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Abstract

Purpose of review—The pathogenesis of lung cancer and pulmonary fibrotic disorders partially 

overlap. This review focuses on the common features of the two disease categories, aimed at 

advancing our translational understanding of their pathobiologx and at fostering the development 

of new therapies.

Recent findings—Both malignant and collagen-producing lung cells display enhanced cellular 

proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung 

parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue 

microenvironment and inflammation seems to play an important adjuvant role in both types of 

disorders.

Summary—Unravelling the thread of the common and distinct characteristics of lung fibrosis 

and cancer, might contribute to a more comprehensive approach of the pathobiology of both 

diseases and to a pathfinder for novel and personalized therapeutic strategies.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive age- and smoking-related diffuse 

parenchymal lung disease believed to result from chronic alveolar epithelial cell injury and 

defective repair in response to yet unknown environmental insults [1]. IPF culminates from 

perpetual proliferation and migration of mesenchymal cells and from formation of fibroblast 

foci, in which activated myofibroblasts secrete increased amounts of extracellular matrix 
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(ECM) leading to remodelling and distortion of pulmonary structure and function [2]. The 

disease is rare, but its incidence increases worldwide [3]. Moreover, IPF unequivocally leads 

to death within 2-5 years after diagnosis and there is no effective etiologic cure, a fact that 

underlines the need for novel aproaches [4–6].

Lung cancer is the leading cause of cancer-related death in men and women worldwide [7]. 

This age- and smoking-related tumor results from chronic exposure of the airway and 

alveolar epithelium to environmental smoke leading to repetitive cycles of mutagenesis, 

apoptosis, defective DNA repair, mutation persistence, progressive hyperplasia and 

dysplasia, and frank lung occupation and dissemination [8]. Similar to IPF, death usually 

ensues within few years after diagnosis despite targeted therapies [9].

Several studies have highlighted the clinical risk factors associated with lung cancer 

development in IPF patients and examined the clinical characteristics and survival of 

patients having both IPF and lung cancer [11–20]. In terms of anatomy, fibrosis is present in 

IPF patients mainly in the lung periphery, as well as in the lower lobes, the same regions in 

which a great percentage of lung tumours are observed in tomography scans [14, 21]. 

Interestingly, patients who undergo lung transplantation for idiopathic pulmonary fibrosis 

have a 20-25 times higher incidence of primary lung cancer development than the general 

population [22, 23]. These observations have fueled a search for the molecular links between 

the two lung diseases [14, 15, 24–26].

Malignant properties of pulmonary fibroblasts

Upon injury, epithelial cells interact with mesenchymal cells and the ECM, promoting the 

progression of fibrosis [27, 28]. In a similar pattern, tumours behave like open wounds and 

activated mesenchymal cells are implicated in the pathobiology of both fibrosis and cancer 

[29]. The continuous process of tumorigenesis is characterised by evasion of cell death, 

sustained proliferative signalling, evading growth suppressors, enabling replicative 

immortality, activating invasion and metastasis, and tumour-promoting inflammation, among 

other features, but most strikingly, by unremitted growth and development of tumour niches 

supported by their interactions with stromal cells and the tumor microenvironment [30, 31]. 

Alike tumor-initiated tissues, fibrotic tissues are comprised by epithelial cells and 

fibroblasts/mesenchymal cells in close interaction with immune cells, angiogenic factors and 

the ECM [30, 32].

Apoptosis

As opposed to normal wound repair, scar myofibroblasts escape apoptosis like cancer cells 

[33–38] and can be restrained upon inhibition of anti-apoptotic signalling pathways [39–44]. 

The mechanisms involved in mesenchymal cell resistance to apoptosis during IPF are 

multiple and are not fully understood [33, 34, 41–43, 45–47]. Apoptosis may be mediated by 

two pathways. The extrinsic pathway promotes apoptosis by stimulation of members of the 

tumor necrosis factor receptor (TNFR) family, and the intrinsic pathway induces apoptosis 

by certain cellular stressors like DNA damage or growth factor inhibition. Along the 

extrinsic pathway, death receptors like Fas are implicated in lung fibrosis both by 

enforcement of epithelial cell apoptosis during the injurious phase and through resistance of 
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fibroblasts to Fas-induced apoptosis during the resolution of lung injury. The Fas/Fas ligand 

(FasL) pathway is important in the attenuation of lung fibroblast survival during lung repair 

and fibrosis [47–49]. The expression of FasL by lung fibroblasts during IPF leads to 

continuous epithelial cell apoptosis and cell death escape by immune surveillance [50, 51] 

which can be reversed due to the low expression of Fas from fibrotic lung fibroblasts [52, 

53]. Furthermore, lung fibroblasts express c-FLIP (cellular Fas-associated protein with death 

domain-like interleukin-1β-converting enzyme-inhibitory protein), which represses 

apoptotic signals downstream of Fas [47]. In addition, interleukin (IL)-6, a cytokine known 

to be involved in repair and remodelling, inhibits apoptosis and induces expression of the 

anti-apoptopic protein Bcl-2 in fibroblasts of patients with IPF who also exhibit inhibition of 

the mitochondrial depolarisation that is a critical component in the apoptotic programme 

[41, 54]. Finally, IPF fibroblasts overexpress IAP proteins which can inhibit apoptosis via 

blockade of caspase activation [41, 44, 46, 47]. In both tumorigenesis and fibrosis interplay 

with the ECM is important for apoptosis evasion [55–60]. Mechanical forces influence 

several biological processes, which involve cell adhesion and ECM organization where 

proteins and protein kinases have a critical role. Interactions like PTEN (protein phosphatase 

and tensin homologue) suppression, PI3K (phosphatidylinositol 3-kinase) negative 

regulation and AKT activation are capital for anti-apoptosis [56, 61]. Hippo and its interplay 

with TGF-β is also a key regulator of ECM remodelling and cell differentiation and are 

implicated in both lung fibrosis and cancer development through pro-tumour phenomena 

like apoptosis resistance [60]. Moreover, cell culture substrates that recapitulate the stiffness 

of fibrotic lungs are sufficient to decrease fibroblast apoptosis and increase pro-survival 

BCL-2 expression [41, 57, 62]. TGF-β1 also promotes MRTF-A (myocardin-related 

transcription factor-A) nuclear localisation where as a transcriptional co-activator of serum 

response factor it regulates myofibroblast differentiation and survival, further promoting 

lung fibrosis [41, 42, 62, 63]. MRTF-A has also been targeted as a partner of tumour 

progression and metastasis [64–66]. Apart from the ECM, several apoptosis signalling 

pathways are directly linked to fibrosis and malignancies. Protein kinases like AKT (also 

known as protein kinase B) and FAK (focal adhesion kinase) known for their active role in a 

variety of tumours, are also activated by profibrotic mediators like TGF-β1 and endothelin-1 

in lung fibrosis [67–72]. These kinases induce the expression of downstream partners like 

IAP family members that are highly expressed in fibrotic lung fibroblasts and have also been 

shown to play a crucial role in cancer as they promote apoptosis escape [34, 44, 46, 67, 73–

75].

Cellular proliferation

Another characteristic of malignant cells is their perpetual proliferative signalling which has 

also been described in fibrotic lung fibroblasts and represents a mechanistic similarity 

between the two diseases. In patients with IPF lung fibroblasts display high and heterogenic 

proliferative properties [76]. Although signals that enhance cell proliferation are reported in 

the pathogenesis of lung fibrosis in humans and murine models, the exact mechanisms by 

which this event is promoted are not yet fully understood. Several protein kinases, well 

known for their multifaceted role in malignancies, such as the receptors for vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast 

growth factor (FGF), were recently implicated in sustained proliferation of pulmonary 
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fibroblasts [77]. Moreover, TGF-β1, endothelin-1 and ECM ligation of cell-surface integrins 

activate the PI3K/AKT pathway which is highly observed in the IPF fibroblastic foci [68, 

78–80]. PI3K/AKT activation induced by β1-integrin urges fibroblasts to abjure the 

antiproliferative signals [81]. Furthermore, inhibition of its signalling reduces lung fibroblast 

proliferation and fibrosis development both in vitro and in vivo [82–86]. Anticancer 

treatments have been shown to act suppressive in IPF patients, further amplifying the various 

consequences of proliferating signalling [87–89]. In addition, lung fibroblasts have been 

shown to abjure mediators for growth suppression, a main characteristic of malignant cells. 

IPF fibroblasts resist signals like prostaglandin (PG)E2, that inhibits proliferation and 

differentiation while enhancing susceptibility to apoptosis in normal lung fibroblasts or 

polymerised collagen growth [81, 90].

Aging

As noted above, age is highly related to lung diseases and is a risk factor for IPF and also for 

various cancers, but the mechanisms by which age contributes to each disease differ [91, 

92]. Chromosome replication ageing is crucial for malignancies and as recently reported for 

IPF fibroblasts [39]. In contrast to cancer cells, where the enhanced telomerase activity 

lengthens telomeres and contributes to continuous cell proliferation, fibrotic lung fibroblasts 

exhibit accelerated telomere shortening and impaired telomerase function [93]. As a result, 

both increased fibrosis and decreased fibroblast apoptosis occur and predispose poor 

survival for patients with IPF [94–98].

Invasion and metastasis

One important hallmark of cancer is the ability to invade and metastasise. Among others, 

matrix metalloproteases are strongly related to invasion and migration of cells, as well as 

integrins, receptors which are a main regulator for the right cell adhesion [99]. The integrin 

expression activates the lung cancer related KRAS/RelB/NFkB pathway and leads to stem 

cell like properties like anchorage independent growth, tumor progression and drug 

resistance. Due to their function to create and maintain the communication between the 

extracellular matrix, inflammatory cells, fibroblasts and parenchymal cells, the integrins play 

not just a huge role in cancer, but also in IPF. They are involved in the processes of 

initiation, maintenance and resolution of tissue fibrosis. High expression of integrins was 

observed in myofibroblasts and in AECs after lung injury compared to untreated controls. It 

was also demonstrated that integrins are strong regulators of TGF-ß during lung fibrosis. 

The integrin family is therefore an interesting target for treatment of IPF. Different inhibitors 

are in preclinical and clinical phases, for example specific antibodies against αvβ6. 

Different kinds of these antibodies were tested in preclinical models of fibrosis among others 

bleomycin- models in mice. There is already one humanized antibody STX-100 in clinical 

trial phase 2 for treatment of IPF [100]. The paralleles of IPF and cancer concerning the 

aspects of migration could help finding therapeutic targets for both diseases.

Inflammation

Although the role of inflammation in IPF has been a contradiction, its participation as a 

promoting factor in the development and progression of tumorigenesis is frequently 

described [101]. Myeloid-derived suppressor cells (MDSC) are associated with poor 
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prognosis in malignancies and their expansion and accumulation in IPF is also correlated 

with disease progression [102]. Moreover, pulmonary fibrosis is characterized by the 

complex interaction with cells that are also involved in chronic inflammation. 

Overexpression of chemokines like CCL8 that attract monocytes has been recently 

associated with the disease [103]. Fibrosis-associated macrophages (FAMs) display an M2 

phenotype, best characterised by strong expression of arginase, chitinase-like molecules, 

resistin-like molecule α and CD206 [104]. They facilitate the enhanced production of 

fibroblast growth factors [105], profibrotic cytokines [106, 107] and matrix 

metalloproteinases [108]. Their ablation by liposomal clodronate, or deletion of C–C-motif 

chemokine receptor 2 or PAI-1 protect against lung fibrogenesis [107, 109, 110].

Mesenchymal features of lung cancer cells

Mesenchymal cells are not only critical for lung development and fibrosis, but also for 

tumorigenesis [111, 112]. Stromal fibroblasts can effect tumor cell behavior in various 

manners. For instance, fibroblasts of the host environment interact with tumour cells and 

secrete in the ECM several growth factors like TGF-β, which next enhance a metastatic 

profile [113, 114]. Moreover, tumour-associated fibroblasts regulate matrix stiffness and, 

thereby, tumour cells promote angiogenesis [115, 116]. They also produce fibroblast 

activation protein (FAP), a serine peptidase whose expression has been associated with 

lymph node metastasis and overall poor prognosis [117, 118]. Additionally, while 

tumorigenesis is in progress fibroblasts induce a pretumoral phenotype of tumor associated 

macrophages, which plays a pivotal role in the immunosuppression induced within the 

tumor microenvironment [119].

Epithelial–mesenchymal transition

Epithelial–mesenchymal transformation (or transition; EMT) is a process of multiple 

phenotypic transitions including shape changes towards elongated and spindle-shaped 

cellular morphology, enhanced cytoplasmic cytoskeletal protein expression and activity, and 

the capacity for anchorage-independent growth, motility, migration and invasion, as well as 

an increased resistance to apoptosis [116, 120, 121]. This epithelial–mesenchymal 

phenotypic transition has been clearly observed during the malignant transformation of 

respiratory epithelial cells, and this link is supported by evidence suggesting that the same 

oncoproteins that drive lung cancer formation and progression (i.e. mutant KRAS) are 

responsible for EMT [122, 123]. It is clear, that EMT with its ability to invade, contribute to 

metastasis and therapeutic resistance plays a major role in tumorigenesis [121]. EMT is 

induced by multiple pathways like WNT, RTK and TGF-ß signalling, which are controlled 

by genetic and epigenetic mechanisms. In a tumor the cells are a heterogenic population 

created by instability of these processes. A major player in EMT is the NF-κB pathway, 

which can be activated by Notch, RTKs or KRAS [121–124]. Compared with the strong 

evidence of a major role of EMT in cancer development, it is controversially discussed 

whether “true” EMT contributes to lung fibrogenesis [116, 125–128]. While some may 

consider EMT to be partial or incomplete in pulmonary fibrosis, abundant evidence supports 

the plasticity of alveolar epithelial cells that can, in the context of lung injury, acquire a 

number of mesenchymal-like phenotypic behaviours [127, 129–132]. This phenotypic 
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transition is not limited to fibrotic lung injury, as airway epithelial cells were recently shown 

to migrate distally in response to influenza H1N1 infection of mice, thereby acquiring 

fibroblast phenotypes [133]. Unpublished observations from our laboratories indicate that 

similar processes occur both after tobacco smoke-contained carcinogen exposure, and after 

bleomycin-induced lung injury and fibrosis [133, 134]. In bleomycin-induced lung fibrosis it 

was shown that pleural mesothelial cells (PMC) start expressing an EMT phenotype with 

increased mesenchymal phenotypic markers and decreased epithelial phenotypic markers, as 

well as higher collagen-I synthesis, cell migration and activated TGF-ß1-Smad2/3 signalling 

pathway [135]. EMT in AECs was already proven over 10 years ago in primary cell culture, 

tissue samples of IPF patients, as well as mouse models. A main driving power and mediator 

thereby was TGF-ß. Multiple researchers could show the cell type transition by increases of 

typical mesenchymal markers like alpha-smooth muscle actin (alpha-SMA) or vimentin and 

decreases in epithelial markers thyroid transcription factor (TTF)-, e-cadherin and pro-

surfactant protein-B (pro-Sp-B) in these samples [136–138]. Even so EMT is a common 

event in both IPF and cancer. In IPF, mesothelial cells can also undergo transition to 

mesenchymal cells, a process called mesothelial-to mesenchymal transition (MMT). After 

breakdown of healthy repair and regulatory pathways, mesothelial cells can in this way 

contribute to the development of tissue fibrosis. By lineage tracing of mesothelial cells in 

mice the EMT process was observed during development and was then named MMT. Later 

MMT was observed in mesothelial cells after exposure to different kinds of toxic agents, as 

well as TGF-ß. The TGF-ß treated mouse models underwent MMT and a transition from 

mesothelial cells to myofibroblasts resulting in fibrosis [139]. Principal in both cancer and 

IPF, the typical process of EMT with loss of cellular contacts, epithelial cell morphology and 

polarity, has a net negative outcome in disease progression.

Stem cells

A cancer stem cell (CSC) is defined as that part of tumor which can constantly provide new 

cancer cells and also mobilize non-cancer cells, such as mesenchymal and vascular cells. 

This group of cells show increased telomere length controlled by highly active telomerase, 

have more active anti-apoptotic pathways, and a high activity of membrane transporters like 

ABC transporters, which can pump given drugs out of the cell [140–142]. The ABCG2 gene 

for instance is overexpressed in lung cancer stem cells and serves as a typical marker for this 

cell type [143]. In IPF similar mechanisms are involved. The ABCA3 gene, another member 

of the ABC transporter superfamily, is widely mutated in lung diseases and responsible for 

an abnormal surfactant metabolism and maybe a risk factor for IPF [144]. Taken together, in 

both lung diseases the typical features of stem cell-like behaviour play a major role in the 

pathogenesis, but instead of overlapping mechanisms they have a more opposite outcome. 

Having this in mind it is not surprising that the therapeutic approaches are different. It is 

clear that cancer stem cells have a negative impact in cancer progression and drug resistance 

and need to be targeted. In IPF, drug development focuses on mesenchymal stem cells 

(MSCS), a side population of stem cells originated from non-haematopoietic cells. These 

cells play significant roles in inhibition of T-cell proliferation and in secreting anti-

inflammatory cytokines and growth factors, thus becoming a potential therapeutic target. 

Instead of the idea to inhibit the stem cell-like cell population in cancer therapy, researchers 

try to use the protective and repairative effects of the MSCs to treat IPF. After positive 
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results in mouse experiments, several clinical trials with MSCs in the treatment of IPF are 

ongoing [145].

IPF signaling pathways promoting cancer

Several studies demonstrate different signalling pathways that are strictly associated to 

fibroblasts and also play key roles in tumorigenesis. For instance, PI3K–Akt signaling 

substrate Girdin, an actin-binding protein that regulates cell migration, is expressed and 

activated by Akt phosphorylation in cancer-associated fibroblasts, thus promoting lung 

tumor progression [146]. Furthermore, the tumour microenvironment expresses survival and 

progression factors, that undergo a regulatory mechanism by the action of the mitogen-

activated protein kinase 38 (p38MAPK) [147]. p38MAPK–leads in an hyaluronan-

dependent reprogramming of the tumor microenvironment that promotes lung cancer growth 

[148]. Interestingly, STAT3 phosphorylation and induction of anti-apoptotic protein Bcl-2 

and Survivin in lung cancer cells was found after cisplatin fibroblast stimulation and up 

regulation of interleukin-11 (IL-11). This effect confers lung cancer cells the advantage of 

chemoresistance [149]. S100A4, a fibroblast marker and activator of fibroblast-specific 

transcriptional programmes, has been shown to be expressed in IPF and to protect from 

metastasis [150]. FGF and TGF signalling in lung tumour cells, or mutations in their 

receptors, have been shown to be essential for lung adenocarcinoma development [151–153]. 

It is obvious that signalling pathways that are critical for fibrosis progression are also 

sensibly promoting tumor expansion and migration.

Conclusion

In conclusion, cancer and fibrosis are two discernible lung diseases that are impressively 

characterised and driven by similar biological pathways. Although their specific genetic and 

cellular mechanisms are not yet fully defined, several signalling pathways, anatomical 

compartments, and the microenvironmental behaviour corrupt tissue architecture and lead to 

its dysfunction [154, 155]. However, it is clear that lung tumorigenesis and fibrosis display a 

highly heterogeneous behaviour, which raises the need for a more personalised therapeutic 

approach [156–159]. Attenuation of lung fibrosis can be served by focusing on and 

exploring these overlapping mechanisms.
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Key points

• Mesenchymal properties of lung cancer cells are essential for lung tumor 

progression.

• Common signalling pathways are activated in both lung cancer and 

pulmonary fibrosis.

• The mechanistic overlap between lung fibrosis and cancer will hopefully lead 

to common therapies effective against both diseases.
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