMed: 7777644] 

Miller, RR., Matzel, LD. The comparator hypothesis: A response rule for the expression of 
associations. In: Bower, GH., editor. The psychology of learning and motivation: Advances in 
research and theory. Vol. 22. San Diego, CA, US: Academic Press; 1988. p. 51-92.

Miller RR, Witnauer JE. Retrospective revaluation: The phenomenon and its theoretical implications. 
Behavioural Processes. 2016; 123:15–25. [PubMed: 26342855] 

Minda JP, Smith JD. Prototypes in category learning: The effects of category size, category structure, 
and stimulus complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition. 
2001; 27:775–799.

Myung IJ. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology. 2003; 
47:90–100.

Nosofsky RM, Zaki SR. Exemplar and prototype models revisited: Response strategies, selective 
attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, 
and Cognition. 2002; 28:924–940.

Olsson H, Wennerholm P, Lyxzèn U. Exemplars, prototypes, and the flexibility of classification 
models. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2004; 30:936–
941.

Pavlov, IP. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. 
Oxford, England: Oxford Univ. Press; 1927. 

Perales JC, Shanks DR. Normative and descriptive accounts of the influence of power and contingency 
on causal judgement. Quarterly Journal of Experimental Psychology A: Human Experimental 
Psychology. 2003; 56A:977–1007.

Pineño O. A response rule for positive and negative stimulus interaction in associative learning and 
performance. Psychonomic Bulletin & Review. 2007; 14:1115–1124. [PubMed: 18229484] 

Pineño O, Urushihara K, Miller RR. Spontaneous recovery from forward and backward blocking. 
Journal of Experimental Psychology: Animal Behavior Processes. 2005; 31:172–183. [PubMed: 
15839774] 

Rescorla, RA., Wagner, AR. A theory of Pavlovian conditioning: Variations in the effectiveness of 
reinforcement and nonreinforcement. In: Black, AH., Prokasy, WF., editors. Classical 
Conditioning: II. Current theory and research. New York, NY: Appleton-Century Crofts; 1972. p. 
64-99.

Rescorla RA. Associative changes in excitors and inhibitors differ when they are conditioned in 
compound. Journal of Experimental Psychology: Animal Behavior Processes. 2000; 26:428–438. 
[PubMed: 11056883] 

Rodgers JL. The epistemology of mathematical and statistical modeling: A quiet methodological 
revolution. American Psychologist. 2010; 65:1–12. [PubMed: 20063905] 

Rusiniak KW, Hankins WG, Garcia J, Brett LP. Flavor-illness aversions: Potentiation of odor by taste 
in rats. Behavioral & Neural Biology. 1979; 25:1–17. [PubMed: 454334] 

Shanks DR. Forward and backward blocking human contingency judgment. Quarterly Journal of 
Experimental Psychology B. 1985; 37B:1–21.

Simon P, Balci F, de Souza L, Cohen JD, Holmes P. A model of interval timing by neural integration. 
Journal of Neuroscience. 2011; 31:9238–9253. [PubMed: 21697374] 

Stout S, Arcediano F, Escobar M, Miller RR. Overshadowing as a function of trial number: Dynamics 
of first- and second-order comparator effects. Learning & Behavior. 2003; 31:85–97. [PubMed: 
18450071] 

Stout SC, Miller RR. Sometimes-competing retrieval (SOCR): A formalization of the comparator 
hypothesis. Psychological Review. 2007; 114:759–783. [PubMed: 17638505] 

Vanpaemel W. Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of 
Mathematical Psychology. 2010; 54:491–498.

Witnauer et al. Page 25

Behav Processes. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Van Hamme LJ, Wasserman EA. Cue competition in causality judgments: The role of nonpresentation 
of compound stimulus elements. Learning and Motivation. 1994; 25:127–151.

Vrieze SI. Model selection and psychological theory: A discussion of the differences between the 
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological 
Methods. 2012; 17:228–273. [PubMed: 22309957] 

Waekliem DL. Introduction to the special issue on model selection. Sociological Research Methods. 
2004; 33:167.

Wagner, AR. SOP: A model of automatic memory processing in animal behavior. In: Spear, NE., 
Miller, RR., editors. Information processing in animals: Memory mechanisms. Vol. 85. Hillsdale, 
NJ: Erlbaum; 1981. p. 5-44.

Wasserman EA, Castro L. Surprise and change: Variations in the strength of present and absent cues in 
causal learning. Learning & Behavior. 2005; 33:131–146. [PubMed: 16075834] 

Wheeler DS, Miller RR. Contrasting reduced overshadowing and blocking. Journal of Experimental 
Psychology: Animal Behavior Processes. 2007; 33:349–359. [PubMed: 17620032] 

Wheeler DS, Miller RR. Determinants of cue interactions. Behavioural Processes. 2008; 78:191–203. 
[PubMed: 18355987] 

Witnauer JE, Miller RR. The role of within-compound associations in learning about absent cues. 
Learning & Behavior. 2011; 39:146–162. [PubMed: 21264569] 

Witnauer JE, Urcelay GP, Miller RR. Reduced blocking as a result of increasing the number of 
blocking cues. Psychonomic Bulletin & Review. 2008; 15:651–655. [PubMed: 18567269] 

Witnauer JE, Urcelay GP, Miller RR. The error in total error reduction. Neurobiology of Learning & 
Memory. 2014; 108:119–135. [PubMed: 23891930] 

Yamaguchi M. Complete solution of the Rescorla-Wagner model for relative validity. Behavioural 
Processes. 2006; 71:70–73. [PubMed: 16274937] 

Witnauer et al. Page 26

Behav Processes. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Computational methods should be used to derive predictions from associative 

models.

• Optimized free parameters for each model are required for fair comparisons.

• An unbiased method of selecting free parameters for each model is described.

• Statistics like the Bayesian information criterion aid comparison of models by 

penalizing for number of parameters.
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