Table 1.
Layer | Type | Abstraction-Level Feature |
---|---|---|
0 | 2-D convolutional layer with 11 × 11 kernel, padding size 6, stride length size 4 | – |
1 | Rectified linear activation function layer | – |
2 | Max pooling layer, downsample factor 2, stride length 2 | – |
3 | 2-D convolutional layer with 7 × 7 kernel, padding size 3, stride length size 4 | – |
4 | Rectified linear activation function layer | – |
5 | Max pooling layer, downsample factor 2, stride length 2 | – |
6 | Fully connected layer, 256 neurons | Edge magnitudes: Grayscaled, original image filtered by Laplacian of a Gaussian, result downsampled by a factor of 8 |
7 | Rectified linear activation function layer | – |
8 | Fully connected layer, 256 neurons | Shape features: area, perimeter, Hu’s moments (Hu, 1962), Zernike moments (Zhenjiang, 2000) |
9 | Rectified linear activation function layer | – |
10 | Fully connected layer, 3 neurons | – |
10 | Softmax classification layer | – |
Type: the type of layer. Abstraction-Level Feature: The additional features injected in the layer, if any. Features are injected by concatenation with the input from the previous layer.