Skip to main content
. 2017 Oct 10;8:1741. doi: 10.3389/fpls.2017.01741

Table 1.

Structure of the convolutional neural network employed in this work.

Layer Type Abstraction-Level Feature
0 2-D convolutional layer with 11 × 11 kernel, padding size 6, stride length size 4
1 Rectified linear activation function layer
2 Max pooling layer, downsample factor 2, stride length 2
3 2-D convolutional layer with 7 × 7 kernel, padding size 3, stride length size 4
4 Rectified linear activation function layer
5 Max pooling layer, downsample factor 2, stride length 2
6 Fully connected layer, 256 neurons Edge magnitudes: Grayscaled, original image filtered by Laplacian of a Gaussian, result downsampled by a factor of 8
7 Rectified linear activation function layer
8 Fully connected layer, 256 neurons Shape features: area, perimeter, Hu’s moments (Hu, 1962), Zernike moments (Zhenjiang, 2000)
9 Rectified linear activation function layer
10 Fully connected layer, 3 neurons
10 Softmax classification layer

Type: the type of layer. Abstraction-Level Feature: The additional features injected in the layer, if any. Features are injected by concatenation with the input from the previous layer.