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Abstract

Hydrogels are an attractive class of biomaterials for minimally invasive local drug delivery given 

their injectability, tunability, high water content, and biocompatibility. Broad applicability though 

is challenged: relatively modest mechanical properties restricts use to soft tissues, while flow 

properties necessary for injectability limit implantation to dried, enclosed tissues to minimize 

material migration during gelation.

To address these dual concerns we designed an injectable nanocomposite hydrogel based on 

dextran aldehyde and poly(amido amine) dendrimer doped with phyllosilicate nanoplatelet fillers. 

Balance of components allows for exfoliation of nanoplatelets, significantly changing macromer 

solution flow, facilitating injection and manipulation in a wide variety of implantation contexts 

while enhancing compressive modulus of hydrogels at low loading. Importantly, rheological and 

mechanical effects were dependent on aspect ratio, with high aspect ratio nanoplatelets having 

much stronger effects on mechanics and low aspect ratio nanoplatelets having stronger effects on 

rheology; enabling nearly independent control of rheological and mechanical properties. 

Nanoplatelets enhanced hydrogel properties at substantially lower filler loading than comparably 

sized nanoparticles.

We present a model to explain the role that aspect ratio plays in control of rheology and mechanics 

in nanoplatelet-containing hydrogels, with lessons for further nanocomposite hydrogel 

development. This low cost biocompatible material may be useful as a drug delivery platform in 

challenging implantation environments.
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Hydrogels are a widely-used class of polymeric biomaterial characterized by high water 

content and excellent biocompatibility. They are attractive for applications in drug delivery 

and tissue engineering given the rapid diffusion of nutrients or drugs through the material, 

facile modification with a variety of chemical and biological functionalities, and easy 

encapsulation of cells and drugs. Hydrogels have been proposed for use as tissue sealants, 

local delivery of drugs and genes, and cell delivery.1–5 Importantly, many hydrogels can be 

implanted in a minimally invasive manner by injection, forming a gel in situ. Injectable 

hydrogels typically are crosslinked using photocrosslinking, spontaneous reactions upon 

mixing of two or more solutions, or self-assembly. Injectability substantially expands their 

potential clinical utility while reducing the morbidity encountered with more invasive 

implantation routes.6–8

However, hydrogels often exhibit poor rheological and mechanical properties that limit their 

usefulness in challenging implantation environments. Injectability necessitates macromer 

solutions with relatively low viscosity to allow for unimpeded flow during injection. These 

flow properties are incompatible with many implantation sites that are in inverted or poorly-

contained geometries; other sites, such as in arthroscopic surgeries, are also submerged or 

washed with saline that rapidly dilutes injected solutions. Furthermore, injectable hydrogels 

typically exhibit poor mechanical properties, with elastic moduli in the tens of kPa or 

lower.9, 10 Attempts to increase crosslinking can partially ameliorate this concern, but at the 

cost of decreased surgical working time and increased brittleness. Thus, a substantial need 

exists for hydrogels that exhibit excellent control over rheological and mechanical properties 

without sacrificing injectability or other desired properties stemming from their high water 

content.

Several approaches have been proposed to address this need, frequently including multiple 

gelation methodologies used in tandem: a weak, reversible, fast-acting crosslinking for 

immediate shape-retention and resistance to flow coupled with a stronger, permanent, 

slower-acting crosslinking for enhanced material stability. Previous studies have exploited 

lower critical solution temperature (LCST) behavior, self-assembly, ionic crosslinking, and 

supramolecular assembly to provide for rapid onset gelation.11–18 While elegant and 

promising, these approaches typically require a limited selection of polymers specifically 

designed to impart these behaviors, which may impede the optimization of hydrogels for 

other functions.

In contrast, others have doped unmodified polymer designs with fillers to create composites 

with modified rheological and mechanical properties. Of particular interest are 

nanocomposites, which incorporate nanoscale fillers into the hydrogel. These nanofillers 

interact with the surrounding polymer phase to alter rheological properties of macromer 

solutions and increase stiffness of crosslinked hydrogels.19–22 However, there is little 

systematic research into the role of particle size, shape, and composition in tuning 

rheological and mechanical properties of injectable hydrogels. Furthermore, while some 
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proposed formulations appropriately tune rheological or mechanical properties, they struggle 

to tune both properties independently; also, other nanocomposites require relatively high 

nanofiller loading to appreciably affect material properties, compromising other desired 

properties.

In addition to particulate and fibrous nanofillers, increasing interest has focused on the use 

of platelet shaped nanofillers for use in nanocomposite materials.19, 23–26 These 

nanoplatelets typically have thicknesses on the order of 1 nm or less, but lateral dimensions 

ranging from 20 nm to as much as 1 μm. They exhibit extraordinarily high surface area per 

unit of mass, allowing for high levels of interaction with adjacent nanoplatelets and with the 

polymer phase. Nanoplatelets, particular phyllosilicates, have a long history in industrial 

applications to strengthen hydrophobic polymers such as nylon 6 and rubber.27 Separately, 

nanoplatelets have been used as rheological modifiers in drilling mud, asphalt, cosmetics, 

and other applications.28–31 In recent years, there has been greater interest in extending 

nanoplatelet composites to hydrophilic polymer systems such as poly(vinyl alcohol) and N-

isopropyl(acrylamide), particularly for uses in membranes and controlled drug delivery 

systems.25, 32–34 Emerging research has proposed the use of nanoplatelet composite 

hydrogels containing phyllosilicates for clinical applications,35–39 though there has to date 

been no systematic exploration of the effect of nanoplatelets on rheological and mechanical 

properties in injectable hydrogel systems.

We designed and evaluated the performance of phyllosilicate nanoplatelets in controlling the 

rheological and mechanical properties of a poly(amido amine) dendrimer-dextran aldehyde 

injectable hydrogel previously shown to exhibit promising biocompatibility and control over 

degradation and drug release.40–42 Crucially, we compared different aspect ratio 

phyllosilicates with differently sized nanoparticulate fillers to probe the effects of size and 

shape on material properties, particularly those important for enhancing the applicability of 

injectable hydrogels in challenging implantation environments. A compound nanocomposite 

composed of a mix of different aspect ratio nanoplatelets allowed for nearly independent 

tuning of rheological and mechanical properties, with substantial improvements over 

similarly sized nanoparticles. Using these data, we arrive at a mechanistic model of how 

different aspect ratio nanoplatelets affect material properties, with important lessons for the 

design of clinically relevant injectable nanocomposite hydrogels.

Results and Discussion

Morphology of nanocomposites

We prepared macromer solutions of dextran aldehyde and poly(amido amine) (PAMAM) 

dendrimer with four different nanoscale fillers. Two fillers were phyllosilicate nanoplatelets 

with differing aspect ratios: a purified, naturally derived montmorillonite (MMT) with 

thickness of 1 nm and lateral dimensions on the order of hundreds of nm, and a pH-

stabilized synthetic hectorite (sodium magnesium fluorosilicate) commercially available as 

Laponite XL21 (LAP), with 1 nm thickness and 20–30 nm lateral dimensions. We compared 

these nanoplatelets to two nanoparticulate fillers: carbon black (CB), with a stated diameter 

of 30 nm, and nanoparticulate hydroxyapatite (nHAp), with a stated diameter of less than 

200 nm.
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Phyllosilicate nanoplatelets affect material properties profoundly when fully exfoliated in 

the polymer phase.27 Typically, composites of nanoplatelets and hydrophilic polymers have 

been achieved by dispersion of nanoplatelets in monomer solutions followed by 

polymerization around the exfoliated platelets.43 In contrast, we chose to exfoliate 

nanoplatelets directly in functionalized macromer solutions in order to achieve a high degree 

of control over macromer structure and functionalization. After dispersal in macromer 

solutions overnight (Figure 1A) exfoliation was evaluated by x-ray diffraction (XRD) and 

cryo-TEM (Figure 2). The two nanoplatelets showed a preference for different polymers: 

low aspect ratio LAP dispersed fully only in dextran aldehyde, while high aspect ratio MMT 

dispersed better in PAMAM dendrimer (Figure 2B). XRD confirmed the TEM imaging, with 

poorly exfoliated nanoplatelets (e.g. LAP in PAMAM dendrimer and MMT in dextran 

aldehyde) showing a broad diffraction peak at 5.5° (dextran/MMT) and 6° (PAMAM/LAP), 

corresponding to d-spacing of 16.1 and 14.7 Å respectively, but little to no discernible peak 

for well exfoliated samples. Conversely, CB and nHAp nanoparticles chosen as nanofiller 

controls appeared to aggregate in the polymer solutions despite extensive attempts at 

dispersion using sonication and agitation.

TEM imaging confirmed literature values for the shape and size of nanofiller samples 

(Figure 2A). LAP nanoplatelets were ~1 nm thick and ~20–30 nm in lateral dimension. 

MMT nanoplatelets were also ~1 nm thick but had lateral dimensions of 100–200 nm. CB 

nanoparticles appeared roughly spherical with diameters 30–50 nm, though some samples 

also showed a second population of much smaller particles (~10 nm). nHAp nanoparticles 

appeared perfectly round with a wide range of diameters reaching as high as 100 nm.

These morphologies allowed for the controlled comparison of different properties across the 

different fillers; CB and nHAp nanoparticles exhibited surface areas on the order of 250 and 

10 m2/g, respectively.44, 45 The surface area of Laponite XL21 is estimated at ~900 m2/g.46 

The surface area of MMT as determined by the methylene blue method is approximately 

1100 m2/g.47 LAP and MMT samples thus exhibited similar surface areas and densities, but 

lateral dimensions of MMT nanoplatelets were approximately 1 order of magnitude larger 

than LAP platelets. Based on a geometric approximation, we estimate that for a given gram 

of LAP, there are approximately 2 orders of magnitude more platelets and 1 order of 

magnitude higher edge-to-face ratios compared to a gram of MMT.

It is important to note that while the chemistry of MMT and LAP differ slightly, the surface 

chemistry (tetrahedral silicon oxide crystals) is identical; the substitutions in the central 

octahedral layer comprise the major chemical distinction between the two nanoplatelets. As 

we expected the exfoliation, rheology, and mechanics emerging from these nanocomposites 

would be largely dictated by surface interactions, we hypothesized that it would provide us 

with the ability to isolate the effects of aspect ratio on nanocomposite properties.

Degree of exfoliation was dependent on the polymer/nanofiller ratio: higher concentrations 

of polymer and lower concentrations of nanoplatelets achieved better exfoliation, as 

demonstrated with PAMAM and MMT (Figure 2C). This suggests an upper limit on 

effective MMT loading in the 6–10% range, consistent with previous work.27 Higher 

concentrations of nanoplatelets manifested as a mix of intercalated and exfoliated platelets. 
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We were unable to determine an upper limit for LAP exfoliation as loading levels in excess 

of 6% were impossible to achieve due to rapid buildup of viscosity making dispersion of 

additional LAP impractical.

Phyllosilicate nanoplatelets will, to a degree, self-exfoliate in water, due to solvation effects 

of water on the cations between nanoplatelets. This effect is limited to relatively low 

concentrations of nanoplatelets and is not stable; at any given time, a dispersion of 

nanoplatelets in water will contain a mix of exfoliated and stacked structures. The addition 

of macromers to the dispersion serve to stabilize exfoliated nanoplatelets in solution, 

preventing re-aggregation through either competitive binding (i.e. polymer-platelet 

interaction inhibiting restacking) or through stabilization of platelet-platelet structures (e.g. 

edge-to-face interactions of platelets that prevent aggregation). This allows for a greater 

degree of exfoliation at higher concentrations of platelets; the polymer:platelet ratio provides 

a limiting factor on how much nanoplatelet can be consistently exfoliated, as evidenced by 

Figure 2C.

These stabilization phenomena are not well characterized but among other things they are 

dependent on polymer charge/polarity, shape, and availability of functional groups for 

interaction with nanoplatelets. Work by Aida and colleagues focused on the use of dendritic 

and linear guanidinium and PEO-based molecular binders in creating supramolecular gels 

with Laponite XLG, a synthetic hectorite. They demonstrate that both linear and dendritic 

molecules are capable of interacting with phyllosilicate nanoplatelets but that important 

determinants of the resultant interaction were driven by the number of functional groups (in 

this case, cationic guanidinium) available for binding, and the size and flexibility of the PEO 

linker.48 In this context, we hypothesized that stronger (ionic) polymer-platelet bonding 

might benefit MMT stabilization in an exfoliated state given its larger size and concomitant 

larger thermodynamic preference for a stacked morphology; the positively charged amine 

groups on the dendrimer surface afforded better stabilization in an exfoliated state. The 

physical size of each dendrimer (~5 nm) may also have helped to physically separate 

nanoplatelets that were in the process of aggregation.

Strength of bonding between polymers and platelets is not the only factor, however; 

morphology and the availability of polymer for binding mattered as well. With the much 

larger number (100×) of LAP platelets in a given gram of nanoplatelets compared to MMT, 

more polymer-platelet bonds are needed to stabilize most of the nanoplatelets in an 

exfoliated state. The large, inflexible, and roughly spherical structure of dendrimers ‘wastes’ 

a lot of polymeric weight inside the dendrimer that is not available for stabilizing 

nanoplatelets; furthermore, the shape places some steric limitations on the number of 

nanoplatelets that can conceivably bind to a single dendrimer, limiting their contribution to a 

polymer-platelet network structure that can further stabilize nanoplatelets in an exfoliated 

state. Nevertheless, the role of steric effects with respect to the shape and size of additives to 

nanoplatelet dispersions is quite complex and still unclear.49 We further hypothesized that 

for smaller and more numerous nanoplatelets, a flexible, more linear macromer such as 

dextran aldehyde would allow for comprehensive polymer-platelet interactions that could 

better stabilize LAP in an exfoliated state.
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Bingham fluid properties of nanofiller dispersions

Macroscopically, the macromer-phyllosilicate nanoplatelets solutions appeared to exhibit 

substantially different flow properties than macromer solutions alone, with dramatic changes 

in viscosity and apparent Bingham fluid behavior. Previously published work suggests a 

number of potential mechanisms for rheological changes evident in nanoplatelet dispersions. 

LAP and other phyllosilicates have been hypothesized to form a ‘house of cards’ structure of 

interactions between positively charged edges with negatively charged faces.50, 51 

Alternatively, some have argued that nanoplatelets forms a ‘Wigner glass’ in solution, where 

the highly charged faces repel each other, forming a temporary gel. These mechanisms are 

substantially affected by nanoplatelet loading, ionic strength, and pH.52 Many of the 

mechanistic studies carried out to support either model were at substantially lower 

concentrations and did not include the presence of macromer molecules to complicate 

matters; however, the higher concentrations may favor an attractive ‘house of cards’ 

morphology over a repulsive Wigner glass.53–55 More theoretically, sol-gel transitions in 

clay dispersions and the resultant rheological properties are tied to the concentration at 

which the effective hydrodynamic volume of the nanoplatelets begins to overlap; the role of 

macromers or other additives in modifying this behavior adds substantial complexity. Since 

the ratio of the hydrodynamic volume to actual volume is highest with nanoplatelets, this 

mechanism does not extend as well to nanoparticulate fillers.49, 56, 57

Irrespective of the precise mechanism, these noncovalent filler-filler interactions as well as 

potential filler-polymer interactions allow nanoplatelet dispersions to behave like elastic 

solids below a yield stress; once these interactions are disrupted above the yield stress, the 

fluids can flow freely. In addition, continual reforming of filler-filler-polymer interactions 

can impart substantially higher viscosities at low shear rates which decrease at high shear 

rates due to the rate of noncovalent bond formation; this imparts shear thinning properties. 

Alternatively, higher shear rates may induce alignment of nanoplatelets in the direction of 

flow, reducing viscosity.58 We evaluated the yield stress startup behavior and the shear 

thinning behavior of nanofiller dispersions in different macromer solutions.

Nanofillers dispersed in water showed rapid increases in yield stress at low loading for LAP, 

reaching as high as ~300 Pa at 6% loading. MMT dispersions in water exhibited similar 

increases at higher loading levels. CB loading resulted in a substantially smaller yield stress, 

while nHAp appeared to have no meaningful effect up to 10% loading (Figure 3A).

When loaded into macromer solutions, yield stress behavior remained broadly similar, 

though with some modifications depending on the macromer. LAP loading in dextran 

increased yield stress over dispersion in water at 2% and 4% loading, but decreased yield 

stress at 6% loading, possibly due to incomplete dispersion at high filler concentrations. 

Dispersion in dendrimer resulted in uniformly lower yield stress, likely due to poor 

exfoliation (Figure 3B). MMT loading in polymers decreased yield stress compared to water 

at 10%. Dextran-MMT solutions exhibited no increase in yield stress when compared with 

dispersions in water (Figure 3C).

Yield stress of CB and nHAp solutions were lower than nanoplatelet dispersions, though 

there were some minor variations with macromer solution. CB yield stress in macromer 
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solutions was nearly zero, eliminating the modest yield stress (up to ~30 Pa) observed in 

water solutions. nHAp solutions resulted in marginally higher yield stresses when dispersed 

in water or dendrimer compared to dextran, but all nHAp solutions were uniformly low yield 

stress (~1 Pa or lower) (Figure 3D–E).

Overall, these data suggest that nanoplatelets caused profound changes in yield stress 

behavior of macromer solutions, with the strongest effect seen with LAP in dextran solutions 

at low loading. MMT loading also increase yield stress, but only at higher volume fraction. 

When evaluated qualitatively, addition of small amounts of LAP to macromers caused 

dramatic improvements in handling, allowing for layering and sculpting the material prior to 

polymerization (Figure 3G–H).

Shear thinning properties of nanofiller dispersions

Nanoplatelet dispersions in water exhibited strong shear thinning properties, with viscosities 

decreasing by ~3 orders of magnitude across the range of shear rates tested. Viscosity of 

LAP dispersions was substantially higher than MMT dispersions, with 6% LAP having a 

peak viscosity of 1788 Pa-s while 6% MMT only achieved 63 Pa-s (Figure 4A–B). 

Dispersions of hydroxyapatite and carbon black both exhibited shear thinning behavior, 

though nHAp viscosities were uniformly low (< 10 Pa-s) and of little value in changing 

handling properties (Supplemental Figure 1).

When dispersed in macromer solutions, dispersions of MMT exhibited very similar shear 

thinning properties compared to dispersions in water. Both dextran and dendrimer solutions 

appeared to slightly reduce the magnitude of the maximum viscosity, but the shear thinning 

behavior was largely unchanged. Interestingly, dispersion of LAP in macromer dispersions 

caused more substantial changes to shear thinning behavior. LAP-dextran dispersions 

exhibited uniformly higher viscosities than water dispersions, suggesting a synergistic effect, 

with platelet-polymer interactions adding to already existing platelet-platelet interactions. 

Conversely, LAP-dendrimer dispersions exhibited substantially decreased shear thinning 

behavior and viscosities, possibly due to the aforementioned poor LAP exfoliation in 

dendrimer solutions (Figure 4C–D).

The observed differences between LAP and MMT are instructive; though they have similar 

structures, LAP has a significantly smaller aspect ratio (~20:1) compared to MMT (~100–

200:1). The higher number of platelets (100×) and increased edge-to-face ratio (10×) allows 

for more platelet-platelet-polymer interactions in a given concentration and volume, 

increasing yield stress and viscosity.59 This may be partially due to changes in 

‘hydrodynamic trapping’ behavior that scales with particle size, though the reality is likely 

more complex.60 Furthermore, the observed synergy with dextran aldehyde suggests that 

dextran-LAP interactions play a key role in enhancing rheological properties. The 

dendrimer-LAP data help confirm this hypothesis; the demonstrated poor exfoliation of LAP 

in dendrimer may be from poor dendrimer-LAP interactions, which substantially limit the 

formation of these noncovalent associations during flow. These data demonstrate the 

importance of matching polymer choice with a given nanofiller to achieve optimal 

dispersion and efficacy.
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Nanoparticles such as carbon black and hydroxyapatite, conversely, have substantially lower 

surface area available for interactions given the same weight of filler; most of the filler 

volume is ‘wasted’ inside the center of each particle. Although smaller diameter 

nanoparticles will have better surface area to volume ratios, each particle will only have 

limited scope for interaction with other particles due to steric hindrance; generation 5 

PAMAM dendrimers, for example, are ~5 nm in diameter, meaning that the available sites 

for interaction on a single ~30 nm nanoparticle are limited. Nanoplatelets, in contrast, have 

substantially more availability given their higher surface area and shape, in agreement with 

previous simulations and highly controlled experiments.61 Furthermore, the homogeneous 

surface chemistries of most nanoparticles do not allow for dissimilar edge-face interactions 

as proposed for phyllosilicate nanoplatelets.

Both high yield stresses and shear thinning properties are desirable for injectable materials 

in wet or inverted environments. The relatively high shear rates and shear stresses in a 

syringe will readily allow for injection into the implantation site, but the low shear stresses 

and shear rates seen in the site will allow the material to stay in place during crosslinking, 

rather than flowing away. The rheological properties of LAP-dextran dispersions appear 

well-suited to achieving these properties at very low loading of nanofiller (<= 6%).

Rheological properties of mixtures

Rheological properties of complete mixtures of dextran-aldehyde/LAP and PAMAM 

dendrimer/MMT could not be determined quantitatively due to the short gelation time (~1 

minute) precluding a thorough analysis of transient handling properties. Qualitatively, we 

observed that small changes in LAP content caused substantial changes in handling 

performance but similar changes in MMT content had a more subdued effect; for a given 

MMT content chosen (in order to provide mechanical reinforcement), a wide range of 

rheological properties could be achieved by varying LAP content. However, in order to 

provide quantification of these observations, we prepared mixtures of unoxidized 

dextran/LAP and PAMAM dendrimer/MMT; the dextran, lacking in aldehyde groups, did 

not react with the PAMAM dendrimer, leaving a stable solution for analysis. While 

unoxidized dextran is not expected to have identical nanoplatelet interactions and exfoliation 

behavior as dextran aldehyde, this study was performed merely to understand whether the 

addition of MMT to the system substantially disrupted the rheological properties observed 

with dextran/LAP alone.

A fixed concentration of 6% LAP in 20% dextran was mixed 1:1 with 24.6% dendrimer 

containing varying MMT content at pH ~9.2 (upon mixing, the final concentrations were 

halved and are represented such in the figure) (Figure 5A,C). A fixed concentration of 10% 

MMT in 24.6% dendrimer was mixed 1:1 with 20% dextran containing varying LAP content 

(Figure 5B,D). As expected, there was a dose-dependent increase in yield shear stress and 

viscosity with increasing MMT content, suggesting that MMT does not interfere 

substantially with the LAP-mediated rheological properties, instead reinforcing them. This 

matched our qualitative observations, where small changes in LAP content could cause large 

effects on handling properties, allowing for fine tuning. Previous work from the study of 

mixtures of LAP and MMT dispersions in water (without the addition of macromers) 
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indicates that LAP interactions dominate over MMT, and may enhance MMT stability in 

forming cooperative gel networks.62–64

Although the single-nanoplatelet solutions were tested to relatively high loading 

concentrations (6% and 10% for LAP and MMT, respectively), the final concentrations upon 

mixing the two macromer solutions were half of the original concentration. This provides an 

upper limit for nanoplatelet loading based on the maximal loading possible for well-

exfoliated nanoplatelets in individual macromer solutions. While this may in theory be a 

limitation on the rheological properties attainable, in practice we found that the handling 

properties of final solutions containing 2–3% LAP were more than sufficient for application 

in submerged, flowing, and inverted implantation environments. If needed, one could further 

optimize LAP dispersion in both macromer solutions to provide maximal rheological 

performance, though we did not find this to be necessary.

Mechanical properties of nanocomposite adhesive hydrogels

Given the exfoliation preference of nanoplatelets, dextran aldehyde was paired with LAP 

while PAMAM dendrimer was paired with MMT. Solutions of macromer and dispersed 

nanoplatelets were mixed using a static mixer and allowed to polymerize (Figure 1B). 

Gelation time was highly dependent on the pH of the dendrimer-MMT dispersion due to the 

protonation state of primary amines; gelation time could be tuned from seconds to minutes 

as necessary (Supplemental Figure 2) allowing for a range of handling times as dictated by 

clinical necessity. As this can also affect the final degree of crosslinking, an intermediate pH 

and gelation time was chosen for all further studies.

We initially attempted to study nanofiller effects on mechanical properties individually; 

however, the substantial viscosity differences between macromer solutions with and without 

nanofiller precluded complete mixing. Complete mixing of macromer solutions was crucial 

for achieving good crosslinking, and poor crosslinking arising from rheological mismatches 

overwhelmed any differences that might be discerned from changes in nanofiller content. As 

such we evaluated the combination of LAP-dextran with dendrimer doped with the other 

three nanofillers to determine if the improved rheological properties from LAP-dextran 

dispersions could be combined with the improved compressive stiffness of other 

nanocomposites. Compressive modulus was evaluated at two different overall polymer 

weights while keeping the dendrimer:dextran ratio constant (Figure 6A). High polymer 

content hydrogels showed an increase in modulus with fixed LAP and increasing MMT 

concentration. Lower polymer content gels, however, exhibited no significant change in 

modulus with increasing MMT loading. We hypothesize that the poor exfoliation of MMT in 

lower polymer content (See Figure 2) was responsible for the apparent ineffectiveness of 

MMT loading, underlining the need for well-exfoliated nanoplatelets for maximal material 

effects. Furthermore, we evaluated compressive modulus of LAP-MMT nanocomposites 

across a range of LAP and MMT concentrations (Figure 6B). Across the range of 

conditions, increasing LAP content in hydrogels had little effect on compressive modulus 

despite excellent exfoliation and polymer-filler interactions.

To compare the effects of nanofiller shape on compressive reinforcement, we studied the 

effects of increasing CB and nHAp content in nanocomposites containing fixed LAP 
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concentration (Figure 6C). Increased nHAp content had no significant effect on hydrogel 

modulus up to 5% loading, whereas increased CB content modestly increased modulus (5% 

CB increased modulus ~32% over hydrogels with no CB). In comparison, MMT at the same 

concentration reinforced compressive modulus by ~72%.

We speculate that the difference between MMT and LAP effects on compressive stiffness 

can be attributed to the varying aspect ratio between the two nanofillers. MMT, being a 

much larger platelet than LAP, allows for many more potential filler-polymer associations 

per platelet. This increased number of noncovalent ‘crosslinks’ at each node allows for the 

stiff platelets to strengthen the hydrogel more effectively than the more diffuse crosslinking 

network of LAP.

MMT, however, was able to achieve substantial increases in compressive modulus at much 

lower loading ratios than seen in nanoparticulate fillers. We speculate that this is from the 

increased surface area-to-volume ratio of nanoplatelets as well as enhanced polymer-filler 

interactions. Clearly, dispersion of nanofillers is of critical importance to optimal stiffening 

of materials; poorly exfoliated tactiods of MMT, which more closely mimic nanoparticles in 

shape and size, had little to no effect on compressive modulus at low loadings. Careful 

choice of formulation conditions to optimize nanofiller dispersion and filler-polymer 

interactions is thus of great importance.

These data suggest that well-exfoliated MMT has a strong influence on compressive 

modulus of hydrogel nanocomposites at low loading ratios, while LAP has a much stronger 

effect on rheological properties. This allows for nearly independent tuning of mechanical 

and rheological properties of nanocomposite hydrogels; injection and handling properties 

can be tweaked to meet clinical needs without substantially harming the mechanical 

performance of the final material. Importantly, the combination of MMT and LAP enables 

lower overall filler loading while achieving the desired rheological and mechanical 

properties; low loading ratios decrease the impact of fillers on other hydrogel properties, 

including high water content and biocompatibility.

Cytocompatiblity of nanoplatelet nanocomposite materials

To validate the potential of nanoplatelet nanocomposite hydrogels in a clinical context, 

hydrogels were tested for in vitro cytocompatibility. Mouse mesenchymal cells were 

cultured in direct contact with dextran/dendrimer hydrogels with and without nanoplatelets 

and assessed for cell death (by live/dead staining) and proliferation (by PrestoBlue assay) 

over 5 days (Figure 7). All conditions showed minimal cell death and excellent metabolic 

activity when compared to untreated controls.

A wide variety of other studies have demonstrated cytocompatibility of phyllosilicate-

containing materials with different cell types, though some studies performed with 

nanoplatelet dispersions in the absence of any polymeric matrix have shown some dose-

dependent toxicity that may be dependent on aspect ratio.35, 37, 65–68 In vivo 
biocompatibility data is still scant, though some early studies have shown encouraging 

results.34 These data suggest that phyllosilicate nanoplatelet nanocomposite hydrogels may 
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be biocompatible, though a thorough investigation of in vivo behavior is necessary to 

determine the fate of implanted phyllosilicates.

Evaluation of handling properties

To demonstrate that the enhanced properties of these materials could be used in challenging 

implantation environments, we injected the material into submerged osteochondral defects in 

a mock arthroscopic setting. Macromer solutions alone were rapidly dispersed in the 

surrounding fluid following injection. Nanoplatelet composite materials, however, were 

easily retained in the defect space, and could be shaped to fit the contours of the defect 

(Video, supplemental materials). The presence of fluid flow did not cause the material to 

deform or disperse in solution due to the high yield stress and viscosities of the material at 

low shear rates, yet the material could be easily injected and shaped. These data suggest this 

nanocomposite hydrogel may be an ideal injectable vehicle for challenging implantation 

environments.

In addition to the demonstrated benefits of mixed aspect ratio nanoplatelet hydrogels, we 

expect that nanoplatelets would allow for greater tunability over other aspects of a drug 

delivery system. Importantly, the high surface area of nanoplatelets compared to other 

nanofillers changes the ways in which hydrogels degrade and elute drugs. High aspect ratio 

nanoplatelets such as MMT may act as diffusion barriers to drugs and degradation 

byproducts, allowing for selective tuning of degradation and drug release. Furthermore, the 

nanoplatelet-polymer interactions may directly impact material degradation through creation 

of a secondary noncovalent network that enhances hydrogel stability. The large surface area 

available also provides potential sites for immobilization of drugs or other biologically 

important moieties. These proposed advantages of nanoplatelet nanocomposites must be 

evaluated in future studies.

We demonsrate a mix of different aspect ratio nanoplatelets to achieve nearly independent 

enhancement of rheological and mechanical properties in a hydrogel. MMT and LAP have 

been compared before; for example, rheological and aging characteristics of their 

dispersions in water were described in some detail. These studies, however, involved highly 

controlled conditions to elicit theoretical understandings of dispersion dynamics. Fully 

realized materials have chosen a single nanofiller to enhance a desired property without 

attempting to understand the underlying effects of particle size and shape. Here, we 

demonstrate that fine levels of control can be achieved using a mix of different nanoplatelets 

at low overall loading (typically 8% or less).

More importantly, we introduce a conceptual framework to use in the design and evaluation 

of nanoplatelet nanocomposites. Choice of polymer is critical: achieving homogeneous 

dispersions and strong polymer-platelet interactions dramatically improves exfoliation, 

increasing the contribution of nanoplatelets to modifying material properties. Controlling 

these interactions through surface modification or changes to solvent properties can have 

profound effects on nanocomposite functionality. Furthermore, shape and surface area of 

nanoplatelets matter: conventional nanoparticles were not able to achieve the same control 

over material properties at the very low concentrations used. When using nanoplatelets, 

rheological modifications appear to be driven primarily by platelet-platelet interactions, and 
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as such are more effective with a finely grained network of small aspect ratio nanoplatelets 

such as LAP. Conversely, mechanical reinforcement critically relies upon the polymer-

platelet interface, with considerations of sterics and the size of crosslinking nodes 

gravitating towards larger aspect ratio nanoplatelets for maximal effect. This framework will 

help inform the design of future nanocomposites, whether or not they are based on 

phyllosilicate nanoplatelets.

Conclusions

Nanoplatelet nanocomposites can contribute greatly to the design of systems with controlled 

mechanics and injectability and find many potential clinical uses. While control 

nanoparticulate fillers may have only modest effects on rheological and mechanical tuning 

of hydrogels, phyllosilicate nanoplatelets impart substantial changes to material properties at 

very low overall loading (<10%). Control over aspect ratio of nanoplatelets provides nearly 

independent tuning of rheology and mechanics, with lower aspect ratio LAP finely tuning 

rheological properties and high aspect ratio MMT reinforcing mechanical modulus. This 

mix of different aspect ratio nanoplatelets produces a broadly tunable nanocomposite 

hydrogel with the ability to be implanted in wet, flowing, and inverted environments. This 

system can be readily tuned across a large parameter space and may provide a useful 

platform material for drug delivery applications in a range of implantation environments and 

applications.

Materials and Methods

Preparation of macromer solutions

Dextran aldehyde with ~50% aldehyde substitution was prepared by periodate oxidation of 

dextran (Pharmacosmos, 10 kD) as previously described.40 Oxidation degree was confirmed 

by a hydroxylamine hydrochloride titration assay.69 Lyophilized dextran-aldehyde was 

reconstituted in 1 mL of water to the desired concentration (typically 200 mg/mL). 

Similarly, generation 5 poly(amidoamine) dendrimers with 25% amine surface groups 

(Dendritech) were diluted to the desired concentration (typically 246 mg/mL) and 

concentrated hydrochloric acid was used to bring pH to the desired level (typically 9.2). 

When needed, nanofillers were added to each 1 mL macromer solution, immediately 

vortexed and placed on a cell disruptor (Disruptor Genie, Scientific Industries) at 4 °C 

overnight (Figure 1A). Nanofillers tested included purified montmorillonite (MMT; 

Gelwhite H, a kind gift from Byk additives), a pH stabilized synthetic hectorite (LAP; 

Laponite XL21, Byk), hydroxyapatite nanoparticles (nHAp, <200 nm, Sigma), and carbon 

black nanoparticles (CB, ~30 nm, Graphene Supermarket). All nanofillers were used as 

received. Nanofiller content added was approximated as a percentage; i.e. if 60 mg of 

nanofiller was added to 1 mL of macromer solution, this was approximated as a ‘6%’ 

solution.

Characterization of nanofiller dispersion

Nanofiller dispersions were examined for degree of exfoliation and morphology by both 

cryo-transmission electron microscopy (cryo-TEM) and X-ray diffraction (XRD). For cryo-
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TEM, dispersions were diluted 1:100 in ultrapure water (to reduce background), after which 

3 μL of sample was dropped on a lacey copper grid coated with a continuous carbon film 

and blotted to remove excess sample without damaging the carbon layer by Gatan Cryo 

Plunge III. The grid was mounted on a Gatan 626 single tilt cryo-holder equipped in the 

TEM column. The specimen and holder tip were cooled down by liquid-nitrogen, which 

maintains temperature during transfer into the microscope and subsequent imaging. Imaging 

on a JEOL 2100 FEG microscope was done using minimum dose method that was essential 

to avoid sample damage under the electron beam. The microscope was operated at 200 kV 

and with a magnification in the ranges of 10,000~60,000 for assessing particle size and 

distribution. All images were recorded on a Gatan 2k×2k UltraScan CCD camera.

For X-ray diffraction, undiluted macromer solutions were drop-cast onto glass slides and 

allowed to dry. They were then loaded into a Panalytical X’Pert Pro X-ray Diffractometer 

using 0.04 radian Soller slits, a 10 mm fixed mask, a programmable divergence slit, a 

programmable anti-scatter slit, and a 0.02 mm nickel filter. XRD spectra were acquired 

using an ‘X’Celerator’ detector with a 2.122° active length; data were analyzed using X’Pert 

Highscore Plus software (Panalytical).

Rheology

Undiluted macromer solutions were tested for rheological behavior using a TA Instruments 

AR2000 rheometer. Solutions were pipetted onto a 25 mm parallel plate fixture and 

maintained at 25 °C using a Peltier heater. The gap distance was set to 1 mm and the 

macromer solution was allowed to equilibrate for 5 minutes. Subsequently, two tests were 

carried out: a yield stress test to examine startup behavior and a shear thinning test. Briefly, 

the strain rate was slowly increased until the shear stress hit a peak and started to decrease; 

this initial peak in shear stress was treated as the yield stress (Figure 3F). Shear thinning 

tests imparted a constant shear rate to the solutions ranging from 0.1 to 100 s−1 and recorded 

the equilibrium viscosity. Data were analyzed in TA Data Analysis software.

Polymerization of hydrogels and mechanical analysis

Following overnight dispersion, macromer solutions were loaded into two barreled syringes 

(Medmix) and mixed using a static mixer attachment with up to 16 mixing stages (Figure 

1B). Materials were extruded into cylindrical rubber molds and allowed to crosslink for up 

to 20 minutes prior to analysis.

Gelation time was determined for mixtures of macromer solutions containing 20% dextran 

aldehyde with a dispersion of 6% LAP and 24.6% PAMAM dendrimer with a dispersion of 

10% MMT. pH of the dendrimer/MMT solution was varied from 8 to 10.25 and the 

macromer solutions were mixed in a static mixer and placed in a glass tube with a magnetic 

stirrer. Gelation was determined by the cessation of free mixing by the stirrer. Based on 

these results, an intermediate gelation time was chosen, at a pH of 9.2, for all further studies.

Mechanical properties of hydrogels were tested using unconfined compression on a low-load 

submersible mechanical tester (Biss). Briefly, material dimensions were measured with 

calipers and hydrogels were then placed between two parallel platens submerged in 

phosphate buffered saline (PBS) at room temperature and preloaded with 50 mN of force to 
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ensure adequate contact. The hydrogel was then compressed at 0.01 mm/s to at least 50% 

strain (past the compressive failure point of the material). Force and displacement data were 

sampled at 10 Hz and analyzed in Excel and MATLAB. Sample geometry was used to 

calculate stress and strain; due to violations of the infinitesimal strain condition at such high 

strain testing, an approximation of the true stress was substituted in place of the engineering 

stress, following the method previously published for cartilage tissue, where cross-sectional 

area was scaled by the stretch ratio.70 Stress and strain were plotted, and modulus was 

calculated from the tangent at 30% strain to avoid variations in startup behavior (due to 

imperfectly flat samples) as well as behavior near failure while evaluating modulus at as 

high a strain as possible to mimic the high strain/stress environments seen in cartilage 

tissues.70 Choosing a high strain value that was always below failure allowed for consistent 

comparisons across samples.

Mechanical properties were first evaluated as a function of total macromer content, keeping 

the ratio between dextran and dendrimer constant. 20% dextran with 24.6% dendrimer was 

compared to 15% dextran with 18.5% dendrimer. In all conditions, dextran solutions 

contained 6% LAP; MMT content in dendrimer was varied from 0 to 10%. Care was taken 

to ensure that all dendrimer-MMT dispersions were at pH 9.2 by titration with concentrated 

hydrochloric acid.

Following this, the effects of MMT and LAP content were compared. 20% dextran and 

24.6% dendrimer solutions were mixed with LAP and MMT from 0–6% and 0–10%, 

respectively. Finally, these were compared to CB and nHAp: a 6% LAP dispersion in 20% 

dextran was mixed with 24.6% dendrimer containing varying amounts of CB or nHAp, from 

0–10%.

Cytocompatibility studies

Cytocompatibility of nanoplatelet nanocomposite materials were evaluated to determine 

their potential for use in the clinic. Passage 4–6 C3H10T1/2 mouse mesenchymal cells 

(ATCC) were plated in 6 well plates at 10,000 cells/cm2 and allowed to adhere overnight. 

100 μL hydrogels (4% LAP dispersion in 20% dextran mixed 1:1 with a 6% MMT 

dispersion in 24.6% dendrimer) were prepared in sterile molds and placed in direct contact 

with the cell layer. These were compared to control hydrogels without any nanofillers. The 

cells were cultured in 4 mL of growth medium (DMEM (Gibco) with 10% Fetal Bovine 

Serum (Hyclone), 100 U/mL penicillin (Gibco), and 100 μg/mL streptomycin (Gibco)). 

Medium was changed thrice weekly.

Following 1 and 5 days of culture in the presence of the hydrogel, the medium was aspirated 

and cells were stained for 30 min in 500 μL Live/Dead solution (ThermoFisher) at room 

temperature. The cells were imaged using a Nikon Eclipse Ti fluorescence microscope in the 

FITC channel (green, Calcein AM for viable cells) and the TRITC channel (red, ethidium 

homodimer-1 for dead or dying cells).

Proliferation of cells was measured using a Transwell assay. Cells were plated in 6 well 

plates at 2,000 cells/cm2, allowed to adhere overnight, and 100 μL hydrogels with and 

without nanoplatelets were placed above the cells in Transwell inserts; controls also 
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included cells cultured without any material. Following culture for 4 hours, 1, 3, and 5 days, 

inserts and medium were removed. 900 μL of fresh medium was added with 100 μL 

PrestoBlue reagent (ThermoFisher), and cells were incubated for 30 minutes. Absorbance at 

570 nm was read with a Varioskan Flash plate reader (Thermo Scientific) and compared 

against a standard curve of known plated cell numbers. Following measurement, media and 

inserts were replaced and cells were incubated until the next time point.

Ex vivo handling evaluation in porcine knees

Handling properties for injection and manipulation of hydrogels into tissue defects in wet 

environments was assessed qualitatively using an ex vivo osteochondral defect model. 

Porcine knees were obtained from a local butcher and were dissected to expose the cartilage 

of the distal femur. Cartilage defects were simulated using a 6 mm biopsy punch (Miltex), 

and knees were submerged in water. Under both static and flowing conditions, hydrogels 

with and without nanoplatelet fillers (20% dextran/6% LAP mixed 1:1 with 24.6% 

dendrimer/10% MMT; dye was added to either macromer solution for visualization) were 

injected into porcine knee defects, shaped to match the contours of the defect, and allowed 

to set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Preparation of nanoplatelet nanocomposite hydrogels. (A) Tactoids of stacked nanoplatelets 

are added directly to aqueous macromer solutions and dispersed overnight. Each nanofiller-

containing macromer solution is then loaded into a two-barrelled syringe and injected into a 

mold for polymerization, yielding a hydrogel within minutes (cm scale ruler). (B) Hydrogels 

are mixed from dextran-aldehyde and PAMAM dendrimer-amine solutions, each potentially 

containing a nanofiller. The aldehydes and amines spontaneously react upon mixing to form 

a Schiff base.
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Figure 2. 
Morphology and dispersion of nanofillers. (A) Cryo-TEM of dispersions of each of four 

nanofillers in either 20% dextran-aldehyde or 24.6% PAMAM dendrimer macromer 

solutions. MMT = montmorillonite, 6%, LAP = Laponite, 6%, CB = carbon black, 5%, 

nHAp = nanoscale hydroxyapatite, 5%. Every dispersion was diluted 1:100 immediately 

prior to freezing to reduce background. Scale bars = 100 nm. (B) Representative X-ray 

diffraction spectra of MMT and LAP nanoplatelets in 20% dextran-aldehyde or 24.6% 

dendrimer; the presence of a peak indicates nanoplatelet stacking and a lack of complete 

exfoliation. (C) Varying polymer-nanoplatelet ratios results in varying exfoliation; at high 

PAMAM concentration and low MMT concentration (6% MMT, 24.6% PAMAM) 

exfoliation appears complete, but as polymer concentration decreases or MMT concentration 

increases, increasing XRD signal is indicative of intercalated and tactoid structures. Vertical 

lines at each peak are labeled with the corresponding d-spacing, giving approximate inter-

platelet distances in Angstrom.
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Figure 3. 
Yield shear stress of nanofiller dispersions in water (A) and macromer solutions (B–E); 

Dex20 denotes a 20% solution of dextran aldehyde, while Den24.6 denotes a 24.6% solution 

of PAMAM dendrimer. Note the substantially different scaling on the y-axis between each 

graph. LAP dispersions rapidly developed high yield stresses at very low concentrations (up 

to ~300 Pa at 6% loading); MMT dispersions also developed high yield stresses but only at 

higher loading (up to ~100 Pa at 10% loading). Nanoparticulate comparators CB and nHAp 

showed much smaller increases in yield shear stress (up to 30 and 1 Pa at 10% and 20% 

loading, respectively). (F) A sample plot taken of 2% LAP in 20% dextran showing an 
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initial peak in shear stress at very low shear rates followed by a drop to an equilibrium value. 

The initial peak was used for calculating yield shear stresses. Qualitatively, when handling 

20% dextran with and without 2% LAP mixed with 24.6% dendrimer with 10% MMT, the 

different in handling properties was profound. In the absence of LAP (G), the mixture 

flowed readily into a small ‘puddle’; with the addition of low concentration LAP (H), the 

solution held its shape upon extrusion and could be layered and manipulated.
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Figure 4. 
Shear thinning properties of nanoplatelet dispersions. Both MMT (A) and LAP (B) were 

dispersed in water and tested for equilibrium viscosity over shear rates spanning three orders 

of magnitudes. When dispersed in macromer solutions (Dex20 = 20% dextran, Den24.6 = 

24.6% dendrimer), MMT did not appreciably change shear thinning behavior (C), but LAP 

showed substantial changes in viscosity and degree of shear thinning depending on the 

choice of macromer (D).
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Figure 5. Rheological characterizations of polymer mixtures
Rheological characterization of the combination of dextran-LAP and dendrimer-MMT were 

approximated using unoxidized dextran in order to prevent crosslinking during rheological 

study. (A, C) A fixed concentration of 6% LAP in 20% dextran was mixed 1:1 with 24.6% 

dendrimer containing varying MMT content at pH ~9.2 (upon mixing, the final 

concentrations were halved and are represented such in the legends). (B, D) A fixed 

concentration of 10% MMT in dendrimer was mixed 1:1 with 20% dextran containing 

varying LAP content. The addition of increasing MMT content does not disrupt LAP-LAP 

and LAP-dextran interactions, but rather further enhances rheological behavior.
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Figure 6. 
Mechanical reinforcement of nanocomposite hydrogels. (A) The effects of overall macromer 

content on mechanics as a function of MMT concentration. Two macromer contents with 

identical dextran:dendrimer ratios (20% dextran/24.6% dendrimer and 15% dextran/18.5% 

dendrimer) were tested with 3% LAP and a range of MMT loading. Nanofiller content is 

reported as final concentration in the hydrogel; concentration in the individual macromer 

solutions was doubled due to 1:1 mixing. (B) MMT and LAP loading were varied from 0–

5% and 0–3%, respectively, in constant 20% dextran and 24.6% dendrimer macromer 

solutions. (C) Nanoparticulates CB and nHAp were tested at 0–5% loading compared to 

MMT. All hydrogels contained 3% LAP.

Unterman et al. Page 25

ACS Nano. Author manuscript; available in PMC 2017 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Cytocompatibility of nanocomposite hydrogels. (A) C3H10T1/2 mouse mesenchymal cells 

were tested in culture in direct contact with hydrogels with and without nanoplatelets. Final 

hydrogel content was 10% dextran aldehyde, 2% LAP, 12.3% dendrimer amine, and 3% 

MMT. Following 1 and 5 days in direct contact with the hydrogels, cells were assayed for 

viability by live (green)/dead (red) staining; the hydrogel, visible at the right of each image, 

also stained green. (B) Cell proliferation and viability was quantified by the PrestoBlue 

assay over 5 days when compared to untreated control cultures.
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