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ABSTRACT
Background: The interaction between influenza virus and the host response to

infection clearly plays an important role in determining the outcome of infection.

While much is known on the participation of inflammation on the pathogenesis of

severe A (H1N1) pandemic 09-influenza virus, its role in the course of non-fatal

pneumonia has not been fully addressed.

Methods: A systems biology approach was used to define gene expression profiles,

histology and viral dynamics in the lungs of healthy immune-competent mice with

pneumonia caused by a human influenza A (H1N1) pdm09 virus, which successfully

resolved the infection.

Results: Viral infection activated a marked pro-inflammatory response at the lung

level paralleling the emergence of histological changes. Cellular immune response

and cytokine signaling were the two signaling pathway categories more

representative of our analysis. This transcriptome response was associated to viral

clearance, and its resolution was accompanied by resolution of histopathology.

Discussion: These findings suggest a dual role of pulmonary inflammation in viral

clearance and development of pneumonia during non-fatal infection caused by

the 2009 pandemic influenza virus. Understanding the dynamics of the host’s

transcriptomic and virological changes over the course of the infection caused by A

(H1N1) pdm09 virus may help identifying the immune response profiles associated

with an effective response against influenza virus.

Subjects Global Health, Infectious Diseases, Public Health

Keywords Influenza, Mice model, Inflammation, Gene expression, Immune response, Lung

How to cite this article Almansa et al. (2017), Pulmonary transcriptomic responses indicate a dual role of inflammation in pneumonia

development and viral clearance during 2009 pandemic influenza infection. PeerJ 5:e3915; DOI 10.7717/peerj.3915

Submitted 23 May 2017
Accepted 21 September 2017
Published 11 October 2017

Corresponding author
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INTRODUCTION
Influenza is one of the most common respiratory infectious diseases and a worldwide

public health concern. The World Health Organization (WHO) estimates that

influenza viruses infect around 5–15% of the global population, resulting into 250,000

to 500,000 deaths each year (Vemula et al., 2016).

At the beginning of 2009, a new influenza virus of the subtype H1N1, [A (H1N1)

pmd09], was detected in Mexico. The vast majority of infections caused by this new strain

were mild and self-limiting upper respiratory tract illness. However, a small percentage of

patients infected by the A H1N1 pm09 virus developed primary viral pneumonia,

resulting in respiratory failure, acute respiratory distress, multi-organ failure and death

(Health Protection Agency et al., 2009). A large proportion of these severe cases occurred

in young adults with accompanying co-morbidities (chronic respiratory disease,

cardiovascular disease, hypertension, obesity and diabetes) (Jain et al., 2009).

The host response to the infection clearly plays an important role in determining the

outcome of the patients infected by influenza viruses (Almansa, Bermejo-Martı́n &

de Lejarazu Leonardo, 2012). In this regard, severely infected patients by the influenza

A (H1N1) pdm09 virus was characterized by the presence of high plasmatic levels of

cytokines, chemokines and other immune mediators accompanying the presence of

pneumonic infiltrates (Bermejo-Martin et al., 2009; Hagau et al., 2010; To et al., 2010).

Moreover, we have shown that systemic levels of these mediators were directly associated

with viral levels secreted by the respiratory tract from the beginning of the disease

(Almansa et al., 2011a). In addition, persistence of viral secretion has been found in the

patients with the worst outcomes (Lee et al., 2009), paralleling the presence of impaired

expression of a number of genes participating in adaptive immune responses. Depression

of adaptive immunity response has been previously correlated with poor control of

infection and maintenance of inflammation, and secondarily with the generation of

damage to the infected tissues with the development of further respiratory failure

(Bermejo-Martin et al., 2010).

While much is known about the immune alterations and the participation of

inflammation on the pathogenesis of severe A (H1N1) pandemic influenza, their role in

the course of non-fatal pneumonia has not been sufficiently studied. Aimed to clarify this

role, we employed a systems biology approach to study gene expression profiles (GEP)

and its relation to histology and viral dynamics in the lungs of healthy immune-

competent mice with pneumonia caused by human influenza A (H1N1) pdm09 virus,

which successfully resolved the infection.

MATERIALS AND METHODS
Ethics statement
The ethical protocol and the research were reviewed and approved by the Animal and

Human Experimentation Ethical Committee of the Autonomous University of Barcelona

(Internal Register Number: 1124M2R) and the Ethical Animal Experimentation

Commission of the Catalan Government (Register Number: 5767).
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All the animal experiments were done at the Biosafety level 3 (BSL3) facilities of the

Centre de Recerca en Sanitat Animal (CReSA, Barcelona, Spain). Animal care was

performed according to the standard procedures of the center (Martı́nez-Orellana

et al., 2015). Seven-week-old C57BL6/JOlaHsd (C57BL6) female mice (Harlan

Laboratories, Barcelona, Spain) were housed in groups in experimental isolation cages

for one week in acclimation (72 animals in total). Throughout the experiment, all mice

were provided with commercial food pellets and tap water ad libitum.

A (H1N1) pdm 2009 Catalonian virus and mice infection
A human pandemic influenza A virus, A/Catalonia/63/2009 (CAT09) (GenBank

accession numbers GQ464405–GQ464411 and GQ168897) was used for animal infection

(Busquets et al., 2010). CAT09 was passaged in MDCK two times and the viral stock had a

titer of 106 PFU/ml. Animals were divided into two groups of 32 mice each; distribution

was done as follows: untreated control group (mock group) and pdmH1N1 2009 infected-

group (CAT09). To evaluate the pathogenicity mice were infected through intranasal

instillation with 50 ml CAT09 at 104 PFU/mice as described previously (Itoh et al., 2009).

Successful CAT09 mice infection and pathogenicity was previously confirmed by our

experimental work (Orellana-Martı́nez, 2014). Control non-infected mice were treated

with 50 ml phosphate-buffered saline (mock infection) to reproduce CAT09 infection.

Mice monitoring and sampling
For 10 days, mice were observed daily to record changes in body weight and clinical signs.

Based on our previous experimental work, the day showing the most important histological

changes in the lung following infection caused by CAT09 is day 5, while resolution of

histological changes occurs by day 10. Consistent with our previous experience (Orellana-

Martı́nez, 2014), necropsies of 12 animals per group were performed at days 1, 5 and 10 post

infection (dpi). Animals were euthanized with intraperitoneal inoculation of penthobarbital

under anesthesia with 5% isofluprane and tissue samples of lung were dissected from dead

animals using the standard surgical procedures. Lung samples of six animals per group were

used for viral load determination and histological examination. Lung samples were snap-

frozen on dry ice and stored at -80 �Cuntil further processing. Gene expression profiling was

performed for whole lungs of the other six animals per group by using microarrays.

Determination of viral load
Viral quantification was determined by plaque assay determining plaque-forming units

(PFU) following our laboratory standard operating procedures (Martı́nez-Orellana et al.,

2015). Briefly, supernatants were obtained after weighing, homogenizing and centrifuging

lung samples. 0.1 ml of 10-fold supernatant dilutions were incubated with MDCK cells

plated in 12-well tissue cultures plates for 1 h. Then, cells were washed with phosphate

buffer saline and plates were overlaid with 1.4% noble agar (Becton Dickinson,

Pont-de-Claix, France), mixed 1:1 with 0.5 mg/ml of bovine trypsin and minimum

essential medium eagle (MEM) (both from Sigma-Aldrich SA, Madrid, Spain)

supplemented with 100 UI/ml penicillin and 100 mg/ml streptomycin (Invitrogen�,
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Barcelona, Spain). After four days of incubation, cells were fixed for 20 min using 10%

formalin (Sigma-Aldrich SA, Madrid, Spain) and then overlaid with 1% crystal violet

(Anorsa, Barcelona, Spain). Finally, cells were washed with water in order to visualized

plaques, which were counted and compared to uninfected cells.

Histopathology
Lung samples were collected for macroscopical and histological examination according to

our laboratory standard operating procedures (Martı́nez-Orellana et al., 2015). The

procedures involved lung sample fixation using neutral-buffered 10% formalin for 48 h,

followed by embedment in paraffin wax. Next, sections of 3 mm were stained using

haematoxylin and eosin (HE). Cross sections of the lungs were analyzed separately.

A semi-quantitative assessment of IAV-associated microscopic lesions in the lungs was

performed for each animal. The lesional scoring was graded on the basis of lesion severity

as previously described by Vidaña et al. (2014).

RNA extraction and microarray processing and analyzing
At designated time points (1, 5 and 10 dpi), C57BL6 mice were euthanized and lung

tissue was collected in RNAlater and stored at -80 �C until further processing. Total RNA

was extracted from lung samples using the Ribopure kit (Ambion, Life technology,

Carlsbad, CA, USA). RNA integrity and concentration were evaluated as previously

described (Almansa et al., 2015). A total amount of 100 ng of mRNA was processed as

described to obtain Cyanine 3-CTP-labeled cRNA (Almansa et al., 2015). Next cRNAwas

hybridized with Mouse GE 4 � 44K v2 Microarray Kit (Agilent p/n G4846A) overnight

(17 h) at 65 �C on a rotator. Image acquisition was performed using an Agilent Microarray

Scanner (Agilent G2565CA, Santa Clara, CA, USA) and data were extracted using the

Agilent Feature Extraction Software 10.7.1.1 following the Agilent protocol GE1-

107_Sep09. Raw data were collected and preprocessed by using the GeneSpring GX 12.0

software (Almansa et al., 2015). This software was employed also to perform the statistical

analysis, which involved the use of a moderate T-test to identify those genes showing

significant differences between their expression levels fixing a p < 0.05 with further

application of the Benjamini–Hochberg correction for multiple comparisons. A fold

change in gene expression �2 was used to obtain the list of those genes showing the more

important variations in their expression levels between groups along time (1, 5 and 10

dpi). Ingenuity pathway analysis (IPA) (Ingenuity Systems-Quiagen, Redwood City, CA,

USA) was employed to determine whether a canonical pathway is enriched with genes of

interest by using Fisher’s exact test.

Microarray data accession number
Microarray expression data sets were uploaded at the Array Express microarray data

repository and are available publicly under accession number E-MTAB-3866.

Validation of gene expression results from microarrays
Results of gene expression obtained using microarrays were confirmed by using a next

generation PCR technology, droplet digital PCR (ddPCR), using the Bio-Rad QX200TM
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Droplet DigitalTM PCR system. About 5 ng of total mRNAwere retro-transcribed to cDNA

and analyzed by ddPCR using a Bio-Rad QX200TM platform as previously described

(Tamayo et al., 2014). Quantification of expression levels of target mRNAs was performed

using pre-designed TaqMan� Assay Primer/Probe Sets, (FAM-labeled MGB probes,

Thermo Fisher/Scientific-Life Technologies, Waltham, MA, USA): IL6 gene; interleukin 6

(Reference: Mm00446190_m1) and IFNB1 gene; interferon beta 1 (Reference:

Mm00439552_s1). The droplet reader used at least 10,000 droplets to determine the

percentage of positive droplets and calculation of copy number of cDNA per ng of initial

mRNA. Spearman correlation between ddPRC and microarrays results was performed

using SPSS 15.0 (Fig. S1).

Statistical analysis
SPSS 15.0 software was employed for perform statistical comparison of weight

loss and viral load between groups at all sampling times (SPSS Inc., Chicago, IL,

USA). The statistical test used was the U Mann–Whitney, and the significance level

(a) was set at 0.05. All graphs used for represent the variations on weight loss and

viral load were performed using GraphPad Prism 6 (GraphPad Software, La Jolla,

CA, USA).

RESULTS
A (H1N1) pdm09 virus infection induced moderate weight loss
during the first five days of infection
Weight was evaluated each day during the first 10 days following infection with the

pandemic CAT09 virus. Even though the percentage of body weight loss in CAT09-

infected animals was not dramatic, CAT09-infected mice showed significantly greater

weight loss on the first five days compared to uninfected controls (p < 0.05). After 5 dpi,

infected mice began to recover their normal weight with no significant differences

compared to mock mice (Fig. 1A).

Human A (H1N1) pdm09 virus causes a productive infection in
the lower respiratory tract of mice
Virus titers in lung homogenates measured on 1, 5 and 10 dpi are shown in Fig. 1B

(n = 6 mice per group). The highest value in viral load detected was one day after

infection (average: 1.08E + 05 PFU/g, SD: 1.43E + 05). However, day 5 pi, infected animals

were still secreting virus in lungs [1.01E + 04 PFU/g, 0.86E + 04], becoming undetectable

at day 10 pi.

CAT09-infected mice developed pneumonia at day 5 post-infection,
fully recovering at day 10 post-infection
Lung tissues from six animals per group were histopathologically examined at day 1, 5 and

10 pi. As expected, control animals showed no histopathological lesions (Fig. 2).

Microscopic lesional scores were assigned for each animal (Fig. 2B). At 1 dpi, three of six

infected mice presented histopathological lesions, two of them exhibited necrotizing
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bronchiolitis and the other one presented bronchointerstitial pneumonia. At day 5 pi,

five of six animals presented severe bronchointerstitial pneumonia consisting of moderate

to high numbers of lymphoplasmacytic cells and neutrophils infiltrated the bronchiole

and surrounding alveoli (Fig. 2). Nevertheless, day 10 pi was characterized by the total

resolution of lung lesions in the CAT09-infected animals.

A (H1N1) pdm09 virus induced changes in gene expression levels
in the lungs
Gene expression profiles at lungs were compared between six infected animals and six

mock mice at days 1, 5 and 10 pi. No differences in GEP were found at day 1 pi (Fig. 3A),

but important differences were observed at day 5 pi, paralleling the development of

histological pneumonia (Fig. 3B; Table S1). In the CAT09-infected mice group, 1,264

genes showed a significant variation of their expression levels by day 5 pi compared to

the control group (418 upregulated and 847 down expressed) (Fig. 3B; Table S1).

Genes showing the most important differences between both groups were interleukin 6

(IL6) (Fold change FC: 86.6), interferon beta 1 (IFNb) (FC: 62.6) and chemokine

(C–X–C motif) ligand 10 (IP10), (FC: 43.3) (Figs. 3E and 3F; Table S1). Expression

levels of the vast majority of genes normalized by day 10, coinciding with virus

clearance and resolution of histological changes (Figs. 3C, 3E and 3F; Table S1). Only

30 out of the 1,264 genes kept on showing altered expression levels by day 10 pi

(Fig. S2; Table S1). Interestingly, expression levels of IL6 persisted remarkably high

by this time point (FC: 10.91) along with those of granzyme K (Gzmk) (FC: 15.8)

(Fig. S2).

Figure 1 Changes in body weight and lung viral load induced by A (H1N1) pdm09 virus. (A) Average

weight curve for C57BL6 mice infected through intranasal instillation with 50 mL CAT09 at104 PFU

A/Catalonia/63/2009 (H1N1pdm) and mock. (B) Viral load in lung homogenates collected at days 1, 5

and 10 pi (n = 6 for all groups). Infection of Madin–Darby Canine Kidney cells was employed to measure

viral titers. The U Mann–Whitney test was used to compare weight loss and viral load between groups at

all sampling time. The significance level (a) was set at 0.05. Asterisks indicate significant differences

between groups (A) or between times points (B). Full-size DOI: 10.7717/peerj.3915/fig-1
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A (H1N1) pdm09 infection turned on the expression of genes
involved in the innate response and in the switch to adaptive
immunity by day 5 pi
Since most differences in gene expression were found by day 5 pi, we focused the ingenuity

pathway analysis (IPA) on that day. The list of 1,264 genes (either up- or downregulated)

was analyzed by IPA in order to identify the canonical pathways that were enriched at day

5 pi. Notably, cellular immune response and cytokine signaling were the two signaling

pathway categories more representative of our analysis (Table S2). The most significant

canonical pathways identified by IPA are described in Table 1 and Fig. 3D.

Figure 2 Histopathology of mice belonging to control and CAT09 groups at day 1, 5 and 10 pi. (A) Hematoxilin/Eosin stain. Arrows indicate

the infiltrate in the viral infected lungs. (B) Microscopic lesional scores: grade 0 (no histopathological lesions observed), grade 1 (mild to moderate

necrotizing bronchiolitis), grade 2 (bronchointerstitial pneumonia characterized by necrotizing bronchiolitis and diffuse alveolar damage

in adjacent alveoli), and grade 3 (necrotizing bronchiolitis and diffuse alveolar damage in the majority of the pulmonary parenchyma) (Vidaña

et al., 2014). Full-size DOI: 10.7717/peerj.3915/fig-2
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Most of these pathways were involved in the innate immune response and

inflammation: [Role of hypercytokinemia/hyperchemokinemia in the pathogenesis of

influenza (Fig. 4), hepatic fibrosis/hepatic stellate cell activation, agranulocyte adhesion

and diapedesis, TREM1 signaling, differential regulation of cytokine production in

Figure 3 Pulmonary gene expression profiles at day 1, 5 and 10 post infection. (A–C) Volcano plots for the representation of the number of genes

with significant variation of their expression levels between CAT09 and mock groups, at different time points (1 (A), 5 (B) and 10 (C) dpi). The level

of significance was fixed in p < 0.05, with Benjamini–Hochberg multiple testing corrections and Fold change >2. The list of genes differentially

expressed between groups is shown in Table S1. (D) Top 20 Canonical signaling pathways altered by A (H1N1) pdm09 virus. The x-axis represents

the percent of genes of each pathway whose expression levels were altered by the virus. Genes involved in the top 20 canonical signaling pathways are

shown in Table S2. (E and F) Gene expression levels of cytokines, chemokines: (E) and IFN-stimulated genes (F) during infection with A (H1N1)

pdm09 influenza virus. The heat map depicts the most representative immune response-related genes (yellow and blue colored genes in Table S3)

that were differentially expressed between infection conditions at different time points. Colors represent the average value of gene expression levels

of infected animals for each time point. Full-size DOI: 10.7717/peerj.3915/fig-3
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Table 1 Top 20 canonical signaling pathways altered by A (H1N1) pdm09 virus.

Ingenuity canonical pathways p Value Ratio Top functions and diseases

Role of hypercytokinemia/hyperchemokinemia in the

pathogenesis of influenza

<0.001 0.244 Cell-to-cell signaling and interaction; cellular movement;

hematological system development and function

Hepatic fibrosis/hepatic stellate cell activation <0.001 0.122 Organismal injury and abnormalities; cardiovascular

system development and function; organismal

development

Communication between innate and adaptive immune

cells

<0.001 0.165 Cell-to-cell signaling and interaction; cellular growth and

proliferation; hematological system development and

function

Wnt/b-catenin signaling <0.001 0.124 Gene expression; cellular development; tissue

development

Agranulocyte adhesion and diapedesis <0.001 0.116 Cell-to-cell signaling and interaction; tissue development;

hematological system development and function

TREM1 signaling <0.001 0.173 Cell-to-cell signaling and interaction; hematological

system development and function; immune cell

trafficking

Differential regulation of cytokine production in

intestinal epithelial cells by IL-17A and IL-17F

<0.001 0.304 Cell-to-cell signaling and interaction; hematological

system development and function; immune cell

trafficking

Granulocyte adhesion and diapedesis <0.001 0.113 Cell-to-cell signaling and interaction; hematological

system development and function; immune cell

trafficking

Altered T cell and B cell signaling in rheumatoid

arthritis

<0.001 0.148 Hematological system development and function; tissue

morphology; cellular development

Differential regulation of cytokine production in

macrophages and T helper cells by IL-17A and IL-17F

<0.001 0.333 Cell-to-cell signaling and interaction; hematological

system development and function; immune cell

trafficking

Role of IL-17F in allergic inflammatory airway diseases <0.001 0.205 Connective tissue disorders; immunological disease;

inflammatory disease

Crosstalk between dendritic cells and natural killer cells <0.001 0.146 Cell-to-cell signaling and interaction; cellular growth and

proliferation; hematological system development and

function

HMGB1 signaling <0.001 0.125 Cell-to-cell signaling and interaction; cellular movement;

hematological system development and function

Graft-versus-host disease signaling <0.001 0.188 Cellular immune response; disease-specific pathways

T helper cell differentiation <0.001 0.155 Cell-mediated immune response; cellular development;

cellular function and maintenance

Atherosclerosis signaling <0.001 0.122 Cell-to-cell signaling and interaction; cellular movement;

hematological system development and function

Role of macrophages, fibroblasts and endothelial cells

in rheumatoid arthritis

<0.001 0.087 Cell death and survival; cellular development; cellular

growth and proliferation

Colorectal cancer metastasis signaling <0.001 0.093 Cell death and survival; cell cycle; cellular development

Role of osteoblasts, osteoclasts and chondrocytes in

rheumatoid arthritis

0.001 0.091 Hematological system development and function; tissue

morphology; cellular development

Role of pattern recognition receptors in recognition of

bacteria and viruses

0.001 0.110 Antimicrobial response; inflammatory response;

infectious disease

Note:
This table summarized the most significant canonical pathways identify by “ingenuity pathway analysis (IPA).” The IPA system implements Fisher’s exact test to
determine whether a canonical pathway is enriched with genes of interest (the level of significance was fixed in p < 0.05). The ratio show the number of genes whose
expression levels were different between CAT09 and mock groups, of the total of genes that have been described previously in each pathway.
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intestinal epithelial cells by IL-17A and IL-17F, granulocyte adhesion and diapedesis,

altered T cell and B cell signaling in rheumatoid arthritis, differential regulation of

cytokine production in macrophages and T helper cells by IL-17A and IL-17F, role of

IL-17F in allergic inflammatory airway diseases, graft-versus-host disease signaling, role of

macrophages, fibroblasts and endothelial cells in rheumatoid arthritis, role of pattern

recognition receptors in recognition of bacteria and viruses and Wnt/b-catenin signaling

pathway]. The vast majority of the genes involved in these pathways coded for cytokines

(Table S2). H1N1 virus also induced alterations in pathways participating in the switch

from innate to adaptive immunity: [Communication between innate and adaptive

Figure 4 Role of Hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza signaling pathway. “Ingenuity pathway analysis”

identified this route as the most altered pathway of the analysis. Red: genes upregulated in the infected group compared with non-infected mice.

Full-size DOI: 10.7717/peerj.3915/fig-4
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immune cells, crosstalk between dendritic cells and natural killer cells, T helper cell

differentiation]. Table S3; Figs. 3E and 3F show the variation of the genes participating

in these pathways along the study course.

DISCUSSION
The overarching aim of this work was to study the role of inflammation at pulmonary

level during a non-fatal infection caused by the 2009 pandemic influenza virus using the

mice model. In this sense, we analyzed the GEP and its relation to histology and viral

dynamics in the lungs of healthy immune-competent mice with pneumonia caused by

human influenza A (H1N1) pdm09 virus.

Our GEP analysis allowed us to identify the presence of marked activation of innate

immunity genes by day 5 post infection, paralleling the existence of extensive pneumonic/

cellular infiltrates in the lung, and active viral replication. The innate immune response is

the first line of defense against invading viruses (Iwasaki & Pillai, 2014). Infection of the

respiratory tract induced thus a typical antiviral response characterized by the activation

of pro-inflammatory cytokines and interferon (IFNs) response genes (ISGs). In our

analysis, the genes showing higher differences for their expression levels between infected

mice and controls were IL6, IFNb, and IP10. These molecules, along with TNF and IL1b

(also over-expressed at day 5), are the major cytokines limiting viral replication during

influenza infection, recruiting immune cells to the sites of infection and producing

inflammation (Nicholls, 2013).

IL6 is a pro-inflammatory cytokine which role in the pathogenesis of the A (H1N1)

pdm09 remains unclear. There is a consensus in the literature about the existence of high

systemic levels of IL6 in severe patients infected by A (H1N1) pdm09 virus (Bermejo-

Martin et al., 2009; To et al., 2010; Zúñiga et al., 2011). This molecule induces pro-

inflammatory responses such as leukocyte recruitment into the lung. Excessive

production of IL6 has been associated with several pathological manifestations (Ho, Luo &

Lai, 2015; Baillet et al., 2015). However, Paquette et al. (2012) demonstrated in IL6

deficient mice infected with A (H1N1) pdm09, that no significant differences in survival,

weight loss, viral load, or pathology were observed between IL6 deficient and wild-type

mice following infection. Based in our results, presence of high expression levels of this

cytokine in the lung at day 10 could indicate that this cytokine plays a role in viral

clearance and tissue repair after pneumonia. Other mouse models support the idea of a

protective role of IL6 in influenza infections (Lauder et al., 2013).

IFNb is a cytokine member of type I interferon family. It induces an antiviral state in

infected and neighboring cells (Ramos & Fernandez-Sesma, 2015). To do so, IFNs induce

the transcription of hundreds of ISGs, which leads to numerous changes in the

transcriptome of the cell. Interestingly, in our analysis, some OAS genes (OAS1a, OAS1f,

OASL1 and OAS2), IFIT genes (IFIT1, IFIT2 and IFIT3), MX1, SOCS1 and CXCL10, all of

them IGS genes, showed high expression levels in the infected mice compared with

controls. The antiviral interferon response increased at day 5 pi, but decreased at day 10 pi,

coinciding with viral clearance. These results are similar to the observations reported in

previous studies using ferrets infected by A (H1N1) pdm09 virus (León et al., 2013;
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Rowe et al., 2010b). This authors showed an early robust innate ISG and chemokine

response that shut down on days 7–10 pi, when viral load was undetectable.

The activation of a group of genes involved in the “Role of hypercytokinemia/

hyperchemokinemia in the pathogenesis of influenza” pathway evidence the existence of

a local “cytokine storm” in the lung, following infection by A (H1N1) pdm09 virus.

Hypercytokinemia/hyperchemokinemia is a common finding that characterized an

influenza infection at transcriptomic level (Morrison et al., 2014; Ma et al., 2011; León

et al., 2013; Rowe et al., 2010b). Several experimental studies suggested that cytokine storm

correlated directly with tissue injury and an unfavorable prognosis of severe influenza

(Liu, Zhou & Yang, 2016). In our study, concomitant with high expression levels of IL6,

IFNb and ISGs, the virus activated Th1 and chemokine responses mediated by IL1a, IL1b,

IL12b, TNF, MCP1 and RANTES. These results are similar to those found at systemic level

in patients with primary viral pneumonia (Bermejo-Martin et al., 2009;Hagau et al., 2010;

To et al., 2010). In our model, the marked inflammatory program observed by day 5 in the

lung got deactivated by day 10, paralleling resolution of histological changes and viral

replication. Moreover, evaluation of gene expression levels along time in the infected

group confirmed the appearance of a strong pro-inflammatory response at day 5 that is

downmodulated at day 10 (Figs. 3E and 3F; Table S3). Similar results were also found in

other experimental studies (Josset et al., 2012b; León et al., 2013; Rowe et al., 2010b), where

the decreased of cytokine expression levels characterized the recovery phase of the disease.

Therefore, a failure to effectively regulation of excessive inflammation may be, in part,

responsible for severe cases of 2009-H1N1.

In turn, the activation of genes involved in “Agranulocyte adhesion and diapedesis,”

“TREM1 signaling,” “Granulocyte adhesion and diapedesis,” “Graft-versus-host disease

signaling” and “Role of pattern recognition receptors in recognition of bacteria and

viruses” might confirm the existence of a transcriptomic program aimed to recruit

lymphocytes, monocytes and neutrophils to the site of infection. Histological studies at

day 5 pi confirmed the presence of extensive pneumonic/cellular infiltrates into the lung.

Although the primary role of the innate immune response is limiting viral replication,

excessive activation of innate immunity could induce tissue damage (Vidaña et al., 2014;

de Jong et al., 2006). This phenomenon seems to occur also in the context of

autoimmunity diseases such as rheumatoid arthritis (Catrina et al., 2016). In fact, “Altered

T cell and B cell signaling in rheumatoid arthritis” and “Role of macrophages, fibroblasts

and endothelial cells in rheumatoid arthritis” are two of the significant pathways

identified by IPA in our analysis. In influenza disease, an exaggerated inflammatory

response has been cited as the cause of pulmonary edema, alveolar hemorrhage and acute

respiratory distress syndrome, conditions associated with necrosis and tissue destruction

(To et al., 2001). Most of the genes participating in these pathways decreased their

expression levels on day 10 pi paralleling resolution of pneumonia, reinforcing the

idea that a correct modulation of inflammatory response is essential for recovery in

this disease.

Ingenuity pathway analysis identified also three pathways related to interleukin 17:

“Differential regulation of cytokine production in intestinal epithelial cells by IL-17A and
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IL-17F,” “Differential regulation of cytokine production in macrophages and T helper cells

by IL-17A and IL-17F” and “Role of IL-17F in allergic inflammatory airway diseases.”

Th-17 immunity participates in clearing pathogens during host defense reactions but is

involved also in tissue inflammation in several autoimmune diseases, allergic diseases,

and asthma (Nalbandian, Crispı́n & Tsokos, 2009; Cheung, Wong & Lam, 2008). In severe

influenza it has been proposed to play a beneficial role (Iwakura et al., 2008;

Bermejo-Martin et al., 2009; Almansa et al., 2011b).

Ingenuity pathway analysis also identified low expression levels of a group of genes

involved in the “Wnt/b-catenin signaling pathway” at 5 pi. It has been previously

described that influenza virus downregulates the expression of proteins of this pathway

like FZD (Shapira et al., 2009). This is consistent with low expression levels of FZD2 and

FZD7 genes found in our analysis. The biological repercussion associated to

downmodulation of this pathway remains to be elucidated.

Finally, the activation of those cytokine genes involved in the [Communication

between innate and adaptive immune cells, crosstalk between dendritic cells and natural

killer cells, T helper cell differentiation] signaling pathways at day 5 pi could be reflecting

the development of the adaptive immune response against the virus. Later activation

of the adaptive immune response was previously supported by increased levels of

granzyme mRNAs in blood cells (Rowe et al., 2010a). In our study, the virus induced the

expression of granzyme A, B and K at day 5 pi. Moreover, expression levels of gramzyme

K persisted remarkably high at day 10 pi, which is consistent with the data published

in ferret infected by A (H1N1) pdm09 virus (Rowe et al., 2010a).

There are several works evaluating host transcriptomic responses to A (H1N1) pdm09

virus using animal models (Powell & Waters, 2017), with different scope, but not of all

them properly integrate the GEP induced by the infection with the pathogenic events to

built a comprehensive model to improve our understanding on the events underlying the

appearance and resolution of pneumonia caused by influenza (see Table S4). The vast

majority of these experimental models have focused on studying the host immune

responses to the virus only on the acute phase of infection (Ma et al., 2011; Camp et al.,

2012; Josset et al., 2012a; Zou et al., 2013; Morrison et al., 2014). The present work studies

the relationship between host transcriptomic responses and the progression and

resolution of infection caused by the A (H1N1) pdm09 influenza virus. The most similar

study to the one we present here is that published by Rowe et al. (2010b). In that paper, the

authors employ ferrets, which is one of the best models to reproduce human pathology in

the context of influenza, but at the same time it is not an easily available model, being

expensive and complicated to manage. Our study employed a mouse model, which is a

more affordable, but nonetheless reproduced the major findings of Rowe et al., who

evidenced the existence of a exuberant cytokine and chemokines response at the lungs

paralleling histological changes, which was downmodulated following resolution of these

changes (Rowe et al., 2010b). Our results support thus the potential use of this mice model

for the study of immunopathology in influenza infection and for those works evaluating

immunomodulators for the treatment of this disease. While other studies uses a mice

adapted influenza strain such as PR8 (Pommerenke et al., 2012) or other mouse passaged

Almansa et al. (2017), PeerJ, DOI 10.7717/peerj.3915 13/20

http://dx.doi.org/10.7717/peerj.3915/supp-6
http://dx.doi.org/10.7717/peerj.3915
https://peerj.com/


2009 strains, (Josset et al., 2012a; Manchanda et al., 2016), our study employs a strain

obtained directly form a human patient. Mouse adaptation results in increased virulence

and lung pathology and also induces a strong host transcriptional response after infection

compared with non-adapted influenza strains (Josset et al., 2012a). In our opinion, our

model could help to better understand the immune-pathogenic events on the basis of

the most common scenario during the pandemics, which was that corresponding to a

non-severe infection.

CONCLUSION
In conclusion, our findings suggest a dual role of pulmonary inflammation during non-

fatal infection caused by the 2009 pandemic influenza virus. On one side, the activation in

the lung of a marked innate immunity transcriptomic program was associated to the

appearance of pneumonia, but on the other hand, activation of this program paralleled

viral clearance (Fig. 5). Understanding the dynamics of the host’s transcriptomic and virus

changes over the course of the infection caused by A (H1N1) pdm09 might help to

identify the immune response profiles associated to effective/balanced responses against

influenza virus.
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Gómez-Sánchez MJ, Gordón M, Gallegos MC, Fernandez V, Aldunate S, León C, Merino P,

Blanco J, Martin-Sanchez F, Rico L, Varillas D, Iglesias V, Marcos MÁ, Gandı́a F, Bobillo F,
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