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ABSTRACT Human papillomavirus 58 (HPV58) is found in 10 to 18% of cervical cancers
in East Asia but is rather uncommon elsewhere. The distribution and oncogenic poten-
tial of HPV58 variants appear to be heterogeneous, since the E7 T20I/G63S variant is
more prevalent in East Asia and confers a 7- to 9-fold-higher risk of cervical precancer
and cancer. However, the underlying genomic mechanisms that explain the geographic
and carcinogenic diversity of HPV58 variants are still poorly understood. In this study, we
used a combination of phylogenetic analyses and bioinformatics to investigate the deep
evolutionary history of HPV58 complete genome variants. The initial splitting of HPV58
variants was estimated to occur 478,600 years ago (95% highest posterior density [HPD],
391,000 to 569,600 years ago). This divergence time is well within the era of speciation
between Homo sapiens and Neanderthals/Denisovans and around three times longer
than the modern Homo sapiens divergence times. The expansion of present-day variants
in Eurasia could be the consequence of viral transmission from Neanderthals/Denisovans
to non-African modern human populations through gene flow. A whole-genome se-
quence signature analysis identified 3 amino acid changes, 16 synonymous nucleotide
changes, and a 12-bp insertion strongly associated with the E7 T20l/G63S variant that
represents the A3 sublineage and carries higher carcinogenetic potential. Compared
with the capsid proteins, the oncogenes E7 and E6 had increased substitution rates in-
dicative of higher selection pressure. These data provide a comprehensive evolutionary
history and genomic basis of HPV58 variants to assist further investigation of carcino-
genic association and the development of diagnostic and therapeutic strategies.

IMPORTANCE Papillomaviruses (PVs) are an ancient and heterogeneous group of
double-stranded DNA viruses that preferentially infect the cutaneous and mucocuta-
neous epithelia of vertebrates. Persistent infection by specific oncogenic human
papillomaviruses (HPVs), including HPV58, has been established as the primary cause
of cervical cancer. In this work, we reveal the complex evolutionary history of HPV58
variants that explains the heterogeneity of oncogenic potential and geographic dis-
tribution. Our data suggest that HPV58 variants may have coevolved with archaic
hominins and dispersed across the planet through host interbreeding and gene
flow. Certain genes and codons of HPV58 variants representing higher carcinogenic
potential and/or that are under positive selection may have important implications
for viral host specificity, pathogenesis, and disease prevention.

KEYWORDS papillomavirus, cervical cancer, HPV58, evolution, virus-host
codivergence, oncogenicity

ervical cancer is one of the leading causes of cancer mortality in women worldwide,
with more than 0.2 million deaths annually (1). Persistent infection with high-risk
genital human papillomaviruses (HPVs) is the root cause of cervical cancer (2, 3). HPVs
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are ancient DNA viruses that have evolved over millions of years, reaching a high level
of diversity at the genomic and phenotypic levels (4, 5). The Alphapapillomavirus genus
is associated with infections of the anogenital and oral mucosa and contains all
high-risk types, among which HPV16 and HPV18 account for ~70% of all cervical
cancers across the world. Several high-risk HPV types have shown geographical/ethnic
differences in disease attribution. Of particular interest, HPV58 ranks sixth or seventh as
a cause of cervical cancer globally, but it is the third most predominant type in East Asia
and was found in 10 to 18% of cervical cancers and precancers (6-8). However, the
reason for this remarkable geographic distribution of HPV58-associated cervical disease
burden is unknown.

HPV types are defined as those with L1 genomic sequences differing by >10%,
whereas variant lineages and sublineages differ by 1 to 10% and 0.5 to 1% over the
complete genomes, respectively (9, 10). At both the type and variant levels, substantial
differences in evolutionary relatedness and carcinogenicity have been observed. For
example, HPV16 variants were shown to correlate with the continental distribution of
humans and were associated with a different degree of cancer risk (11, 12). In a
multicontinental epidemiological study, the HPV58 E7 T201/G63S variant was more
frequently detected in East Asia and carried a 7- to 9-fold-higher risk for cervical cancer,
indicating that the viral variant plays a key role in modulating its unique carcino-
genic property (13). These data strongly indicate that sequence variation at certain
sites of the HPV genome can critically determine phenotypic characteristics, includ-
ing oncogenicity.

Evolutionary relationships between micropathogens and their hosts are often com-
plex, with multiple time and space scales over which a phylodynamic interaction
captures the relationships among pathogen genetic diversity, host immunity, and
pathogen transmission (14-16). A prevailing model suggesting virus-host codivergence
has been shown for feline papillomaviruses within the genus Lambdapapillomavirus
isolated from oral lesions (17), but the evolution of papillomaviruses does not mirror
the host phylogeny accurately (18). While natural selection and genomic drift drive
important forces shaping the wide variety of papillomavirus (PV) phylogenies, potential
crucial mechanisms for the well-adapted spectrum of these slowly evolving double-
stranded DNA viruses (e.g. papillomaviruses or polyomaviruses) may include host
switching, niche adaptation, lineage sorting and duplication, or rare recombination
(18-21). A common assumption of HPV evolution was that viruses have codiverged
with modern humans as a host population and distributed across the planet through
Homo sapiens migration (22, 23), but this scenario is being challenged by the differ-
ential coevolution of HPV16 lineages with archaic hominins (24). Understanding the
capacity for, and history of, viral transmission and adaptation to host immune selection
and epidemic dynamics will facilitate the clarification of how virus genetic variation
determines phylogeny and pathogenicity in individual hosts and the population.

In this study, we applied phylogenetic and bioinformatics analyses on a large data
set of HPV58 variants to understand viral genetic variation and evolutionary dynamics.
By estimating divergence times, we determined a complex evolutionary history of
HPV58 variants that involves ancient codivergence with archaic hominins and recent
viral transmission from Neanderthals/Denisovans to modern human populations. By
examining viral gene substitutions and genomic signatures, we identified certain genes
and mutations that process positive selection; some of them may represent higher
carcinogenic potential. These findings will have clinical implications for screening, early
intervention, and therapeutics in the future.

RESULTS

HPV58 variant genomic diversity and phylogeny. Complete genome analysis
using multiple phylogenetic algorithms clustered 90 HPV58 isolates into four lineages
that were further divided into seven sublineages (Fig. 1; see also Table S1 in the
supplemental material). The maximum inter(sub)lineage difference was observed be-
tween A2 and D2 variants (mean percentage = standard error, 1.45% = 0.13%), and the
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FIG 1 Phylogeny of HPV58 complete genomes. The topology was obtained from the maximum likelihood tree by using RAXML, inferred from a global alignment
of 90 complete genomes. Support scores alongside the branches of each sublineage indicate bootstrap percentages obtained by RAXML and PhyML and the
Bayesian credibility values obtained by MrBayes. The stars indicate absolute agreement among the results of the three algorithms. The pairwise nucleotide
sequence differences were calculated for each isolate and are shown on the right, with the scale displayed on the top. Values for each comparison for a given
isolate are connected by lines, and the comparison to self is indicated as 0.0%.
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overall interlineage and intersublineage mean differences ranged between 0.90% and
1.38% and between 0.54% and 0.75%, respectively. When A and non-A (B, C, and D)
variants were compared, the latter encompassed a higher level of genetic diversity
(nucleotide diversity [7] of 0.00748 versus 0.00439).

A summary of the sequence diversity of 90 complete genomes is shown in Table 1.
In total, 500 sites (6.4%) have changed across the complete genome, among which 202
codon sites (8.4%) within 8 open reading frames (ORFs) were nonsynonymous. The
noncoding regions of HPV58 (the long control region [LCR], noncoding region 1 [NCR1],
and NCR2) and E4/E5 ORFs showed higher levels of genomic diversity, while the L1
protein (amino acid change) was relatively conserved compared to other ORFs.

No evidence of recombination was found across the HPV58 complete genome by a
genetic algorithm for recombination detection (GARD). However, phylogenetic incon-
gruence was observed among A variants when separated maximum likelihood (ML)
trees inferred from the early genes (E1, E2, E6, and E7) and the late genes (L1 and L2)
were compared (trees are not shown). The A1 sublineage was closer to A2 in both early
gene (86% bootstrap value) and complete genome trees (Fig. 1) but closer to A3 in the
late gene tree (73% bootstrap value). A bootstrap scanning method with a window size
of 1,000 bp using SimPlot identified potential breakpoints among the E1, E2, L2, and L1
genes within the A variants (data not shown). Either raw sequences or sequences
filtered by removing mutations potentially due to the antiviral activity of human
APOBEC3 (hA3) cytosine deaminases showed similar topology incongruences between
early and later gene trees.

Although sampling of isolates increased the repertoire of genomic variability, our
data may have covered the majority of variant lineages within the given populations
since the rarefaction curves of parsimony-informative single nucleotide polymorphisms
(SNPs) (site detected in =2 samples) leveled off with increasing numbers of genomes.
However, additional variations, including potential false-positive SNPs or sequencing
errors, remain unavoidable, as the number of singleton SNPs (variations present only
once in the sampled genomes) increased almost linearly following the increase in
sample size (data not shown).

Lineage fixation and genomic signatures associated with E7 T201/G63S. Lineage
fixation of genetic changes was observed throughout all genes/regions of HPV58
variants. There were at least 141 nucleotide sites and 43 amino acids (aa) specifically
fixed on a sublineage, lineage, or certain clade (Fig. 2; see also Table S2 in the
supplemental material). For example, the A3 sublineage-specific nucleotide variations
of E7 C632T (amino acid T20l); E1 C1965T; E2 A3685G; NCR2 A4192C; L2 G4570A,
A4609G, and A4935C (N231T); L2/L1 A5579C (L2 M446L or L1 L5F); L1 T5747C; and LCR
G7147T, G7194C, A7304G, A7714C, and A7755G are highly correlated and represent
fixed changes in natural selection when sublineage A3 split from its most recent
common ancestor (MRCA). The E7 T201/G63S variant conferring higher risks for cervical
precancer and cancer represents the A3 sublineage. A genome-wide association anal-
ysis using mutual information (MI) examination identified three additional amino acid
changes within L2 (N231T and M446L) and L1 (L5F); 16 synonymous nucleotide
mutations within E1, NCR2, L2, L1, and the LCR; and a 12-bp insertion within the LCR
as being strongly associated with the E7 T20I/G63S variant (Table 2).

Natural selection of the HPV58 genome. In order to determine whether positive
selection is playing a role in shaping the genetic makeup of HPV58, six models
employing the maximum likelihood regression of codon substitutions (w = dN/dS) were
applied, and the model with the highest log likelihood value was chosen as the “best”
one (Table 3). The w measure is an average over all sites in an ORF. The E4 gene had
the highest average (model 3 [M3]; w = 1.9), with 5.7% of codons (mean w = 20.5)
under diversifying selection. Statistically significant codon sites in E4 identified by the
likelihood ratio test (LRT) were found to be amino acids 1L, 39S, and 74V (P = 0.95 by
CODEML, and P = 0.90 by a fast unconstrained Bayesian approximation [FUBAR]).
Although the average dN/dS ratios of other ORFs were <1, the HPV58 oncogenes E7
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FIG 2 HPV58 lineage- and sublineage-specific nucleotide and amino acid changes across the complete genome. The x axis shows HPV58 gene/region positions,
aligned according to the sublineage in the phylogenetic tree on the y axis. Lineage- and sublineage-specific SNPs were determined based on a global alignment
of 90 complete genomes and color-coded as shown at the top. Amino acid changes within the E2/E4 region are changes observed in E2. SNPs were cumulative

for the underlined lineages traversed from deepest node out to finer subline branches (dotted lines).

(M2, ® = 0.85) and E6 (M3, w = 0.59) had higher values than did E2 (M8, w = 0.32), L2
(M3, w = 0.32), E1 (M3, o = 0.20), L1 (M3, @ = 0.18), and E5 (M2, w = 0.07). A total of
11 codon sites (E6 amino acids 46V, 93K, and 97N; E7 amino acids 9R and 63G; E2 amino
acid 282V; E4 amino acids 1L, 39S, and 74V; and L1 amino acids 150L and 375T) were

TABLE 2 HPV58 single nucleotide polymorphisms showing genomic signatures with the HPV58 A3 variant represented by E7 T201/G635¢

ORF or Nucleotide Amino acid Ml value Nucleotide polymorphism in each lineage and sublineage
region polymorphism polymorphism E7 T20I E7 G63S A1 A2 A3 B1 B2 C D1 D2
E7 C632T T201 0.59 0.48 C C T C C C C C
G760A G63S 0.48 0.62 G G A A G G G G
E1 T1782C 0.30 0.20 C T C T T T T T
C1965T 0.27 0.25 C C T A/C A A/C A A
T2230C 0.39 0.31 T T /T T T T T C
A3685G 0.53 0.45 A A G/A A A A A A
NCR2 T4136C 0.31 0.23 (@4) A C T T T T T
A4192C 0.59 0.48 A A C A A A A A
L2 G4570A 0.54 0.44 G G/A A G G G G G
A4609G 0.54 0.44 A A/G G A A A A A
A4935C N231T 0.59 0.48 A A C A A A A A
G4945A 0.30 0.20 A G A G G G G G
G5104A 0.29 0.19 A G A G G G G G/A
A5579C M446L 0.59 0.48 A A C A A A A A
L1 A5579C L5F 0.59 0.48 A A C A A A A A
T5747C 0.59 0.48 T T C T T T T T
LCR G7147T 0.59 0.48 G G T G G G G G
G7194C 0.59 0.48 G G C G G G G G
72630 0.54 0.44 Del/Ins Del Ins Del Del Del Del Del
A7304G 0.59 0.48 A A G A A A A A
G7714C 0.59 0.50 A G C A A A A A
A7755G 0.59 0.48 A A G A A A A A

aShading indicates changes identical to those in the A3 variants.

tDeletion (Del) or insertion (Ins), TCCTTGTCAGTT (12 bp).
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TABLE 3 Likelihood ratio tests for positive selection of amino acid sites for HPV58 genes
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CODEML FUBAR
Best Log dN/dS LRT dN/dS Posterior dN/dS Posterior

ORF model® likelihood ratio®? statistice Codond ratio probabilitye ratio probability”

E6 M3 —779.5126 0.5853 21.4206 46V 12.32 1.000 17.12 0.979
86D 12.32 1.000 5.57 0.876
93K 12.32 1.000 9.25 0.947
97N 12.32 1.000 9.54 0.949

E7 M2 —606.8498 0.8527 16.3474 9R 10.09 0.999 8.37 0.947
63G 10.09 1.000 20.91 0.989
64T 8.47 0.833 9.45 0.919
77V 9.98 0.988 5.20 0.877

E1 M3 —3,452.3510 0.2046 1.8435

E2 M8 —1,986.1880 0.3243 23.1108 282v 30.71 1.000 20.66 0.992

E4 M3 —629.6729 1.9275 26.0371 1L 15.92 1.000 8.72 0.913
39S 20.47 1.000 7.73 0.908
74V 19.08 1.000 7.46 0.940

E5 M2 —442.6889 0.0744 0.0003

L2 M3 —2,918.3903 0.3219 0.0705

L1 M3 —3,182.2828 0.1830 17.7128 150L 5.82 0.957 19.87 0.981
3251 5.97 0.984 2.30 0.851
375T 6.06 1.000 8.46 0.955

aThe "best” model was interpreted from the maximum log-likelihood value. M2, selection; M3, discrete; M8, beta and w.

bOverall dN/dS ratio for each gene.

cLikelihood ratio test statistics follow a x2 distribution, with degrees of freedom equaling 2 when values were =5.99 and P values were =0.05 (in boldface type).

9dAmino acid sites under positive selection are shown in boldface type.
ePositively selected sites with P values of =0.950 by CODEML.
Positively selected sites with P values of =0.900 by FUBAR.

demonstrated to be under positive selection. No amino acid within E1, E5, or L2 met
criteria for positive selection using the LRT, although several sites (E1 amino acids 79I
and 361D and L2 amino acid 433T) had dN/dS ratios of =1 by CODEML.

Geographic distribution of HPV58 variants. Based on SNP patterns and phyloge-
netic tree topologies, a total of 747 HPV58 variants with known geographic origins from
16 countries/regions was assigned to lineages/sublineages (Table 4). Although these
partial sequences spanned variable genes/regions, including E6, E7, L1, and the LCR, we
can unambiguously assign each isolate to a phylogenetic branch with maximum
likelihood in a complete genome tree using a placement algorithm. As shown in the
summarized charts of HPV58 phylogeography, isolates from Asia were equally repre-
sented by the A1, A2, and A3 sublineages, with an accumulated prevalence of >97%
(Fig. 3a). America and Europe were predominated by A2 variants (76% in America and
78% in Europe) but showed a larger proportion of non-A variants than did Asia (14.4 to
16.5% versus 2.7%). In Africa, about half of the variants were non-A variants, which were
predominated by C variants, whereas the A variants were mainly assigned to the A2
sublineage. Overall, the A3 sublineage represented by a high-risk E7 T20l/G63S variant
was most common (26.9%) in Asia and, to a lesser extent, was common in America
(9.1%) and Europe (4.1%) but was absent in Africa.

Principal component analysis (PCA) using a weighted UniFrac algorithm led to
variants that were well clustered into three distinct groups corresponding to the source
of these samples (Africa, Asia, and America/Europe) (Fig. 3b). Globally, the A2 sublin-
eage was the most widespread variant, whereas the A1 and A3 sublineages were rarely
founded outside Asia (P < 0.001) (Fig. 3c). The majority of HPV58 non-A variants was
detectable in Africa compared with other three continents; due to the limited sample
size, however, we did not identify the B1 and D1 sublineages in Africa.
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TABLE 4 Geographic origin of HPV58 variants

No. of HPB58 variants

Continent Country or city Reference Sequenced region(s) Total A1l A2 A3 B1 B2 C D1 D2
Africa South Africa 63 Partial LCR 11 0 6 0 0 5 0 0 0
Zimbabwe 7 L1, LCR 73 2 35 0 0 2 28 0 6
America Argentina 7 L1, LCR 7 0 5 0 0 0 0 2 0
Brazil 63 Partial LCR 61 1 45 6 0 3 6 0 0
Canada 7 L1, LCR 12 0 1 0 1 0 0 0 0
Mexico 63 Partial LCR 4 0 4 0 0 0 0 0 0
USA 7 L1, LCR 39 0 29 4 0 1 5 0 0
63 Partial LCR 9 0 6 2 0 1 0 0 0
Asia China 7 L1, LCR 3 1 1 1 0 0 0 0 0
42 Nearly complete genome 37 35 1 1 0 0 0 0 0
65 Partial E6, E7 22 12 4 6 0 0 0 0 0
66 E6, E7 135 89 20 24 2 0 0 0 0
Hong Kong 7 L1, LCR 920 25 36 24 2 1 2 0 0
Japan 7 L1, LCR 14 1 4 7 0 2 0 0 0
South Korea 7 L1, LCR 139 9 77 50 1 0 2 0 0
Taiwan 7 L1, LCR 6 2 1 3 0 0 0 0 0
63 Partial LCR 5 0 2 3 0 0 0 0 0
Thailand 7 L1, LCR 7 0 3 4 0 0 0 0 0
Europe Italy 7 L1, LCR 23 1 16 1 0 0 4 0 1
64 Partial E6, E7, L1, LCR 24 0 17 1 1 1 4 0 0
Scotland 63 Partial LCR 7 0 5 1 1 0 0 0 0
UK 7 L1, LCR 19 0 19 0 0 0 0 0 0

Divergence time estimation and ancestral codon mutation. We used a Bayesian
Markov chain Monte Carlo (MCMC) framework and the previously reported evolution-
ary rate of feline papillomaviruses to estimate the HPV58 variant divergence times
(Table 5). Papillomaviruses process evolution with a low mutation rate due, in part, to
the fact that this kind of double-strand DNA virus uses the host cell DNA replication
machinery, characterized by high fidelity, proofreading capacity, and postreplication
repair mechanisms. A combination of relaxed log-normal molecular clock and coales-
cent Bayesian skyline models provided the best performance, with a tree height
estimated at 451,600 years ago (451.6 kya) (95% highest posterior density [HPD], 306.0
to 619.6 kya). This estimation is around three times longer than the modern Homo
sapiens divergence time (ca. 120 to 180 kya) and implies a hominin host switch (HHS)
scenario indicating ancestral viral transmission between archaic and modern human
populations. We then used an archaic hominin divergence time (500 kya; 95% HPD, 400
to 600 kya) and a modern human out-of-Africa migration time (90 kya; 95% HPD, 60 to
120 kya) to calibrate the times for the most recent common ancestor (MRCA) of HPV58
variants (Fig. 4, arrows). When time points were introduced into the HPV58 variant tree,
similar divergence times were estimated, with a mean substitution rate of HPV58
variants ranging between 1.72 X 1078 and 1.91 X 10~8 substitutions/site/year. For the
final plot, the HHS scenario with a combination of a relaxed log-normal molecular clock
and coalescent Bayesian skyline models showed the strongest support (Akaike's infor-
mation criterion for MCMC samples [AICM] of 32,648) for the time inference of HPV58
variants (Fig. 4). The initial divergence of HPV58 variants was estimated to be approx-
imately 479 kya (95% HPD, 391 to 570 kya), largely predating the out-of-Africa migra-
tion of modern humans (60 to 120 kya).

The potential ancestral codon mutations were predicted by using a maximum
likelihood regression model (see Table S3 in the supplemental material). Interestingly,
some sites associated with the E7 T20I/G63S variant that carries higher carcinogenicity
had mutated earlier than the time of the divergence of the A3 sublineage. For example,
E7 G760A within B1 variants (branch 3 [Br3] in Fig. 4 and Table S3 in the supplemental
material) and E1 A1965T within the MRCA of A variants (Br10) may represent ancient
adaptation or fitness in archaic hominins.
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FIG 3 Geographic distribution of HPV58 variants. (a) A total of 747 HPV58 variants with known geographic origins from 16 countries/regions (see details in Table
4) were assigned to a lineage/sublineage and are summarized by continent in the pie charts. (b) Principal-component analysis using a weighted UniFrac
algorithm clustered different study cohorts into three distinct groups, mainly matching the geographic locations where the viruses were isolated. (c) Relative
frequencies of HPV58 lineage/sublineage distributions in four continents. A higher frequency indicates a predominance of certain lineages/sublineage in the
associated geographic area.

DISCUSSION

HPV58 is one of the oncogenic types attributing to a high proportion of cervical
cancers in East Asia (8). HPV variants have been reported to be different in persistence,
viral load, and carcinogenicity (11, 25-27), indicating that each HPV lineage has a
different evolutionary history in their host population. In this study, we applied multiple
phylogenetic algorithms and used a large data set of complete genome and partial
gene sequences to investigate the origin, dispersal, and diversity of HPV58 variants. We
observed a predominant dispersal of HPV58 A variants worldwide and A1/A3 variants
in Asia; most importantly, the estimated divergence times of HPV58 variants largely

November 2017 Volume 91 Issue 21 e01285-17 jviasm.org 9


http://jvi.asm.org

Chen et al.

TABLE 5 Divergence time estimations for HPV58 variant lineages®

Journal of Virology

Estimated rate

(10-8) MRCA (kya)
Node 0
Log
Clock Tree marginal 95% HPD 95% HPD

Calibration Rate (108) model prior AICM likelihood Mean interval Mean interval

No Feline PV Relaxed Bayesian 32,649 —16,239.82 1.84 1.61, 2.08 451.6 306.0, 619.6
No 1.95 (1.32-2.47) Relaxed Yule +7 —16,241.02 1.95 1.73, 217 318.8 241.4, 407.8
No Relaxed Constant +10 —16,239.91 1.67 140, 1.94 545.9 352.7,778.2
No Strict Bayesian +33 —16,287.82 1.89 1.33, 2.41 397.4 272.0, 545.9
No Strict Yule +37 —16,288.68 1.96 1.40, 247 357.6 252.5, 496.5
No Strict Constant +41 —16,289.52 1.90 1.33, 242 409.5 286.8, 570.3
2 Cali.b HPV16 Relaxed Bayesian 32,648 —16,239.97 1.82 1.50, 2.13 478.6 391.0, 569.6
2 Cali. 1.84 (1.43—2.21) Relaxed Yule +7 —16,241.14 1.72 1.41, 2.08 425.4 339.6, 516.6
2 Cali. Relaxed Constant +9 —16,240.87 1.81 1.52, 2.08 490.8 402.1, 580.2
2 Cali. Strict Yule +40 —16,288.79 1.83 1.50, 2.16 348.9 301.8, 398.8
2 Cali. Strict Bayesian +45 —16,289.89 1.85 1.54, 2.18 418.7 341.5, 494.1
2 Cali. Strict Constant +46 —16,291.17 1.91 1.62, 2.21 417.2 343.8, 491.1

Node numbers match the notation in Fig. 4. Boldface indicates the time estimation with “best” clock model and tree prior.
bTwo time points were introduced in the HPV58 variant tree to calibrate the time estimate. Boldface indicates the time estimate with the “best” models.

predated the recent out-of-Africa migration of modern human populations. These
findings confirm a hominin host switch scenario previously reported for HPV16 showing
that the ancient hominin-virus codivergence and recent host switch events shaped
the radiation that we observe in the phylogenetic tree of extant HPV variants (24). The
majority of HPV variants currently predominant in Eurasian populations could be the
descendants of viral transmission from Neanderthals/Denisovans to modern human
populations through interbreeding and gene flow.

The divergence time estimation and the phylogenetic separation between HPV58 A
and non-A variants mirror the host split between archaic hominins and modern human
ancestors, indicating that ancestral HPV58 lineages may have already existed before the
emergence of modern humans, which rejects the initial assumption of codivergence
between HPV and H. sapiens migration (22). Interestingly, the initial divergence of
ancestral HPV58 lineages estimated here, similar to the split between HPV16 lineages
A and BCD (461 kya; 95% HPD, 365 to 561 kya) (24), is compatible with the speciation
between Neanderthals/Denisovans and modern H. sapiens ancestors (Fig. 5). When
Neanderthal/Denisovan ancestors diverged and expanded out of Africa, they may have
carried ancestral HPV variants (e.g., HPV16A or HPV58A). The morphological features
typical of Neanderthals first appeared in the European fossil record about 400,000 to
600,000 years ago. Progressively more distinctive hominin forms subsequently evolved
(e.g., splitting of Neanderthals and Denisovans) until their extinction around 30,000
years ago (28-30). During the late part of their history, Neanderthals lived in Europe and
Western Asia and presumably came into contact with anatomically modern humans in
the Middle East from at least 80,000 years ago. Interbreeding between Neanderthals/
Denisovans and modern humans is probably largely responsible for the sexual trans-
mission of viruses through host gene flow. This inference is made based on the
supposed 2 to 4% of nuclear DNA in Eurasians that can be traced to Neanderthals (29,
31). This scenario can also be confirmed in part by the very low prevalences of certain
HPV58 A variants (particular the A1 and A3 sublineages) in current African populations,
strongly indicating that these variants were of Neanderthal origin. Viral transmission
from modern humans to Neanderthals/Denisovans was possible based on evidence of
ancient gene flow from early modern humans to Eastern Neanderthals (30). However,
papillomavirus usually establishes infection at the basal layer of epithelium cells,
making it impossible to detect viruses from fossil bones of archaic hominins.

The real divergence of HPV58 variants is likely more complex. In parallel with the
ancient out-of-Africa expansion of Neanderthals/Denisovans, the viruses remaining in
Africa codiversified with subsequent host speciation. Some viral variants (e.g., the D1
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TABLE 5 (Continued)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

95% HPD 95% HPD 95% HPD 95% HPD 95% HPD 95% HPD
Mean interval Mean interval Mean interval Mean interval Mean interval Mean interval

1919  125.0, 266.5 149.8  98.1, 206.8 356.6  246.5,477.2 2816 1937, 376.6 220.1 147.1, 296.8 1283  82.7,178.7
179.1 125.9, 235.8 1469  105.8, 192.3 270.8 2023, 343.1 2232 164.1,283.3 1826  134.7, 236.2 120.8  86.3, 160.8
2327 1436, 341.5 1820 1129, 2585 433.7  293.1, 608.5 3434 2309, 474.1 2693 180.3, 377.8 158.7  97.5,223.1
187.4 1238, 265.7 1563 1026, 221.0 3276  223.6,4553 2742  188.4, 379.3 2303  157.6,322.2 1337 86.1,189.4
1785 1208, 251.8 151.3  103.3, 215.8 298.1 209.3, 415.9 2523 176.0, 352.4 2139 1499, 300.7 129.1  86.6, 184.2
197.4 1284, 277.6 166.1 110.4, 237.8 339.8 2283, 4684 2858  195.1,3975 2409 1638, 337.1 1426 924, 201.2
197.6 122.2,283.3 152.8 100.3,219.8 358.1 244.8,472.7 273.3 183.1,367.0 206.9 138.7,285.6 103.0 79.2, 125.2
2134 142.7,294.7 1713 115.1, 2371 320.2 2280, 417.0 2526 1775, 331.1 198.1 1415, 265.8 108.7  85.7,132.0
2246  143.5,329.3 1765 1118, 2556 3852  270.2, 499.6 298.0  205.1, 402.9 2264 151.0, 314.8 106.8  84.1,130.8
1745 1428, 208.9 1479 1193, 176.8 2903  246.6, 334.2 2458  209.6, 283.6 2083  175.0, 241.1 125.7  102.0, 151.8
1924 1434, 2416 1592  116.8, 200.8 3279  257.8,397.8 2699 2148, 3299 2226 174.2,272.1 1145 93.8,1353
1973  150.9, 248.6 165.0 125.8, 208.9 328.6  265.3, 400.5 2715  217.7,328.8 2245 177.6, 2731 117.0  96.0, 138.2

sublineage) may have dispersed outside Africa following the recent out-of-Africa
migration of modern humans, while some expanded in one or more isolated hominin
populations in Africa or became extinct. The MRCA for HPV58 non-A variants (358 kya;
95% HPD, 245 to 473 kya) seems older than the one for A variants (198 kya; 95% HPD,
122 to 283 kya) (Fig. 4 and Table 5), consistent with the low genomic diversity of A
variants, probably because of a population bottleneck where only a proportion of
viruses in Neanderthals/Denisovans was able to be horizontally transferred to modern
humans. In contrast, HPV58 non-A variants are more diversified, matching the obser-
vation that African populations were the most diverse populations genetically (32). This
may also support the notion that both modern humans and HPV58 non-A variants
arose in Africa. Besides, interbreeding between archaic hominins was multiregional,
occurring at different times and places (29). For example, a subset of modern human
ancestors who carried some Neanderthal DNA may have headed east and interbred
with Denisovans in Oceania (e.g., Australia, Melanesia, and the Philippines) (33). Al-
though the contribution of Denisovans to modern humans was quantitatively small,
gene flow from ancient Oceanians (after they mixed with Denisovans) to mainland
Asian ancestors may have accumulated; as a result, certain viral variants (e.g., A1 and A3
sublineages) became more predominant in East Asia. While we were able to analyze the
largest available worldwide collection of HPV58 isolates, the number of samples from
certain areas is small, precluding a determination of the accurate geographic distribu-
tion of viral variants in different geographic areas. For example, the history of B1
variants is still elusive. The B1 sublineage is closer to B2, but they cannot be classified
in the same monophyletic clade (Fig. 1); independent evolutionary histories encom-
passed by each of them may explain their differences in dispersal and frequency in
present-day populations.

Similar to HPV16 and HPV18 genomes (34, 35), the majority of HPV58 variant genes
are under purifying selection, with average dN/dS ratios of <1. The low substitution rate
limits the actual number of evolutionary events and maintains the core functions of
HPV-encoded proteins in a neutral fashion. In contrast, several codon sites under
positive selection may affect viral phenotypes involved in facilitating host immune
evasion, maintaining asymptomatic infection, or enhancing viral persistence and rep-
lication. For example, E7 aa 63 is under positive selection, with 3 different amino acid
changes at the same codon: G63S is shared by the A3 and B1 sublineages, G63D is
conserved in the A2 and D2 sublineage, and G63H is unique to the D1 sublineage. Such
genetic changes possibly display differential viral loads and infection persistence that
are directly involved in enhanced adaptive introgression in host alleles. Alternatively,
the genetic variations that occur in HPV58 may be induced partly by the host innate
immune system, such as the antiviral activity of hA3 cytidine deaminases (36). It has
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FIG 4 Divergence time estimation for HPV58 variants. A Bayesian MCMC method with a tree prior of a
coalescent Bayesian skyline model and a UCLD molecular clock model of rate variation among branches
under an HHS scenario, as the best model as determined by AICM (Table 5), was used to calculate the
divergence times. An HPV16 variant substitution rate and two human evolutionary time points of calibra-
tion (arrowed at nodes 0 and 6) were set. Branch lengths are proportional to the times scaled in thousands
of years. Gray bars indicate the 95% HPD for the corresponding divergence age. The branches are coded
(Br0 to Br14), and ancestral codon mutations are listed in Table S3 in the supplemental material.

been reported that APOBEC3-mediated cytidine deaminase activity could target HPV16
genes and induce viral mutations (37). These induced mutations, if not lethal, may also
be responsible for the long-term accumulation of genomic changes that affect the
success of niche adaptation or function fitness contributing to HPV-associated cancer
(38). Nevertheless, functional investigations will be warranted to clarify whether these
and other genotype changes affect any phenotypes in present-day HPV variants.
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FIG 5 Schematic illustration of HPV58 codivergence with archaic hominins. The model is based on HPV58
variant divergence time estimations, phylogenetic topology, and geographic distributions that super-
impose ancestral viral transmission between Neanderthals/Denisovans and modern human populations.
t, 4 denotes the splitting time between Neanderthals/Denisovans and modern humans, t, represents
the speciation of modern humans, t,, indicates the era of population expansion of modern humans
walking out of Africa, t, indicates the time of gene flow (f) that may have occurred between modern
humans and Neanderthals/Denisovans, and t,, estimates the extinction of Neanderthals/Denisovans. The
arrows indicate the out-of-Africa migration events of archaic and modern human populations. The
broken lines indicate the potential extinction of viral variants. Branch lengths and widths are not drawn
to scale.

To date, this is the most comprehensive study on the evolutionary history of HPV58
variants. One interpretation of the data in this work implies ancient hominin-virus
codivergence between human papillomaviruses and hosts, while certain HPV variants,
particularly the isolates predominant in present-day Eurasia, could be the descendants
of sexual transmission from Neanderthals/Denisovans to modern human populations.
The implementation of new technology such as next-generation sequencing makes
sequencing of large amounts of complete HPV genomes more feasible and economical
(11, 39, 40). A high-throughput, ultradeep-coverage method permits a more detailed
examination of genotype-phenotype relationships between viral genomics and carci-
nogenesis. It will also help to establish local adaptation between virus and host
genomes to explain the differential dispersals and cancer risks of HPV variants in
different ethnic populations.

MATERIALS AND METHODS

Isolates and complete genome sequencing. In our previous study, 445 HPV58 isolates collected
from 15 countries/cities across four continents had been sequenced for E6-E7-E2-E5-L1-LCR (7, 13). In the
present study, we identified 44 isolates that carry unique variation sites or patterns for complete genome
sequencing. Type-specific primers were designed to amplify the complete genome by using nested
overlapping PCR as previously reported (10). The collection of samples for sequencing analysis had been
approved during the course of previous studies.

Phylogenetic analysis and tree construction. Ninety complete HPV58 genomes, including 44 new
sequences from the present study, 26 sequences previously reported by our group (10), and 20
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sequences available in the NCBI/GenBank database, were used for evolutionary analysis (see Table S1 in
the supplemental material) (40-46). ML trees were constructed by using RAXML MPI v8.2.9 (47) and
PhyML MPI v3.0 (48) with optimized parameters based on complete genome nucleotide sequences
aligned by MAFFT v7.221 (49). Data were bootstrap resampled 1,000 times in RAXML and PhyML. MrBayes
v3.2.6 (50) with 10,000,000 cycles for the MCMC algorithm was used to generate Bayesian trees. A 10%
discarded burn-in was set to eliminate iterations at the beginning of the MCMC run. For Bayesian tree
construction, a general time-reversible (GTR) model identified by ModelTest v3.7 (51) was set for
among-site rate variation, allowing substitution rates of aligned sequences to be different. The CIPRES
Science Gateway (52) was accessed to facilitate RAXML and MrBayes high-performance computing. To
detect phylogenetic congruence among genes of HPV58 variants, separated ML trees inferred from
concatenated nucleotide sequences of early genes (E6, E7, E1, and E2 ORFs) and late genes (L2 and L1
ORFs) were constructed using RAXML. SimPlot (53) and GARD within the HyPhy distribution (54) were
used to detect potential recombination events across six genes. Mutations potentially due to the antiviral
activity of hA3 cytosine deaminases (TCR—TKR or YTA—YMA; boldface indicates the mutation in the
trinucleotide motif; M = AorCG;K= GorT;R = AorG;Y = Cor T) were excluded from tree comparisons
and recombination tests (38).

Sequence diversity and genomic signatures. SNPs and amino acid changes were determined by
using scripts developed in-house with R v3.3.2 (55). The rarefaction curves of SNPs were generated by
EstimateS v9.1.0 (56). Inter- and intralineage nucleotide sequence differences were calculated by using
the p-distance method in MEGA6 (57). A Wilcoxon-Mann-Whitney U test was used to determine the
significance of pairwise differences between the defined groups. Genome-wide sequence signature
analysis using MI computation was applied to examine the strength of the association between two
variations (58). The pairwise M| indexes were calculated by using the mutinformation function in the R
package “infotheo.” A higher Ml value indicates greater agreement between two compared sites.

Detection of positive selection. The maximum likelihood regression models of codon substitution
(w = dN/dS) were applied to identify whether an HPV58 gene(s) was under positive selection (59, 60).
These models view the codon as the fundamental unit of evolutionary change and take into account
genealogic history when calculating scores. Log-likelihood scores evaluate the quality of the fit of the
input data to the conditions of the model. Six models, including MO (one ratio), M1 (neutral), M2
(selection), M3 (discrete), M7 (beta), and M8 (beta and w), used for the w distribution of distinct ORFs (E6,
E7, E1, E2, E4, E5, L2, or L1), were implemented in the CODEML program in the PAML v4.8a package (60),
with a guided RAXML tree inferred from the global complete genome alignment. The codon sequences
of each ORF were aligned based on the amino acid alignment by MUSCLE (61). The ratio of nonsyn-
onymous/synonymous substitution rates is an indicator of natural selection, with a w value of 1
representing neutral variation, a w value of <1 representing purifying selection, and a w value of >1
representing diversifying positive selection. Three LRTs were performed to assess the influence of
positive selection on a particular coding region, which compared M1 with M2, MO with M3, and M7 with
M8. When alternative models (M2, M3, and M8) suggest the presence of sites with a w value of >1, results
of all three tests taken together are considered evidence of positive selection (34, 35). Amino acid sites
in a protein are expected to be under different selective pressures and have different underlying w ratios.

A FUBAR algorithm within the HyPhy distribution (62) was used to verify the sites under positive
selection observed by CODEML. This hierarchical Bayesian MCMC method ensures robustness against
model misspecification by averaging over a large number of predefined site classes. A codon site with
a o value of >1 was considered to be under positive selection when the posterior probabilities
determined by CODEML and FUBAR were =0.950 and 0.9000, respectively.

Geographic distribution of HPV58 variants. Information on the geographic sources of isolates was
obtained from the corresponding publications (7, 42, 63-66). Tree topologies of partial sequences
spanning variable genes/regions of 747 HPV58 isolates obtained worldwide (Table 4) were constructed
using pplacer v1.1.alpha17 (67) by placing short sequences on a reference tree to maximize phylogenetic
likelihood according to a complete genome alignment. The reference RAXML tree was based on 90
complete genomes that we used for evolutionary analysis. A cutoff value of a maximum likelihood of
=0.8 was set as a confident assignment of HPV58 isolates into each (sub)lineage. The abundances of
each lineage from the same country/city were combined and normalized as a percentage. We used a
weighted UniFrac method in the R package “GUniFrac” (68) to calculate the pairwise distances between
geographic locations, based upon which a PCA was performed to visualize the clustering of countries/
cities by using the betadisper function in the R package “vegan.” Four geographic groups, Africa,
America, Asia, and Europe, were summarized for the distribution of HPV58 variant lineages; for each
lineage, its frequency in each geographic group was calculated based on the summary of individual
percent abundances divided by the summary of the total percent abundance.

Divergence time estimation. We used a Bayesian MCMC method implemented in BEAST2 v.2.4.5
(69) to estimate the divergence times of HPV58 variants. Three tree priors were estimated by using the
(i) coalescent constant population, (i) Yule model, and (iii) coalescent Bayesian skyline demographic
model, with assumptions that the papillomavirus genome has a strict mutation rate or that there is an
uncorrelated log-normal distribution (UCLD) molecular clock model of rate variation among branches
(Table 5). We chose the GTR sequence revolution model with gamma-distributed rate heterogeneity
among sites and a proportion of invariant sites (GTR+G+1) determined by the best-fit model approach
of Modeltest v3.7 (51). The complete genome alignment and a previously reported PV evolutionary rate
of 1.95 X 10~8 substitutions per site per year (95% confidence interval [Cl], 1.32 X 1078 to 2.47 X 10~8
substitutions per site per year) were used (17).
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combinations of three tree priors and two clock models as described above.
The MCMC analysis was run for 100,000,000 steps, with subsampling every 10,000 generations. A

Journal of Virology

To validate the accuracy of the time estimation, an HHS model assuming that there was ancestral viral
transmission between archaic and modern human populations (24) was applied by setting two evolu-
tionary time points to calibrate the HPV58 variant phylogenetic tree: (i) the archaic divergence of modern
humans and Neanderthals/Denisovans around 500 kya (95% Cl, 400 to 600 kya) (70), matching the split
between HPV58 A and non-A variants, and (i) the modern human out-of-Africa migration at 90 kya (95%
Cl, 60 to 120 kya) (71, 72), locating the era when HPV58 D1 and D2 variants diverged from their MRCA.
An HPV16 variant substitution rate was used for validation as a uniform prior, 1.84 X 10~8 substitutions
per site per year (95% Cl, 1.43 X 1078 to 2.21 X 108 substitutions per site per year) (24), with

discarded burn-in of the first 10% of steps was set to refine trees and log files for further analysis. The
best model estimates were selected by using a posterior simulation-based analogue of AICM (73), as
implemented in Tracer v.1.6. Lower AICM values indicate a better model fit. A consensus tree was inferred
by using TreeAnnotater v.2.4.5 and visualized by using in-house-developed scripts in R.

Accession number(s). Accession numbers for the sequences determined in this study are available
in GenBank under accession numbers KY225918 to KY225932, KY225934, KY225936 to KY225939,
KY225941 to KY225959, KY225961, KY225963, KY225964, KY225966, and KY225967 (see Table S1 in the
supplemental material).
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