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Conspectus

Merging the characteristics of transfer hydrogenation and carbonyl addition, we have developed a 

new class of catalytic enantioselective C-C bond formations. In these processes, hydrogen transfer 

between alcohols and π-unsaturated reactants generates carbonyl-organometal pairs that combine 

to deliver products of addition. Based on this mechanistic paradigm, lower alcohols are converted 

directly to higher alcohols in the absence of premetalated reagents or discrete alcohol-to-carbonyl 

redox reactions. In certain cases, due to a pronounced kinetic preference for primary vs secondary 

alcohol dehydrogenation, diols and higher polyols are found to engage in catalytic stereo- and site-

selective C-C bond formation - a capability that further enhances efficiency by enabling skeletal 

construction events without extraneous manipulations devoted to the installation and removal of 

protecting groups. While this Account focuses on redox-neutral couplings of alcohols, 

corresponding aldehyde reductive couplings mediated by 2-propanol were developed in parallel 

for most catalytic transformations reported herein. Mechanistically, two distinct classes of alcohol 

C-H functionalizations have emerged, which are distinguished by the mode of pronucleophile 

activation; specifically, processes wherein alcohol oxidation is balanced by (a) π-bond 

hydrometalation or (b) C-X bond reductive cleavage. Each pathway offers access to allylmetal or 

allenylmetal intermediates and, therefrom, enantiomerically enriched homoallylic or 

homopropargylic alcohol products, respectively. In the broadest terms, carbonyl addition mediated 

by premetalated reagents has played a central role in synthetic organic chemistry for well over a 

century, however, the requisite organometallic reagents pose issues of safety, require multistep 

syntheses and generate stoichiometric quantities of metallic byproducts. The concepts and 

catalytic processes described in this Account, conceived and developed wholly within the author’s 

laboratory, signal a departure from the use of stoichiometric organometallic reagents in carbonyl 

addition. Rather, they reimagine carbonyl addition as a hydrogen auto-transfer process or cross-

coupling in which alcohol reactants, by virtue of their native reducing ability, drive generation of 

transient organometallic nucleophiles and, in doing so, serve dually as carbonyl proelectrophiles. 

The catalytic allylative and propargylative transformations developed thus far display capabilities 

far beyond their classical counterparts and their application to the total synthesis of type I 
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polyketide natural products have evoked a step-change in efficiency. More importantly, the present 

data suggest that diverse transformations traditionally reliant on premetalated reagents may now be 

conducted catalytically without stoichiometric metals. This Account provides the reader and 

potential practitioner with a catalog of enantioselective alcohol-mediated carbonyl additions – a 

user’s guide, 10-year retrospective, and foundation for future work in this emerging area of 

catalytic C-C bond formation.

Graphical abstract

I. Introduction

In 1912, Victor Grignard1 and Paul Sabatier2 jointly received the Nobel Prize - Grignard for 

the development of reagents that transformed the field of carbonyl addition and Sabatier for 

catalytic hydrogenation, which is practiced across all segments of the chemical industry. 

Their pioneering chemistry has opened vast volumes of chemical space, demonstrating that 

new reactivity is the most fundamental and far reaching basis for innovation in the field of 

chemical synthesis. Merging the characteristics of carbonyl addition and catalytic 

hydrogenation, we have developed a broad, new family of catalytic C-C couplings that are 

mechanistically distinct, representing the first use of an alcohol’s native reducing ability to 

generate transient carbonyl-organometal pairs.3 Unlike classical carbonyl addition, which 

relies on the use of premetalated reagents, or metal catalyzed reductive C-C coupling, which 

often utilizes stoichiometric metallic reductants, the “redox-triggered carbonyl additions” we 

have introduced bypass the requirement of stoichiometric metals (Scheme 1).

The hydrogen transfer-mediated carbonyl additions we report deliver products of formal 

alcohol C-H functionalization and, hence, may be distinguished from related “borrowing 

hydrogen” chemistry that promotes formal alcohol substitution (Scheme 2).4 Both processes 

are redox-neutral, which is significant as alcohol oxidation is often problematic on scale.5 

Already, dehydrogenative methods such as alcohol amination are finding broad use at the 

process level.6 To our knowledge, the only other methods available for direct alcohol C-H 

functionalization are radical mediated transformations,7 for which enantioselective variants 

remain elusive. This review will focus on enantioselective metal catalyzed methods for the 

conversion of lower alcohols to higher alcohols – a unique class of C-C bond formations 

discovered and developed solely within our laboratory.3
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II. Catalytic Enantioselective Alcohol C-H Functionalization

II.A Cyclometalated π-Allyliridium C,O-Benzoate Catalysts

Using cyclometalated π-allyliridium C,O-benzoate complexes, diverse enantioselective 

alcohol C-H functionalizations were developed (Scheme 3-B).8–22 As illustrated in the 

catalytic mechanism (Scheme 3-A), the internal carboxylate of the ortho-C,O-benzoate 

moiety maintains neutrality of the π-allyliridium intermediate and, hence, nucleophilic 

character. Dehydrogenation of the secondary alcohol products is prevented by internal 

chelation of the homoallylic olefin. Mechanistic studies8b corroborate the indicated catalytic 

mechanism wherein carbonyl addition represents the turnover limiting event. These 

processes embody an inversion of polarity (umpolung) with respect to π-allyl species 

evident in related allylic substitutions catalyzed by iridium23 and represent a departure from 

the longstanding (1978)24 use of chiral allylmetal reagents in carbonyl addition.25 The 

requisite π-allyliridium C,O-benzoate complexes are chromatographically stable and are 

readily prepared through the combination of [Ir(cod)Cl]2, allyl acetate, 4-substituted-3-nitro-

benzoic acids and assorted axially chiral chelating phosphine ligands.12b

The ability to exploit alcohols as carbonyl equivalents enables transformations that are not 

possible via classical carbanion chemistry. For example, whereas malondialdehyde is highly 

intractable and has not been reported to participate in asymmetric addition, the 

corresponding 1,3-propane diols are robust compounds that readily engage in two-

directional allylation and crotylation via successive generation and capture of transient 

mono-aldehydes. These reaction products, which represent acetate and propionate-based 

triketide building blocks,3d,h previously required numerous steps to prepare.26 These 

compounds are now generated in a single manipulation and, due to Horeau’s principle,27 are 

formed as single enantiomers. As shown, the catalyst may be generated in situ or one may 

utilize the chromatographically isolated π-allyliridium C,O-benzoate complex (Scheme 4).

Due to a kinetic preference for primary alcohol dehydrogenation,28 the site-selective 

allylation of 1,3-diols is readily achieved in the absence of protecting groups29 with high 

levels of catalyst-directed diastereoselectivity (Scheme 5-A).3g,8f,g As illustrated in reactions 

of (S)-butanediol, this capability not only applies to the parent allylations.8f,g High levels of 

catalyst-directed diastereoselectivity also are evident in tert-(hydroxy)-prenylations mediated 

by isoprene oxide (Scheme 5-B)18 and (α-aminomethyl)allylations mediated by N-(p-

nitrophenylsulfonyl) protected vinyl aziridines (Scheme 5-C).19 As evident upon application 

of this methodology to the total synthesis of natural product, the ability to directly engage 

diols and higher polyols in C-C coupling without discrete redox reactions or protecting 

groups has enabled a step-change in efficiency. For more detailed discussion, the reader is 

directed to the review literature.3d,h The use of excess allyl donor in these processes is not 

required, but led to slightly higher yields. As shown in catalytic C-C couplings of methanol 

(vide infra), the allyl donor can be used as the limiting reagent.

II.B Non-Cyclometalated Iridium and Rhodium Catalysts

Cyclometalated π-allyliridium C,O-benzoate complexes are not required for asymmetric 

alcohol mediated carbonyl addition. Using the chiral iridium catalyst generated from 
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[Ir(cod)Cl]2 and (R)-DM-SEGPHOS, 1,3-enynes exchange hydrogen with primary alcohols 

to generate allenyliridium-aldehyde pairs that combine to form enantiomerically enriched 

products of carbonyl anti-(α-methyl)propargylation (Scheme 6-A).30 In this process, the 

axial chirality of DM-SEGPHOS is transmitted to the axial chirality of the allenyliridium 

intermediate and, ultimately, the central chirality of the product. Similarly, silyl-terminated 

propargyl chlorides react with primary alcohols in the presence of the cationic iridium 

complex {Ir(cod)[(R)-SEGPHOS]}OTf to form enantiomerically enriched homopropargyl 

alcohols (Scheme 6-B).31 The chiral rhodium catalyst generated from [Rh(cod)Cl]2 and (R)-

BINAP overcomes the requirement of terminally substituted propargyl donors, allowing use 

of propargyl chloride itself (Scheme 6-C).32 However, to achieve high levels of asymmetric 

induction, match-mismatch effects between the catalyst and an enantiomerically enriched 

chiral α-stereogenic amino alcohol are required. Collectively, these methods provide an 

alternative to the longstanding use of preformed chiral allenylmetal reagents in carbonyl 

propargylation.33

Using the chiral iridium catalyst generated from [Ir(cod)Cl]2 and (R)-PhanePhos,34 

methanol reacts with 2-substituted dienes to form primary homoallylic alcohols bearing all-

carbon quaternary centers (Scheme 7-A).35 Mechanistic studies corroborate a Curtin-

Hammett scenario in which methanol dehydrogenation triggers rapid, reversible diene 

hydrometalation to provide a rapidly equilibrating mixture of regio- and stereoisomeric 

allyliridium-formaldehyde pairs. Selection of predominantly one isomer from this dynamic 

mixture results in completely regioselective and highly enantioselective 

hydrohydroxymethylation. Following the development of racemic allene 

hydrohydroxyalkylations catalyzed by iridium36 and ruthenium,37 iridium-PhanePhos 

complexes were found to catalyze the coupling of methanol with allenes to form CF3-

bearing all-carbon quaternary centers with complete levels of regioselectivity and high levels 

of enantioselectivity (Scheme 7-B).38

The chiral iridium complex generated from [Ir(cod)Cl]2 and (R)-H8-BINAP catalyzes the 

enantioselective C-C bond formation between the propargyl ether, TIPSOCH2C≡CH, and 

primary alcohols. The resulting γ-hydroxy enol silanes are formed with uniformly high 

levels of enantioselectivity and complete levels of alkene (Z)-stereoselectivity.39 Deuterium 

labeling studies corroborated a novel catalytic mechanism involving a 1,2-hydride shift that 

converts a metal bound alkyne to a vinyl carbene, which upon protonation delivers a 

nucleophilic π-allyliridium complex (Scheme 8).

II.C Ruthenium Catalysts

Initially developed couplings of butadiene, an abundant petrochemical feedstock, were not 

stereocontrolled.40 However, in the presence of a ruthenium catalyst modified by DM-

SEGPHOS, alcohols react with 2-trialkylsilyl-butadienes to form branched products of 

hydrohydroxyalkylation (Scheme 9-A).41 The silyl moiety is essential in terms of defining 

the geometry of the transient allylruthenium intermediate and enforcing high levels of 

diastereoselectivity. To direct relative and absolute stereochemistry in reactions of butadiene, 

use of a ruthenium catalyst modified by a chiral phosphate counterion derived from H8-

BINOL is required.42 The anion is installed through the acid-base reaction of H2Ru(CO)
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(PPh3)3 with the indicated chiral phosphoric acid, precluding the more common (yet less 

atom-efficient) use of silver phosphate salts and metal halides. With the chiral phosphate 

counterion as the exclusive chiral inducing element, primary benzylic alcohols react with 

butadiene to form branched products of hydrohydroxyalkylation with good levels of anti-
diastereoselectivity and enantioselectivity (Scheme 9-B). To access the corresponding 

enantiomerically enriched syn-diastereomers, use of the ruthenium catalyst generated in situ 
from H2Ru(CO)(PPh3)3, (S)-SEGPHOS and the indicated TADDOL-derived phosphoric 

acid is required (Scheme 9-C).43 Our collective studies suggest the s-cis-conformer of 

butadiene selectively undergoes hydrometalation to form the (Z)-σ-crotylruthenium 

intermediate. The more Lewis basic TADDOL-derived phosphate counterion preserves the 

kinetic selectivity of diene hydrometalation by diminishing the degree of coordinative 

unsaturation and, hence, retarding the rate of (E/Z)-isomerization with respect to the rate of 

carbonyl addition. Computational studies implicate intervention of a formyl hydrogen bond 

between the transient aldehyde and the phosphate oxo-moiety that stabilizes the transition 

state for carbonyl addition involving the (Z)-σ-crotylruthenium intermediate.44

In the ruthenium catalyzed coupling of primary alcohols with alkynes, seemingly minor 

changes to the reaction conditions or structural features of the reactants can promote 

strikingly different mechanistic pathways. For example, racemic allylic alcohols45 and (Z)-

homoallylic alcohols46 are formed through mechanisms that involve alkyne-carbonyl 

oxidative coupling (not shown). Oxidative coupling is suppressed by exogenous iodide and 

careful selection of phosphine ligand, allowing hydrometalative pathways to dominate. 

Thus, in the presence of iodide, chiral ruthenium(II) complexes modified by Josiphos 

ligands were found to catalyze the reaction of alkynes with primary alcohols to form 

homoallylic alcohols with excellent control of regio-, diastereo- and enantioselectivity 

(Scheme 10-A).47 Deuterium labelling studies corroborate a mechanism involving two 

discrete catalytic events: alkyne-to-allene isomerization followed by allene-alcohol C-C 

coupling. Remarkably, under identical conditions, the indicated TIPS-protected propargyl 

ether reacts with primary alcohol to furnish products of siloxy-crotylation.48 However, 

deuterium labelling studies implicate a profoundly different mechanism involving hydride 

shift enabled π-allyl formation (Scheme 10-B).

As first demonstrated in reactions to form racemic products,49 hydrogen transfer from 

primary alcohols to 1,3-enynes delivers allenylruthenium-aldehyde pairs that combine to 

form products of carbonyl propargylation. Subsequently, it was found that the chiral 

ruthenium complex derived from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP catalyzes the C-C 

coupling of primary alcohols with the commercially available 1,3-enyne, 

TMSC≡CC(Me)=CH2, to form gem-dimethyl substituted secondary homopropargyl 

alcohols with high levels of enantioselectivity (Scheme 11).50

III. Conclusion

The use of stoichiometric carbanions in carbonyl addition represents a cornerstone of 

chemical synthesis. However, the use of premetalated reagents mandates the generation of 

stoichiometric quantities of metallic byproducts. The studies summarized herein establish an 

alternative approach to carbonyl addition in the absence of stoichiometric metals that instead 
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exploits the native reducing ability of alcohols to drive generation of transient 

organometallics. The direct conversion of lower alcohols to higher alcohols via hydrogen 

exchange with π-unsaturated pronucleophiles is redox-economic.51 The ability to perform 

such transformations in a stereo- and site-selective fashion further enhances efficiency by 

precluding the use of chiral auxiliaries and protecting groups. More broadly, these 

transformations raise the possibility that diverse reactions traditionally employing 

stoichiometric carbanions may now be conducted catalytically in the absence of 

stoichiometric metals via alcohol-mediated hydrogen transfer. It is the authors hope that the 

novel reactivity summarized in this monograph will accelerate progress toward this goal.
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Scheme 1. 
Evolution of C=O addition chemistry beyond stoichiometric metals.
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Scheme 2. 
Alcohol substitution vs alcohol C-H functionalization.
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Scheme 3. 
A. General catalytic mechanism. B. Survey of enantioselective (generally >90% ee) alcohol 

C-H allylations via iridium catalyzed hydrogen transfer.
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Scheme 4. 
Enantioselective two-directional allylation and crotylation of 1,3-propane diols.
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Scheme 5. 
Site-selective carbinol C-H functionalization of (S)-butanediol with catalyst-directed 

diastereoselectivity: A. allylation, B. tert-(hydroxy)- prenylation, C. (α-

aminomethyl)allylation.
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Scheme 6. 
Enantioselective carbonyl propargylation via hydrogen auto-transfer: A. Iridium catalyzed 

coupling of enyne pronucleophiles, B. Iridium catalyzed coupling of silyl-terminated 

propargyl chlorides, C. Rhodium catalyzed coupling of unsubstituted propargyl chloride.
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Scheme 7. 
Enantioselective iridium catalyzed coupling of methanol to form quaternary carbon 

stereocenters: A. Reactions of 1,3-dienes and B. Reactions CF3-allenes.
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Scheme 8. 
Enantioselective iridium catalyzed carbonyl (Z)-siloxyallylation via hydride shift enabled π-

allyl formation.
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Scheme 9. 
Diastereo- and enantioselective ruthenium catalyzed coupling of primary alcohols with 1,3-

dienes: A. syn-Diastereoselective reaction of 2-trialkylsilyl-butadienes, B. anti-
Diastereoselective reaction of butadiene, C. syn-Diastereoselective reaction of butadiene.
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Scheme 10. 
Alkynes as latent allylmetal nucleophiles in enantioselective ruthenium catalyzed couplings 

with primary alcohols: A. π-Allyl formation via tandem alkyne-to-allene isomerization-

allene hydrometalation. B. π-Allyl formation via 1,2-hydride shift followed by vinyl carbene 

protonation.

Kim et al. Page 21

Acc Chem Res. Author manuscript; available in PMC 2018 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 11. 
Enantioselective ruthenium catalyzed coupling of primary alcohols with 1,3-enynes.
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