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Self-organisation of small-world 
networks by adaptive rewiring in 
response to graph diffusion
Nicholas Jarman1,2, Erik Steur3,4, Chris Trengove1, Ivan Y. Tyukin2,5 & Cees van Leeuwen1,6

Complex networks emerging in natural and human-made systems tend to assume small-world 
structure. Is there a common mechanism underlying their self-organisation? Our computational 
simulations show that network diffusion (traffic flow or information transfer) steers network evolution 
towards emergence of complex network structures. The emergence is effectuated through adaptive 
rewiring: progressive adaptation of structure to use, creating short-cuts where network diffusion 
is intensive while annihilating underused connections. With adaptive rewiring as the engine of 
universal small-worldness, overall diffusion rate tunes the systems’ adaptation, biasing local or global 
connectivity patterns. Whereas the former leads to modularity, the latter provides a preferential 
attachment regime. As the latter sets in, the resulting small-world structures undergo a critical 
shift from modular (decentralised) to centralised ones. At the transition point, network structure is 
hierarchical, balancing modularity and centrality - a characteristic feature found in, for instance, the 
human brain.

Complex network structures emerge in protein1 and ecological networks2, social networks3, the mammalian 
brain4–6, and the World Wide Web7. All these self-organising systems tend to assume small–world network 
(SWN) structure. SWNs may represent an optimum in that they uniquely combine the advantageous properties 
of clustering and connectedness that characterise, respectively, regular and random networks8. Optimality would 
explain the ubiquity of SWN structure; it does not inform us, however, whether the processes leading to it have 
anything in common. Here we will consider whether a single mechanism exists that has SWN structure as a uni-
versal outcome of self-organisation.

In the classic Watts and Strogatz algorithm9, a SWN is obtained by randomly rewiring a certain proportion 
of edges of an initially regular network. Thereby the network largely maintains the regular clustering, while 
the rewiring creates shortcuts that enhance the networks connectedness. As it shows how these properties are 
reconciled in a very basic manner, the Watts-Strogatz rewiring algorithm has a justifiable claim to universality. 
However, the rewiring compromises existing order than to rather develop over time and maintain an adaptive 
process. Therefore the algorithm is not easily fitted to self-organising systems.

In self-organising systems, we propose, network structure adapts to use - the way pedestrians define walkways 
in parks. Accordingly, we consider the effect of adaptive rewiring: creating shortcuts where network diffusion 
(traffic flow or information transfer) is intensive while annihilating underused connections. This study general-
ises previous work on adaptive rewiring10–14. While these studies have shown that SWN robustly emerge through 
rewiring according to the ongoing dynamics on the network, the claim to universality has been frustrated by need 
to explicitly specify the dynamics. Here we take a more general approach and replace explicit dynamics with an 
abstract representation of network diffusion. Heat kernels15 capture network-specific interaction between vertices 
and as such they are, for the purpose of this article, a generic model of network diffusion.

We study how initially random networks evolve into complex structures in response to adaptive rewiring. 
Rewiring is performed in adaptation to network diffusion, as represented by the heat kernel. We systematically 
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consider different proportions of adaptive and random rewirings. In contrast with the random rewirings in the 
Watts-Strogatz algorithm, here, they have the function of perturbing possible equilibrium network states, akin to 
the Boltzmann machine16. In this sense, the perturbed system can be regarded as an open system according to the 
criteria of thermodynamics.

In adaptive networks, changes to the structure generally occur at a slower rate than the network dynamics. 
Here, the proportion of these two rates is expressed by what we call the diffusion rate (the elapsed forward time in 
the network diffusion process before changes in the network structure). Low diffusion rates bias adaptive rewir-
ing to local connectivity structures; high diffusion rates to global structures. In the latter case adaptive rewiring 
approaches a process of preferential attachment17,18.

We will show that with progressive adaptive rewiring, SWNs always emerge from initially random networks 
for all nonzero diffusion rates and for almost any proportion of adaptive rewirings. Depending on diffusion rate, 
modular or centralised SWN structures emerge. Moreover, at the critical point of phase transition, there exists a 
network structure in which the two opposing properties of modularity and centrality are balanced. This charac-
teristic is observed, for instance, in the human brain19–21. We call such a structure hierarchical. In sum, adaptation 
to network diffusion represents a universal mechanism for the self–organisation of a family of SWNs, including 
modular, centralised, and hierarchical ones.

Results
For each pair (τ, p), where τ is a heat kernel parameter, and p is the rewiring probability, 100 independently 
evolved networks are obtained by our adaptive rewiring algorithm (see Methods). Resulting networks are 
described according to measures of small-world structure, modularity, and centrality. Where appropriate, the 
average of such measures is taken.

Small-World Structure.  The small-worldness index S provides a canonical measure of the degree to which 
a network is small-world. Here, we take a slightly modified version, in which the normalised clustering coeffi-
cient (C) is multiplied by the normalised global efficiency (E)8, such that S = (C/Cr) × (E/Er), where Cr and Er 
are measures of C and E for an equivalent Erdös-Rényi (ER) random network22. In doing so, S is also defined on 
disconnected networks.

For random networks, S ≈ 1 and so the greater the (positive) deviation of S from one, the greater the degree of 
small-worldness. For comparison, we include the average small-worldness values for networks constructed by the 
Watts-Strogatz algorithm (100 independently constructed networks for each p = 0, 1/500, 2/500, …, 1).

In Fig. 1a we observe the average small-worldness index S as a function of random rewiring probability p. 
Unless stated otherwise, we consider networks arising from adaptive rewiring for random rewiring probabil-
ity p ∈ {0, 1/30, …, 29/30, 1}. A striking result is that SWN emergence is observed for all sample values of τ 
nonzero, no matter how small or large. Moreover, for all nonzero τ that have been explored a greater maximum 
small-worldness is achieved than with the Watts-Strogatz algorithm.

The degree of network adaptation to network diffusion, 1 − p, for which maximum small-worldness is 
obtained depends on the rate of diffusion τ. The values of τ are taken from the set {0, 10−15, 1, 8, 1015}. For the 
sake of convenience, we denote 10−15 = ε, 1015 = δ. For τ = 0, adaptive rewiring is a random process; emergent 
networks thus reflect those of the initial ER ones. For τ ∈ {8, δ}, the heat kernel reflects the degree distribu-
tion, and thus adaptive rewiring approaches a process of preferential attachment (see Methods). For maximum 
small-worldness, adaptive rewiring in response to local diffusion, for τ ∈ {ε, 1}, requires small p, i.e. small degree 
of random rewiring, while more global diffusion - preferential attachment -, for τ ∈ {8, δ}, requires larger p.

Interestingly, in Supplementary Fig. S1, for τ ∈ {8, δ} and p large, the network achieves an even greater effi-
ciency than an equivalent random ER network, i.e. it is more well integrated.

Modular Structure.  The modularity index Q is an optimised statistic of network partitioning into 
non-overlapping communities. The value Q is calculated as the proportion of intra-modular connections minus 
the expected proportion of inter-modular connections for an equivalent ER random network under the same 
community structure23,24.

In Fig. 1b we observe the average modularity index Q as a function of random rewiring probability p. We 
observe that modularity can be controlled by choice of pair (τ, p). This is discussed in further detail in the section 
Critical Network Structure. For τ ∈ {ε, 1} networks emerge with near-maximal degrees of modularity as p → 0. 
On the other hand, for τ ∈ {8, δ} and over all sampled p ∈ [0, 1] emergent networks posses no community struc-
ture, i.e. modularity is essentially switched off. In fact, we see a lesser degree of modularity than in an equivalent 
random ER network.

In Fig. 1c,d we present the adjacency matrices, permuted to visualise the modules, from randomly sampled 
networks resulting from single independent trials of the algorithm with pairs (τ, p), where p = p(τ) is chosen 
dependent on τ so that S is at maximum. In both Fig. 1c,d where (τ, p) = (ε, 0.1) and (τ, p) = (1, 0.3), respectively, 
emergent modules are relatively uniform with a dense intra-connectivity and sparse inter-connectivity.

Centralised Structure.  Properties of centrality are characterised using the measures of PageRank, the 
degree, assortativity, and maximised coreness statistic. The latter three network measures are evaluated for pairs 
(τ, p) where p is chosen dependent on τ such that S is at maximum.

The PageRank centrality vector, a variant of eigenvector centrality, is defined as the stationary distribution 
achieved by instantiating a Markov chain on a network25,26, i.e., the probability distribution that a random walker 
is located at a given vertex. PageRank centrality takes into account global communication patterns, mediated by 
longer path lengths and patterns of convergence and divergence, whereas some of the more common centrality 
measures, such as closeness and betweenness centrality, do not27. We denote as π the (normalised) maximum 
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element of the PageRank vector. We take equal initial PageRank probability, and take the damping factor (the 
probability of transitioning to an adjacent vertex) as 0.8528, i.e., the probability of random vertex hopping is 0.15. 
Since the PageRank vector sums to one, then its mean value is 1/n. For convenience we normalise π by this mean 
value.

In Fig. 2a we observe the average PageRank value π as a function of random rewiring probability p. As with 
modularity, we see that centrality can be controlled depending on the choice of τ. For τ ∈ {8, δ} emergent net-
work structures exhibit values of π considerably (positively) far from that of the ER networks, indicating large 
deviations of the maximum component from the mean of the PageRank vector. Therefore, there exists at least 
one vertex having a greatly increased likelihood of being traversed in a random Markov chain than all others. On 
the other hand, for τ ∈ {ε, 1} and over all sampled p ∈ [0, 1], emergent networks posses no such central vertices, 
i.e. centrality is tuned off. In fact, we see a lesser degree of centrality than in an equivalent random ER network.

In accordance with Fig. 1b, depending on the values of the pair (τ, p), emergent networks are either modular 
or centralised. The phase transition of network structure is discussed in the section Critical Network Structure.

In Fig. 2b we present a bar-plot of networks’ degree distribution. The height of individual bars is the average 
number of vertices, over 100 independently evolved networks, having degree dv where dv = 1, …, 70. The degree 
distribution for τ ∈ {ε, 1} fits a truncated normal function, while for τ ∈ {8, δ} it fits a truncated log-normal func-
tion. Moreover, for τ ∈ {8, δ} vertices emerge having remarkably high degrees (=70).

In Fig. 2c,d we present the adjacency matrices, permuted to visualise the modules, from randomly sampled 
networks resulting from single independent trials of the algorithm with pairs (τ, p), where p = p(τ) is chosen 
dependent on τ so that the values of S are at maximum. In both Fig. 2c where (τ, p) = (8, 0.5667), and Fig. 2d 
where (τ, p) = (δ, 0.5667), we observe a small subset of hub vertices connecting to many peripheral vertices.

Figure 1.  (a) Depicts the small-world index S as a function of decreasing random rewiring probability p ∈ {0, 
1/30, …, 29/30, 1}: Coloured lines indicate values of heat kernel parameter {0, , 1, 8, }τ ε δ∈ ,  black line indicates 
the Watts-Strogatz algorithm with random rewiring probability p {0, 1/500, , 499/500, 1}∈ … . (b) Depicts the 
average modularity Q as a function of decreasing random rewiring probability ∈ …p {0, 1/30, , 29/30, 1}: 
Coloured lines indicate values of heat kernel parameter {0, , 1, 8, }τ ε δ∈ . (c,d) Single trial. Example modular 
SWN. Adjacency matrices mapped to an n-by-n grid where rows (and columns) represent vertices and white 
indicates the existence of an edge. Rows and columns of adjacency matrices have been permuted to visualise the 
modules, in accordance with28. (c) p( , ) ( , 0 1)τ ε= . ; (d) τ = .p( , ) (1, 0 3).
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The assortativity coefficient a describes the “assortative mixing” of vertex degrees, i.e. the preference for 
high-degree vertices to attach to other high-degree vertices29. In Table 1 row a, for τ ∈ {8, δ} and p = p(τ) such that 
S is at maximum, a strong negative correlation indicates that vertices of a high degree typically connect to vertices 
of a low degree. On the other hand, for τ ∈ {ε, 1} an approximately zero correlation indicates no preference of 
connections between vertices of varying degrees.

The maximised coreness statistic c measures the extent to which a network may be well-partitioned into 
two non-overlapping groups of vertices, a core and a periphery group23,30. In Table 1 row c, for τ ∈ {8, δ} and 
p = p(τ) such that S is at maximum, values close to one indicate that the network may be well-partitioned into 
non-overlapping groups of core and peripheral vertices. On the other hand, for τ ∈ {ε, 1} values close to zero 
indicate no such core-periphery partition.

Figure 2.  (a) Depicts the average π - maximum element of PageRank vector normalised by its mean - as a 
function of decreasing random rewiring probability p {0, 1/30, , 29/30, 1}∈ … : Coloured lines indicate values 
of heat kernel parameter τ ε δ∈ {0, , 1, 8, }. (b) Depicts the bar-plot in which the height of individual bars is the 
average number of vertices having degree dv, where d 20v ≤ . Inset bar-plot for vertex degrees dv, where 
20 ≤ dv ≤ 70. Probability density function (PDF) curves fitted to dv: truncated normal PDF for {0, , 1}τ ε∈  and 
truncated and normalised lognormal PDF for {8, }τ δ∈ . Coloured bars (and curves) indicate values of heat 
kernel parameter τ; for each, p is chosen dependent on τ such that S is at maximum. (c,d) Single trial. Example 
centralised SWN. Adjacency matrices mapped to an n-by-n grid where rows (and columns) represent vertices 
and white indicates the existence of an edge. Rows and columns of adjacency matrices have been permuted to 
visualise the modules, in accordance with28. (c) Depicts τ =  .p( , ) (8, 0 5667); (d) depicts p( , ) ( , 0 5667)τ δ=  . .

τ 0 ε 1 8 δ

a −0.0219 0.0259 0.0905 −0.4689 −0.5094

c 0.2482 0.0491 0.1317 0.8770 0.9066

Table 1.  Column wise τ, p = p(τ) such that S is at maximum. Row wise: a assortativity coefficient; c maximised 
core-periphery statistic. Values presented are averages over trials.
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In sum, we note that for τ ∈ {8, δ}, and p = p(τ) such that S is at maximum, networks emerge as centralised, 
with a strong core, and that those core vertices connect to a high number of peripheral vertices. On the other 
hand, for τ ∈ {ε, 1}, and all sampled p ∈ [0, 1], networks exhibit none of these properties.

Critical Network Structure.  We consider the transition between modularity and centrality, and show that 
at the phase transition of network structure, the two seemingly opposing properties are reconciled. Properties of 
modularity are characterised by Q while properties of centrality are characterised by π.

In Fig. 3a,b, for parameters τ ∈ {4.50, 4.55, …, 5.45, 5.50}, and p ∈ {0, 1/30, …, 29/30, 1}, we present Q (Fig. 3a), 
and π (Fig. 3b), averaged over 100 independently evolved networks. In the domain (τ, p) there is a broad region 
of high modularity where both τ and p are low, and a broad region of high centrality in the remainder. Where the 
domain of modularity ends, the domain of centrality begins; the system exhibits a critical transition from modu-
lar (decentralised) to centralised structure as a function of the pair (τ, p). The phase transition region between the 
two is relatively sharp with respect to both τ and p.

In Fig. 3c, we fix τ = 5 and take Q and π as functions of p ∈ {0.400, 0.402, …, 0.598, 0.600}, averaged over 100 
independently evolved networks. It is clear that modularity and centrality are opposing, however, at the bound-
ary of modularity and centrality, where they intersect at around p = 0.52, there is a small domain of p for which 
networks are a blend of both modular and central structure: each of Q and π are considerably large, indicating 
the presence of both network structures. Furthermore, the value of small-worldness for pair (τ, p) = (5, 0.522) is 
S = 5.32, indicating the network is also strongly small-world.

In Fig. 3d we present the adjacency matrix, permuted to visualise the modules, resulting from one trial of 
the algorithm with (τ, p) = (5, 0.522). We observe a competition between modular and centralised structure; 

Figure 3.  (a,b) In the plane {4 50, 4 55, , 5 45, 5 50}τ ∈ . . … . .  along the horizontal axis and random rewiring 
probability p {0, 1/30, , 29/30, 1}∈ …  along the vertical axis. (a) Depicts the modularity index Q; (b) Depicts 
π, the maximum element of the PageRank vector normalised by its mean value. (c) For τ = 5, along the 
horizontal axis random rewiring probability p {0 400, 0 402, , 0 598, 0 600}∈ . . … . . . Along the vertical axis are Q 
the modularity index (left, blue), and π the maximum element of PageRank vector normalised by its mean value 
(right, red). (d) Single trial. Example critical SWN. Adjacency matrix mapped to an n-by-n grid where rows (and 
columns) represent vertices and white indicates the existence of an edge. Rows and columns of adjacency 
matrices have been permuted to visualise the modules, in accordance with28. Pair τ  =  .p( , ) (5, 0 522).
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the simultaneous existence of densely connected communities (decentralised) and a core of high degree vertices 
connecting to many low degree peripheral vertices (centralised). In Supplementary Fig. S2a–d we present four 
additional randomly sampled networks resulting from single independent trials of the algorithm with (τ, p) = (5, 
0.522). These additional figures support the notion that centrality and modularity are opposing, that at the point 
of phase transition they are reconciled, and that this is critical, i.e. they are competitive. The adjacency matri-
ces exhibit some degree of both centrality and modularity: emergent networks may appear as more centralised 
(Fig. S2a–b), or more modular (Fig. S2c), or a blend of the two (Fig. S2d).

Conclusion and Discussion
Small-world structure offers optimal efficiency in network communication8; and has been shown to facilitate syn-
chronisation in a range of oscillator networks31–33. Here, we studied whether a simple generic mechanism could 
be responsible for their emergence.

We proposed a mechanism of network self-organisation that relies on ongoing network diffusion; over time, 
the network is rewired adaptively, rendering it conform to the patterns of network diffusion. With some probabil-
ity p, the adaptive rewiring process is perturbed by random rewiring. Small-world structure emerged for almost 
any proportion of random rewiring, moreover, networks reached higher degrees of SWN structure than those in 
the Watts and Strogatz algorithm9.

Patterns of network diffusion may be biased by local or global connectivity structures using the diffusion rate 
τ. For all (positive) nonzero diffusion rates SWN structure emerges; for small τ, SWNs are modular (decentral-
ised), whereas for large τ, SWNs are centralised. For the latter, adaptive rewiring approaches a process of prefer-
ential attachment.

Modularity versus centrality constitutes an important dimension in the characterisation of networks in the 
human brain, where they play a role in terms of (structural and functional) segregation and integration34,35.

For intermediate values of τ and p there is a critical transition point at which network structures emerge that 
blend modularity and centrality. We may call these “hierarchical”36. Such networks are desirable for natural infor-
mation processing systems like the human brain, in which a core of centralised components represents a global 
workspace and the decentralised modules represent autonomous client systems19–21. The criticality of these archi-
tectures renders them all but robust. At the level of the neuro-anatomy of the brain, it would probably involve 
dynamic maintenance to keep these architectures at the critical point. As a property of functional architecture, the 
criticality would render cognition extremely flexible, enabling rapid switching between centralised and modular 
processes37.

Methods
Here we will provide a formal definition of network diffusion, an algorithm for adaptive rewiring, and a descrip-
tion of a set of computational simulations to demonstrate the role of adaptive rewiring in the generation of 
small-world networks. The MATLAB code of the algorithm is included in the Supplementary materials.

Notation.  In what follows we consider graphs that are undirected. A graph is an ordered pair G = (V, E) 
where V is the set of vertices and E is a subset of V × V called the edges. If X is a finite set, then |X| denotes its 
cardinality. The total number of vertices and edges in the graph are |V| = n and |E| = m, respectively. Two vertices 
u, v ∈ V are called adjacent if (u, v) ∈ E. For an n1 × n2 matrix B, Bij corresponds to the entry in the i-th row and 
j-th column, where i j, 0∈  , and ≤i n1, ≤j n2. The adjacency matrix of a simple graph G is a square ×n n 
matrix A with entries = ∈a u v E1 if ( , )uv , and =a 0uv  otherwise. For undirected graphs A is symmetric. It is 
typically the case that =a 0uu , i.e. no self–loops. The degree dv of a vertex v is the number of vertices adjacent to 
vertex v: = ∑ ∈ ≠d av u V u v vu, . The matrix D is the diagonal matrix of degrees having entries =D duv u if u v=  and 
0 otherwise. For a given set of n vertices V the complete graph is denoted as Kn and its edge set is denoted as E Kn. 
The compliment of an edge set E, denoted as Ec, is E E E\c Kn= .

Network Diffusion.  The Laplacian matrix of the graph G is = −L D A. The normalised Laplacian matrix, 
, is regarded as more appropriate for dealing with irregular graphs,

 = = −− − − −D LD I D AD (1)1/2 1/2 1/2 1/2

with the convention that =−D 0uu
1  for =d 0u .

All eigenvalues of  are real (since  is symmetric real) and confined to the interval [0, 2], in accordance with 
Gershgorin circle theorem38, and relate well to other graph invariants, such as random walks (or Markov chains), 
in a way that the eigenvalues of the Laplacian matrix L and adjacency matrices often fail to do39. Let iλ  denote the 
eigenvalues of  with eigenvectors vi, and ωi the eigenvalues of the corresponding Markov process M with eigen-
vectors ui. Then, 1i iλ ω= −  and v D ui i

1/2= .
Whereas  incorporates information of the local connectivity of vertices, the introduction of a graph kernel 

provides a global connectivity metric. Physical processes such as diffusion suggest a natural way of constructing 
a kernel from such local information15.

Network diffusion is formally represented by the Exponential Heat Kernel of the graph (cf. Theorem 10.11 
in39).
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Definition 1(Exponential heat kernel) Let  be the normalised Laplacian matrix for an n n×  real symmetric 
matrix and ≥t 0. The exponential heat kernel of , denoted by h t( ), is the symmetric and positive definite n n×  
matrix,

 ∑= =
−

.−

=

∞
h t e t

k
( ) ( )

! (2)
t

k

k
k

0

In particular h I(0) = , the identity matrix.
The matrix exponential is a weighted sum of walks40. Coefficients t

k
( )

!

k−  in Equation (2) allow for biasing of path 
lengths in the construction of h t( ), where for small t shorter paths carry greater weight and longer paths carry 
lesser weight, and vice versa. In our simulations we use the parameter τ = t.

The matrix h t( ) as t → ∞ can be expressed by the leading eigenvector associated with the zero eigenvalue of 
. Since  is real and symmetric, there exists an orthonormal matrix Q such that = Λ − Q Q 1 where Q is the 
matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. It is easily shown that substitution of this 
eigendecomposition into the Taylor expansion yields = − Λ −h t Qe Q( ) t 1. Let ii iλΛ =  and order the eigenvalues 
such that λ λ λ= ≤ ≤ ≤ −0 n0 1 1. If G is connected, then  has one simple zero eigenvalue 0λ . Then, the first 
column of Q contains the leading eigenvector, denoted as q, associated with the zero eigenvalue λ0. Then, 

=q D

D

1

1 1

1/2

T
 for 1 the n-vector of ones, and = Τ

→∞lim h t qq( )t .

If G is regular - all vertices have equal degree =d dv for all ∈v V  - then, L
d
1 = , and ∈ …q span (1, , 1), hence 

=→∞lim h t 11( )t n
1 T. However, if G is irregular, then ∈ …q d dspan ( , , )n1 , thus lim h t D D1 1( )t D1 1

1 1/2 T 1/2
T=→∞ .

The use of  over L in construction of the heat kernel becomes apparent for G irregular. Assuming G is irregu-
lar, then the off-diagonal entries of h t( ) as → ∞t  are proportional to the square root of the vertex degrees. Thus, 
for t taken arbitrarily large, irregularities in  also appear in h t( ), i.e. information of network structure is still 
contained in h t( ). This property does not hold if we were to replace  with L in the construction of h t( ). Indeed, 
denote the heat kernel constructed using L as h t( )L , then for G irregular, lim h t 11( )t L n

1 T=→∞ . Note also, that for 
α > 0 where α may be taken arbitrarily small, α ≠h I( ) , i.e. off-diagonal entries of αh( ) are nonzero, and hence 
h( )α  contains information of network structure. This property holds for both the use of  and L in construction 
of the heat kernel.

Adaptive rewiring algorithm.  Consider an undirected graph with number of vertices n and number of 
edges m. For convenience we take ⌊ ⌉ρ= −m n n2 ( 1) , the nearest integer, where ρ = log n

n
( )  (natural logarithm), 

i.e. twice the critical connection density for which a random Erdös–Rényi (ER) graph is connected with probabil-
ity one41,42.

We consider self–organisation starting from a random network. The network is progressively rewired, with 
probability p at random and with probability p1 −  according to the current network diffusion. The process can 
be described in algorithmic form:

Step 0: Generate an undirected random graph G of the Erdös–Rényi type. Begin with the graph =G V E( , ) 
such that V n| | =  and | | =E 0. Select uniformly at random the pair u v,  from the set ∈ | ≠ ∈u v V u v u v E{ , , ( , ) }c  
and add the (undirected) edge u v( , ) to the edge set E. Repeat until | | =E m.

Step 1: Select a vertex v uniformly at random from all nonzero degree vertices ∈ ∈ | ≠ ≠ −v u V d d n{ 0 and 1}u u .
Step 2: Delete the edge v u( , )1  and add the edge v u( , )2  where vertices u1 and u2 are selected by the following 

criteria: With probability p go to 2i, otherwise go to 2ii,

	 i.	 Vertices u1 and u2 are selected uniformly at random from the sets u u V v u E{ ( , ) }1 ∈ ∈ | ∈  and 
u u V v u E{ ( , ) }c

2 ∈ ∈ | ∈ .
	 ii.	 For adjacency matrix A (of graph G), calculate the heat kernel h t( ) for τ=t , where τ is a chosen parameter. 

Vertices u1 and u2 are chosen such that, for all ∈u V  and ≠u v,

≤ ∈u h t h t v u E: ( ) ( ) for all ( , )vu vu1 1

u h t h t v u E: ( ) ( ) for all ( , )vu vu
c

2 2
≥ ∈ .

where h t( )uv  is the u v,  entry in matrix h t( ). In case of ties u u,1 2 are chosen arbitrarily.
Step 3: Repeat from Step 1 until k edge rewirings have been made.
All simulations were performed using MATLAB R2014. In Step 3 we take =k m4 ; simulations without 

upper limit on k show sufficient convergence after only m rewirings. We simulate 100 independent trials for each 
pair p( , )τ . In analysing the networks generated by the algorithm all measures used are provided by the Brain 
Connectivity Toolbox28. Note that for τ 1  the heat kernel approaches the matrix D D1 1

D1 1
1 1/2 T 1/2

T
 and so rewir-

ing biases toward high degree vertices, hence, adaptive rewiring approaches a process of preferential 
attachment17,18.
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