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Abstract

Purpose—This article introduces a constrained imaging method based on low-rank and subspace 

modeling to improve the accuracy and speed of MR Fingerprinting (MRF).

Theory and Methods—A new model-based imaging method is developed for MRF to 

reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T1, T2, and 

spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF 

time-series images, and further enforces temporal subspace constraints to capture magnetization 

dynamics. This allows the time-series image reconstruction problem to be formulated as a simple 

linear least-squares problem, which enables efficient computation. After image reconstruction, 

tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional 

approach.

Results—The effectiveness of the proposed method was evaluated with in vivo experiments. 

Compared with the conventional MRF reconstruction, the proposed method reconstructs time-

series images with significantly reduced aliasing artifacts and noise contamination. Although the 

conventional approach exhibits some robustness to these corruptions, the improved time-series 
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reconstruction in turn provides more accurate tissue parameter maps. The improvement is 

pronounced especially when the acquisition time becomes short.

Conclusions—The proposed method significantly improves the accuracy of MRF, and also 

reduces data acquisition time.

Keywords

Model-based imaging; low-rank modeling; subspace modeling; MR Fingerprinting; relaxometry; 
quantitative MRI

Introduction

MR Fingerprinting (MRF) (1) is a recently introduced quantitative MRI framework. It 

features a novel data acquisition and image reconstruction paradigm to enable simultaneous 

quantitative measurements of multiple MR tissue parameters (e.g., T1, T2, and spin density). 

In data acquisition, MRF employs a series of time-varying quasi-random acquisition 

parameters (e.g., flip angles and repetition times) to probe the spin system. Additionally, it 

performs a highly-undersampled, variable-density spiral acquisition that varies over time to 

collect k-space data. Together, this produces significant spatial and temporal incoherence. 

For image reconstruction, MRF utilizes a two-step procedure. First, a gridding 

reconstruction and coil combination is performed to reconstruct time-series images from 

highly-undersampled data. Second, the estimation of tissue parameters is accomplished by 

pattern matching to a pre-computed dictionary on a voxel-by-voxel basis. The 

spatiotemporal incoherence ensures tissue parameter maps are minimally corrupted by 

aliasing artifacts through pattern matching. The conventional approach above is simple and 

computationally efficient, but sub-optimal from a statistical estimation perspective (2,3). In 

practice, it often requires a relatively long acquisition train (or acquisition time) to ensure 

good accuracy. This can result in clinically uncomfortable acquisition time for imaging 

applications that require broad volumetric coverage (4).

To reduce data acquisition time while improving accuracy, a number of iterative 

reconstruction methods have recently been proposed (2, 3, 5–8). In particular, principled 

statistical reconstruction methods (2, 3, 5, 6), which model imaging physics, image priors 

and noise statistics, have been developed to reconstruct MR tissue parameters directly from 

highly-undersampled, noisy k-space data. These methods lead to improved estimation 

performance and/or reduced acquisition time. Moreover, they provide useful theoretical 

insight into the conventional approach. It has been shown analytically in (2, 3) that the 

conventional approach is equivalent to the first iteration of the maximum likelihood (ML) 

reconstruction. In spite of the theoretical insight and empirical success, these methods result 

in challenging nonconvex optimization problems, which require specialized algorithms and 

initializations (3).

In this work, we introduce an alternative model-based reconstruction method for MRF based 

on low-rank and subspace modeling. This builds on the previous low-rank reconstruction 

methods for dynamic MRI (9–11) and conventional MR relaxometry (12–17). Here the 

proposed method enforces an explicit low-rank constraint to capture strong spatiotemporal 
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correlation within MRF time-series images. Further, it predetermines the temporal subspace 

of the low-rank model from an ensemble of magnetization evolutions (obtained from Bloch 

simulations). The proposed model results in a simple linear least-squares formulation, 

allowing efficient computation. Similar to the conventional approach, it employs a two-step 

procedure. However, rather than using artifact-corrupted time-series images, it integrates 

low-rank and subspace modeling with the sensitivity encoding (SENSE) based parallel 

imaging to reconstruct high-quality time-series images. This in turn provides improved 

accuracy of tissue parameter maps. The effectiveness of the proposed method was evaluated 

by comparing to tissue parameter maps generated from in vivo “gold-standard” time-series 

data, as well as the conventional approach and ML reconstruction.

Recently, a number of low-rank reconstruction methods have been proposed for MRF (5,18–

21), including a preliminary account of this work presented in (18). Note that the proposed 

method has key differences from other low-rank MRF reconstruction methods. Specifically, 

the proposed method enforces an explicit low-rank constraint via matrix factorization, and 

further imposes a temporal subspace constraint to model magnetization dynamics. This is 

different from (5, 19) in which the low-rank constraint is enforced implicitly via a surrogate 

function (e.g., the nuclear norm (22)). As demonstrated in (11, 23, 24), the explicit rank 

constraint often leads to better reconstruction performance and more efficient computation 

over the implicit counterpart. In (20), an iterative algorithm based on the projection onto 

convex set was described to solve a low-rank reconstruction problem for MRF. Compared 

with (20), the proposed method rigorously formulates the image reconstruction problem as 

an optimization problem and naturally integrates with the SENSE-based parallel imaging 

model. In (21), although an explicit low-rank constraint was also used for image 

reconstruction, it does not incorporate any subspace constraint. Moreover, the reconstruction 

algorithm in (21) involves the singular value decomposition at each iteration, which can be 

computationally expensive.

Theory

In MR Fingerprinting, the contrast-weighted image Im(x) can be expressed as (2, 3):

[1]

for m = 1, … ,M. Here, m is a time index, T1(x), T2(x), and ρ(x) respectively denote the two 

primary relaxation times and the spin density, and ϕm(·) denotes the contrast-weighting 

function that is determined by magnetization dynamics. The imaging equation for MRF can 

be written as

[2]

for c = 1, … ,Nc, where dm,c(k) denotes the measured k-space data associated with Im(x) 

from the cth receiver coil, Sc the coil sensitivity for the cth receiver coil, and nm,c the 
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measurement noise. The goal of MRF reconstruction is to determine {T1(x), T2(x), ρ(x)} 

from highly-undersampled and noisy measurements {dm,c(k)}.

To address this problem, statistical reconstruction methods (2, 3, 5, 6) form the following 

data model:

[3]

by combining Eq. [1] with Eq. [2]. Given the noise statistics of nm,c (i.e., complex Gaussian 

noise), unknown MR tissue parameters can be estimated directly from {dm,c(k)} with a 

maximum likelihood criterion (2, 3). Improved estimation performance can be attained by 

incorporating an image prior model, e.g., low-rank model (5) or structured sparsity model 

(6), into a penalized maximum likelihood formalism. Although statistical reconstruction 

yields improved accuracy over the conventional approach (1), they all face solving a 

challenging nonlinear and nonconvex optimization problem due to the data model in Eq. [3]. 

To bypass such difficulty, we introduce an alternative reconstruction method. Rather than 

performing direct parameter reconstruction from measured data, the proposed method 

follows a two-step procedure: we first reconstruct  with a low-rank and 

subspace model-based reconstruction, and then estimate MR tissue parameter maps from 

time-series images on a voxel-by-voxel basis. Here the proposed time-series reconstruction 

employs a simple convex formulation (i.e., a least-squares formulation), which significantly 

simplifies computation.

For simplicity, we consider a discrete image model, in which the MRF time-series images 

 can be completely represented by the following Casorati matrix (9):

[4]

where the first and second directions of C respectively denote the spatial and temporal 

dimensions, and Im ∈ ℂN contains the values of Im(x) on a grid at N spatial locations. 

Accordingly, the imaging equation in Eq. [2] can be rewritten as

[5]

where dm,c ∈ ℂPm contains the measured data for Im from cth coil, Fm ∈ ℂPm×N denotes the 

undersampled Fourier encoding matrix, Sc ∈ ℂN×N is a diagonal matrix containing the coil 

sensitivities for the cth coil, and nc ∈ ℂPm is the noise vector. With more compact matrix 

notation, we have
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[6]

for c = 1, … ,Nc, where dc ∈ ℂP contains all the measured data from the cth coil, F ∈ ℂNp×N 

denotes the fully-sampled Fourier encoding matrix, Ω(·) : ℂNp×M → ℂP is a linear operator 

that undersamples the k-space and then concatenates the measured data into a vector, and 

 denotes the total number of measurements from the cth coil. Given that k-

space is sampled far below the Nyquist rate in MRF, direct inversion of the data (e.g., with a 

gridding reconstruction) creates significant aliasing artifacts to time-series images. 

Although, with the incoherent signal excitation and acquisition, the conventional MRF 

reconstruction manages to produce artifact-free tissue parameter maps with a simple pattern-

matching strategy, its performance is often heavily dependent on the length of a data 

acquisition train. Distinct from the conventional approach, here we utilize a low-rank and 

subspace model to reconstruct high-quality time-series images, from which we estimate MR 

tissue parameters. We will demonstrate that improved time-series images leads to better 

accuracy in tissue parameter estimation.

More specifically, we enforce a low-rank constraint on the Casorati matrix C, i.e., rank(C) ≤ 

L, to capture strong spatiotemporal correlation within MRF time-series images. Under this 

constraint, the matrix C only has L(M+N−L) degrees of freedom, which can be much less 

than the total number of entries of C, thus enabling the reconstruction of C from sub-

Nyquist measurements. Mathematically, rank constraint can be enforced in a number of 

ways. For example, it can be replaced by a surrogate function (e.g., the nuclear norm (22), 

the Schatten p-norm (22), and the log-determinant function (25)). Alternatively, it can be 

imposed explicitly via matrix factorization (9,10,25), i.e., C = UV, where U ∈ ℂN×L and V 
∈ ℂL×M. Note that the rows of U and columns of V respectively span the spatial and 

temporal subspaces of the Casorati matrix. For many imaging problems, the value of L is 

known a priori, or can be properly determined before image reconstruction. In such cases, 

the use of an explicit rank constraint can lead to better reconstruction performance and more 

efficient computation (11). Here we adopt this type of low-rank constraint, and the selection 

of L for MRF will be discussed later with concrete examples. Accordingly, the image 

reconstruction problem can be formulated as a low-rank matrix recovery problem (26), for 

which a number of numerical algorithms can be applied (e.g., (23, 24, 27, 28)).

Rather than directly solving a generic low-rank matrix recovery problem, we further 

incorporate a temporal subspace constraint (9, 11–13, 15, 17, 29) to simplify the image 

reconstruction problem. Specifically, in the context of MRF, a dictionary D ∈ ℂK×M can be 

constructed using Bloch simulations, which contains all possible signal evolutions. Ignoring 

the modeling error and quantization error in dictionary construction, the temporal subspace 

of C should be contained by the principal temporal subspace of D. As a consequence, we 

can pre-estimate V from D using the singular value decomposition. Note that with the 

subspace constraint, a “stronger” low-rank constraint is imposed by the proposed method. 

Mathematically, with a pre-estimated V̂, the image reconstruction problem reduces from a 

general low-rank matrix recovery problem to the following linear least-squares problem:
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[7]

which can be efficiently solved by a number of iterative numerical solvers (e.g., the 

conjugate gradient algorithm). Upon solving Eq. [7], we can form the Casorati matrix by Ĉ 
= ÛV̂. Then MR tissue parameter maps can be estimated on a voxel-by-voxel basis by 

pattern matching with the dictionary as in the conventional approach.

Methods

Data Acquisition

We performed in vivo MRF experiments to evaluate the performance of the proposed 

method for neuroimaging. Specifically, the experiments were conducted on a 3T Siemens 

Tim Trio scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with a 32-

channel receiver coil. A healthy volunteer was scanned with the approval from the 

Institutional Review Board. The inversion recovery fast imaging with steady state precession 

(IR-FISP) MRF pulse sequence was used in the experiments, which is immune to main 

magnetic field inhomogeneity (30). For this imaging sequence, the unknown tissue 

parameters include T1, T2, and spin density. We acquired k-space data using the spiral 

trajectory and data acquisition parameters (i.e., flip angles and repetition times (TR)) used in 

(30). A single spiral interleave was collected for each TR (or time point), and a set of fully-

sampled data consists of 48 spiral interleaves. Other relevant imaging parameters were: 

field-of-view (FOV) = 300 × 300 mm2, matrix size = 256 × 256, and slice thickness = 5 mm.

We acquired two imaging slices with the acquisition lengths M = 900 and 1400 time points, 

respectively. For each slice, we performed a standard MRF acquisition as described above. 

Similar to (3,30,31), we also collected a set of fully-sampled data for each slice to generate 

“gold-standard” data sets, from which we estimated T1, T2, and spin density maps as our 

references. More specifically, upon performing an MRF acquisition, we rotated the spiral 

trajectory at each time point, and proceeded with another acquisition. Here a single MRF 

acquisition was repeated 48 times. By grouping the data from all the acquisitions, we 

generated a set of fully-sampled spiral data for each time point. Note that a short delay (i.e., 

10 sec) was given between consecutive acquisitions to ensure the recovery of magnetization 

to thermal equilibrium, and that the subject was informed to stay still during the acquisition 

process. As an example, the standard MRF acquisition for a single imaging slice with M = 

900 took 11.8 sec, while the associated fully-sampled acquisition took 17.3 min.

In addition to the MRF experiments, we performed calibration scans using a vendor-

provided gradient echo (GRE) sequence to estimate the coil sensitivities maps (32). 

Moreover, we measured the actual spiral trajectory experienced by the spins using a 

specialized pulse sequence (33), which avoids the effects of trajectory distortion caused by 

various acquisition imperfections (e.g., eddy currents and gradient timing delays).
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Model Evaluation

We first evaluated the representational power of the proposed low-rank and subspace model 

in the “gold-standard” data which was fully sampled. The goal is to understand how the 

proposed model affects the accuracy of MR tissue parameter maps. Regarding the low-rank 

model evaluation, we formed the Casorati matrix C from the time-series images 

reconstructed from the fully-sampled data, and calculated its singular value spectrum. 

Furthermore, we calculated Eckart-Young approximations of C with different ranks using 

the singular value decomposition. Note that the rank-L Eckart-Young approximation Ĉ 
provides the best rank-L approximation of C in terms of minimizing the Frobenius norm of 

the approximation error, i.e., ||C − Ĉ ||F. For each Ĉ, we estimated the associated tissue 

parameter maps with the same signal evolution dictionary as the one in (30). Specifically, the 

dictionary contains 18838 entries of signal evolutions constructed based on the following 

parameter discretization scheme: the possible T1 values were set within [20, 3000] ms, with 

an increment of 10 ms; the possible T2 values were set within [10, 300] ms, with an 

increment of 5 ms. Here we ignore transmission radiofrequency (RF) field inhomogeneity 

(i.e.,  inhomogeneity) in the dictionary construction (more discussion on the  effect is 

in the Discussion section).

Regarding the evaluation of the subspace model, we extracted the dominant temporal 

subspaces of the dictionary D, and projected each row of C onto these subspaces to obtain 

low-rank approximations. More specifically, assuming that the rows of Ṽ ∈ ℂL×M span the 

dominant L-dimensional temporal subspace of D, the rank-L approximation of C, under the 

subspace model, can be expressed as C̃ = C(ṼHṼ) ∈ ℂN×M. For each C̃, we estimated the 

corresponding tissue parameter maps.

To assess the accuracy of reconstructed parameter maps, we used the following two metrics: 

(i) overall normalized root-mean-square error (NRMSE) = ||θ − θ̂||2/||θ||2, where θ and θ̂ 

respectively denote the tissue parameters obtained from the fully-sampled reference and 

reconstruction; (ii) voxelwise error = |θn − θ̂n|/θn, where θn and θn̂ respectively denote the 

tissue parameters at the nth voxel obtained from the reference and reconstruction. Here, the 

regions associated with the background, skull, scalp, and cerebrospinal fluid are excluded in 

calculating the overall NRMSE.

Image Reconstruction

In order to test the proposed model in clinically relevant data, we assessed the performance 

of the proposed method for image reconstruction with standard MRF acquisitions with a 48× 

acceleration. As described before, we pre-estimated the sensitivity maps and the temporal 

subspace, and then solved Eq. [7] to determine the spatial subspace. According to the model 

evaluation above and the number of measurements acquired, we empirically selected the 

rank L = 8 to ensure the good reconstruction performance (more discussion on rank 

selection can be found in the Discussion section). After reconstruction, we estimated tissue 

parameter maps using the pattern matching strategy as in the conventional approach. Here 

the same signal evolution dictionary as before was used for pattern matching.
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We compared the performance of the proposed method to the “gold-standard” reference 

data. Similarly, we computed the NMRSE and error maps of the conventional MRF 

reconstruction (1) and the ML reconstruction (3). Moreover, to evaluate the robustness of the 

methods with shorten acquisition lengths, we retrospectively took the k-space data 

associated with the first 700 TRs from the MRF acquisition with M = 1400, and manually 

formed a truncated MRF acquisition with M = 700. We compared the reconstruction 

performance at M = 700 with the one at M = 1400 for the first imaging slice. Finally, we 

performed a comparison of the proposed method with the conventional approach and the ML 

reconstruction for the second imaging slice with M = 900.

The above three reconstruction methods were implemented on a Linux workstation with 24 

Intel Xeon E5-2643, 3.40 GHz processors and 128 GB RAM using Matlab 2014b. 

Generally, the runtime of the above image reconstruction methods depends on the length of 

data acquisition. As a concrete example, for M = 700, the computation time of the 

conventional approach, ML reconstruction, and proposed method are 2 min, 36 min, and 22 

min, respectively. Here note that the ML reconstruction involves solving a nonconvex 

optimization problem, for which the reconstruction performance and runtime depend on the 

specific algorithm and initialization. Following (3), we solved the ML reconstruction by the 

alternating direction method of multipliers, and initialized it with the gridding 

reconstruction. For the proposed method, it is solved by the pre-conditioned conjugate 

gradient algorithm (a set of sample code can be accessed at https://sites.google.com/site/

zhaoboresearch/software

Results

We show representative results from the in vivo MRF experiments to illustrate the 

performance of the proposed method.

Model Evaluation

Figure 1 shows the results of the low-rank and subspace model evaluation. Here we aim to 

illustrate the model representational power with fully-sampled data. This provides 

benchmarks for image reconstruction with undersampled MRF acquisitions. Figure 1a plots 

the singular value spectrum of the Casorati matrix associated with the time-series images 

with M = 700. As expected, the singular values decay rapidly due to strong spatiotemporal 

correlation within the time-series images. Figure 1b plots the overall NRMSE of T1, T2, and 

spin density maps from the Eckart-Young approximations with the rank L ranging from 1 to 

30. As can be seen, with a relatively small rank value (e.g., L = 6 ~10), the low-rank 

approximations are able to provide very accurate T1, T2, and spin density maps (i.e., 

NRMSE < 1%).

Figure 1c plots the overall NRMSE of T1, T2, and spin density maps estimated from the 

proposed low-rank and subspace model. Interestingly, the proposed model provides even 

more accurate parameter maps than the Eckart-Young low-rank approximation. This is likely 

due to the fact that the Eckart-Young approximations are optimal in terms of minimizing the 

approximation errors, but the Eckart-Young subspaces, which are estimated from in vivo 

time-series images, are susceptible to noise perturbation. In contrast, the subspaces extracted 
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from the dictionary are noise free, which turns out to provide better accuracy. In the 

Supporting Material of the paper, Supporting Figure S1 shows the T1, T2, and spin density 

maps from the reference and the proposed model with L = 8, together with the associated 

voxelwise error maps. Consistent with the NRMSE plot shown in Figure 1c, the proposed 

model yields accurate tissue parameter maps. Qualitatively, the edge structure of these 

parameter maps is well preserved, which is highly desirable.

Image Reconstruction

Figure 2 shows the example time-series images obtained from the gridding reconstruction 

(employed by the conventional approach) and the proposed method with L = 8. Here the 

data are from the MRF acquisition with M = 700. For comparison, we also show the 

corresponding time-series images reconstructed from the fully-sampled data. Clearly, with 

the low-rank and subspace model, the proposed method produces much higher-quality time-

series images than the gridding reconstruction.

Supporting Figure S2 in the Supporting Material illustrates the subsequent pattern matching 

with the time-series images obtained from the fully-sampled data, the gridding 

reconstruction, and the proposed method. The plots show the intensity from a white-matter 

voxel. Although, with the spatiotemporal incoherence, the conventional approach manages 

to produce tissue parameters with reasonable accuracy, the high-quality time-series images 

reconstructed by the proposed method is able to provide estimates closer to the “gold-

standard” data.

Figure 3 shows the reconstructed T1 maps from the conventional approach, the ML 

reconstruction, and the proposed method with the two acquisition lengths, i.e., M = 700 and 

1400. The error maps were computed by comparing to the reference from the “gold-

standard” fully-sampled acquisition. Similarly, we show the reconstruction results for the T2 

maps and spin density maps in Figure 4 and Figure 5, respectively. As can be seen, all three 

reconstruction methods yield improved performance as the acquisition length doubles. But 

the proposed method outperforms the conventional approach and the ML reconstruction at 

both acquisition lengths. In particular, the proposed method with M = 700 provides even 

more accurate tissue parameter maps than the conventional approach with M = 1400.

Supporting Figure S3 in the Supporting Material shows the reconstructed tissue parameter 

maps associated with the slice 2 with the acquisition length M = 900. Similar to the results 

for the slice 1, the proposed method leads to significant improvement of accuracy over the 

conventional approach. Here with the low-rank and subspace model, the proposed method 

also provides better accuracy than the ML reconstruction.

Discussion

We have demonstrated the effectiveness of the proposed method in terms of improving the 

reconstruction accuracy and/or reducing data acquisition time for MRF. The proposed 

method utilizes the low-rank and subspace model to enable accurate MRF parameter 

estimates from highly-undersampled data. Note that it is fundamentally different from the 

recent work in (34), which employs the low-rank and subspace model to reduce the 
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dimensionality of the dictionary and thus speeds up the pattern matching for the 

conventional MRF reconstruction. Here we leverage the low-dimensional model to solve an 

ill-posed inverse problem for high-quality time-series image reconstruction. More 

specifically, for the work in (34), the reconstruction accuracy is similar to that of the 

conventional approach, while the computational efficiency is improved. In contrast, the 

proposed method provides much better accuracy over the conventional approach.

The proposed method requires selection of a proper rank value, which involves a 

fundamental trade-off between the model representational power and the amount of 

measurements collected. On one hand, as shown in Figure 1, a higher rank generally leads to 

a better representation of time-series images as well as more accurate tissue parameter maps. 

On the other hand, it requires collecting a larger number of measurements (i.e., longer 

acquisition time). A necessary (but not sufficient) condition for a well-posed least-squares 

problem in Eq. [7] is LN < PNc. In practice, due to temporal undersampling and correlated 

multicoil measurements, when the number of unknowns approaches the number of 

measurements, the conditioning of the inverse problem becomes worse, which can incur 

severe noise amplification. An effective means of addressing this trade-off is to incorporate 

additional regularization to improve the conditioning of the problem. For example, our early 

work (15,18) has demonstrated the effectiveness of enforcing a joint sparsity constraint on 

time-series images, although this constraint can result in a more complex optimization 

problem.

In this paper, we evaluated the performance of the proposed method with in vivo 

experiments in which the “gold standard” data were acquired from fully-sampled MRF 

experiments. Besides the experimental validation, we also carried out systematic simulation 

studies with a numerical brain phantom (the ground truth T1, T2, and spin density maps are 

shown in Supporting Figure S4). The simulation results can be found at the Supporting 

Material of the paper (see Supporting Figure S5 and Supporting Figure S6). Simply put, the 

proposed method leads to improved accuracy over the conventional MRF reconstruction and 

the ML reconstruction in the simulations, which is consistent with the in vivo results shown 

in the paper.

Over the past few years, the low-rank and subspace model-based imaging paradigm (9) has 

been successfully applied to a variety of imaging applications, including cardiac imaging 

(11, 35, 36), phase-contrast flow imaging (37, 38), speech imaging (39), functional MRI 

(40), spectroscopic imaging (41), and parameter mapping (12, 13, 15, 17, 42). Our 

contribution here is to utilize the low-dimensional subspace structure of magnetization 

dynamics to enable reconstruction of high-quality MRF time-series images from highly-

undersampled data. Rather than estimating a temporal subspace from some physically-

acquired training data, the proposed method determines the subspace structure directly from 

the magnetization evolution dictionary (obtained from Bloch simulations), alleviating the 

burden of acquiring additional training data. As demonstrated in this work, this subspace 

estimation scheme works well for neuroimaging applications, where physiological motion 

often does not dominate. Nonetheless, this may have potential limitations. Specifically, such 

a scheme relies on the assumption that an accurate dictionary for spin dynamics is known a 

priori. It may be too stringent for certain quantitative imaging application (e.g., applying 
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MRF to cardiac imaging (43) or fetal imaging (44)), in which the subspace structure cannot 

be not fully described by the spin-dynamics alone. In such scenarios, acquiring training data, 

e.g., with a navigator approach (9, 11, 15, 35), can be beneficial in terms of effectively 

capturing physiological motion (e.g., heart beating or breathing motion). Alternatively, we 

could also perform simultaneous estimation of spatial subspace and temporal subspace from 

all the measurements in an iterative manner using advanced algorithms (e.g., (10, 23, 25)). It 

is worthwhile to systematically explore these extensions in future work.

In this work, we have not considered  inhomogeneity for neuroimaging applications at 

3T. Nonetheless, for body imaging (45) or ultrahigh field imaging applications (46, 47), 

inhomogeneity can be significantly more severe, which should be properly compensated. 

Given that the proposed method is based on a two-step procedure as the conventional 

approach, the existing  inhomogeneity compensation schemes for MRF (30, 45, 47) can 

be applied after the proposed time-series image reconstruction. Here note that modeling 

inhomogeneity can lead to an expanded signal evolution dictionary, which may require a 

higher-dimensional temporal subspace (or a larger rank) for image reconstruction to ensure 

good accuracy.

Recently, there has been active research in developing model-based imaging methods to 

accelerate conventional MR relaxometry (e.g., (12–17, 48–56)). In this respect, the 

distinction between MRF and these accelerated parameter mapping methods can become 

blurred, and the existing model-based relaxometry methods could potentially be applied to 

accelerate MRF. Nonetheless, MRF experiments have a number of unique characteristics 

that are different from conventional MR relaxometry (e.g., randomized acquisitions). The 

effectiveness of applying these methods to MRF should be evaluated on a method-by-

method basis.

Conclusions

This paper presents a model-based reconstruction method for MRF. It effectively integrates 

the low-rank and subspace modeling with parallel imaging to reconstruct high-quality time-

series images from highly-undersampled MRF acquisitions. These improved time-series 

image reconstructions are shown to enhance the accuracy of resulting tissue parameter maps. 

The proposed method employs a simple least-squares reconstruction formulation, allowing 

for efficient computation. Given its simplicity and effectiveness in enabling reduced 

acquisition times, we expect that the proposed method will have a practical impact on rapid 

quantitative MRI with MRF.
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Acknowledgments

This work was supported in part by the National Institute of Health under Grants: NIH-R01-EB017219, NIH-R01-
EB017337, NIH-R01-NS089212, NIH-P41-EB015896, NIH-U01-MH093765, and NIH-R24-MH106096.

Zhao et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine J, Duerk J, Griswold MA. Magnetic resonance 
fingerprinting. Nature. 2013; 495:187–192. [PubMed: 23486058] 

2. Zhao, B., Lam, F., Bilgic, B., Ye, H., Setsompop, K. Maximum likelihood reconstruction for 
magnetic resonance fingerprinting. Proceedings of IEEE International Symposium on Biomedical 
Imaging; New York City, USA. 2015. p. 905-909.

3. Zhao B, Setsompop K, Ye H, Cauley SF, Wald LL. Maximum likelihood reconstruction for 
magnetic resonance fingerprinting. IEEE Trans Med Imaging. 2016; 35:1812–1823. [PubMed: 
26915119] 

4. Ye H, Ma D, Jiang Y, Cauley SF, Du Y, Wald LL, Griswold MA, Setsompop K. Accelerating 
magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) 
acquisitions. Magn Reson Med. 2016; 75:2078–2085. [PubMed: 26059430] 

5. Zhao, B. Model-based iterative reconstruction for magnetic resonance fingerprinting. Proceedings of 
IEEE International Conference on Image Processing; Québec City, Canada. 2015. p. 3392-3396.

6. Assländer J, Glaser SJ, Hennig J. Pseudo steady-state free precession for MR-Fingerprinting. Magn 
Reson Med. 2017; 77:1151–1161. [PubMed: 27079826] 

7. Davies M, Puy G, Vandergheynst P, Wiaux Y. A compressed sensing framework for magnetic 
resonance fingerprinting. SIAM J Imaging Sci. 2014; 7:2623–2656.

8. Pierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. 
Magn Reson Med. 2016; 75:2481–2492. [PubMed: 26132462] 

9. Liang, ZP. Spatiotemporal imaging with partially separable functions. Proceedings of IEEE 
International Symposium on Biomedical Imaging; Washington DC, USA. 2007. p. 988-991.

10. Zhao, B., Haldar, JP., Brinegar, C., Liang, ZP. Low rank matrix recovery for real-time cardiac MRI. 
Proceedings of IEEE International Symposium on Biomedical Imaging; Rotterdam, Netherlands. 
2010. p. 996-999.

11. Zhao B, Haldar JP, Christodoulou AG, Liang ZP. Image reconstruction from highly undersampled 
(k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging. 
2012; 31:1809–1820. [PubMed: 22695345] 

12. Petzschner FH, Ponce IP, Blaimer M, Jakob PM, Breuer FA. Fast MR parameter mapping using k-t 
principal component analysis. Magn Reson Med. 2011; 66:706–716. [PubMed: 21394772] 

13. Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled 
data by reconstruction of principal component coefficient maps using compressed sensing. Magn 
Reson Med. 2012; 67:1355–1366. [PubMed: 22190358] 

14. Zhao, B., Lu, W., Liang, ZP. Highly accelerated parameter mapping with joint partial separability 
and sparsity constraints. Proceedings of the 20th Annual Meeting of ISMRM; Melbourne, 
Australia. 2012. p. 2233

15. Zhao B, Lu W, Hitchens TK, Lam F, Ho C, Liang ZP. Accelerated MR parameter mapping with 
low-rank and sparsity constraints. Magn Reson Med. 2015; 74:489–498. [PubMed: 25163720] 

16. Zhang T, Pauly JM, Levesque IR. Accelerating parameter mapping with a locally low rank 
constraint. Magn Reson Med. 2015; 73:655–661. [PubMed: 24500817] 

17. Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T2 shuffling: Sharp, 
multicontrast, volumetric fast spin-echo imaging. Magn Reson Med. 2017; 77:180–195. [PubMed: 
26786745] 

18. Zhao, B., Setsompop, K., Gagoski, B., Ye, H., Adalsteinsson, E., Grant, PE., Wald, LL. A model-
based approach to accelerated magnetic resonance fingerprinting time series reconstruction. 
Proceedings of the 24th Annual Meeting of ISMRM; Singapore. 2016. p. 871

19. Liao, C., Cao, X., Ye, H., Chen, Y., He, H., Chen, S., Du, Y., Hui, L., Zhong, J. Accelerated MR 
fingerprinting with low-rank and sparsity constraint. Proceedings of the 24th Annual Meeting of 
ISMRM; Singapore. 2016. p. 4227

20. Doneva, M., Amthor, T., Koken, P., Sommer, K., Börnert, P. Low-rank matrix completion-based 
reconstruction for undersampled magnetic resonance fingerprinting. Proceedings of the 24th 
Annual Meeting of ISMRM; Singapore. 2016. p. 432

Zhao et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Mazor, G., Weizman, L., Tal, A., Eldar, Y. Low rank magnetic resonance fingerprinting. 
Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society; Orlando, USA. 2016. p. 439-442.

22. Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank 
structure: k-t SLR. IEEE Trans Med Imaging. 2011; 30:1042–1054. [PubMed: 21292593] 

23. Haldar JP, Hernando D. Rank-constrained solutions to linear matrix equations using 
PowerFactorization. IEEE Signal Process Lett. 2009:584–587. [PubMed: 22389578] 

24. Shen Y, Wen Z, Zhang Y. Augmented Lagrangian alternating direction method for matrix 
separation based on low-rank factorization. Optim Methods Softw. 2014; 29:239–263.

25. Haldar, JP., Liang, ZP. Spatiotemporal imaging with partially separable functions: A matrix 
recovery approach. Proceedings of IEEE International Symposium on Biomedical Imaging; 
Rotterdam, Netherlands. 2010. p. 716-719.

26. Recht B, Fazel M, Parrilo PA. Guaranteed minimum-rank solutions of linear matrix equations via 
nuclear norm minimization. SIAM Rev. 2010; 52:471–501.

27. Dai W, Kerman E, Milenkovic O. A geometric approach to low-rank matrix completion. IEEE 
Trans Inf Theory. 2012; 58:237–247.

28. Wen Z, Yin W, Zhang Y. Solving a low-rank factorization model for matrix completion by a 
nonlinear successive over-relaxation algorithm. Math Programming Comput. 2012; 4:333–361.

29. Sen Gupta, A., Liang, ZP. Dynamic imaging by temporal modeling with principle component 
analysis. Proceedings of the 9th Annual Meeting of ISMRM; Glasgow, Scotland. 2001. p. 10

30. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with 
steady state precession (FISP) with spiral readout. Magn Reson Med. 2015; 74:1621–1631. 
[PubMed: 25491018] 

31. Gao Y, Chen Y, Ma D, Jiang Y, Herrmann KA, Vincent JA, Dell KM, Drumm ML, Brady-Kalnay 
SM, Griswold MA, Flask CA, Lu L. Preclinical MR fingerprinting (MRF) at 7 T: Effective 
quantitative imaging for rodent disease models. NMR Biomed. 2015; 28:384–394. [PubMed: 
25639694] 

32. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT–an 
eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn Reson 
Med. 2014; 71:990–1001. [PubMed: 23649942] 

33. Tan H, Meyer CH. Estimation of k-space trajectories in spiral MRI. Magn Reson Med. 2009; 
61:1396–1404. [PubMed: 19353671] 

34. McGivney D, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V, Griswold MA. SVD compression for 
magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014; 33:2311–
2322. [PubMed: 25029380] 

35. Christodoulou AG, Zhang H, Zhao B, Hitchens TK, Ho C, Liang ZP. High-resolution 
cardiovascular MRI by integrating parallel imaging with low-rank and sparse modeling. IEEE 
Trans Bio Med Eng. 2013; 60:3083–3092.

36. Velikina JV, Samsonov AA. Reconstruction of dynamic image series from undersampled MRI data 
using data-driven model consistency condition (MOCCO). Magn Reson Med. 2015; 74:1279–
1290. [PubMed: 25399724] 

37. Sun A, Zhao B, Ma K, Zhou Z, He L, Li R, Yuan C. Accelerated phase contrast flow imaging with 
direct complex difference reconstruction. Magn Reson Med. 2017; 77:1036–1048. [PubMed: 
27016025] 

38. Sun A, Zhao B, Li Y, He Q, Li R, Yuan C. Real-time phase-contrast flow cardiovascular magnetic 
resonance with low-rank modeling and parallel imaging. J Cardiovasc Magn Reson. 2017; 19:19. 
[PubMed: 28183320] 

39. Fu M, Zhao B, Carignan C, Shosted RK, Perry JL, Kuehn DP, Liang ZP, Sutton BP. High-
resolution dynamic speech imaging with joint low-rank and sparsity constraints. Magn Reson 
Med. 2015; 73:1820–1832. [PubMed: 24912452] 

40. Lam, F., Zhao, B., Liu, Y., Liang, ZP., Weiner, M., Schuff, N. Accelerated fMRI using low-rank 
model and sparsity constraints. Proceedings of the 23rd Annual Meeting of ISMRM; Salt Lake 
City, Utah, USA. 2013. p. 2620

Zhao et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Lam F, Liang ZP. A subspace approach to high-resolution spectroscopic imaging. Magn Reson 
Med. 2014; 71:1349–1357. [PubMed: 24496655] 

42. Christodoulou AG, Redler G, Clifford B, Liang ZP, Halpern HJ, Epel B. Fast dynamic electron 
paramagnetic resonance (EPR) oxygen imaging using low-rank tensors. J Magn Reson. 2016; 
270:176–182. [PubMed: 27498337] 

43. Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold MA, Seiberlich N. MR fingerprinting for 
rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 2017; 
77:1446–1458. [PubMed: 27038043] 

44. Gagoski, B., Ye, H., Cauley, SF., Bhat, H., Setsompop, K., Chatnuntawech, I., Martin, A., Jiang, Y., 
Griswold, MA., Adalsteinsson, E., Grant, PE., Wald, LL. Magnetic resonance fingerprinting for 
fetal imaging at 3T - initial results. Proceedings of the 23rd Annual Meeting of ISMRM; Toronto, 
Canada. 2015. p. 3429

45. Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, Wright KL, Seiberlich N, Griswold MA, 
Gulani V. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016; 279:278–
286. [PubMed: 26794935] 

46. Jiang, Y., Ye, H., Bilgic, B., Ma, D., Witzel, T., Cauley, SF., Adalsteinsson, E., Setsompop, K., 
Griswold, MA., Wald, LL. Simultaneous T1 and T2 quantification of the human brain at 7 Tesla by 
MR fingerprinting. Proceedings of the 23rd Annual Meeting of ISMRM; Toronto, Canada. 2015. 
p. 3199

47. Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, Sodickson DK. Multiparametric 
imaging with heterogeneous radiofrequency fields. Nat Commun. 2016; 7:12445–12445. 
[PubMed: 27526996] 

48. Haldar, JP., Hernando, D., Liang, ZP. Super-resolution reconstruction of MR image sequences with 
contrast modeling. Proceedings of IEEE International Symposium on Biomedical Imaging; 
Boston, USA. 2009. p. 266-269.

49. Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing 
reconstruction for magnetic resonance parameter mapping. Magn Reson Med. 2010; 64:1114–
1120. [PubMed: 20564599] 

50. Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-
promoting regularization in parametric dimension. Magn Reson Med. 2013; 70:1263–1273. 
[PubMed: 23213053] 

51. Zhao, B., Lam, F., Lu, W., Liang, ZP. Model-based MR parameter mapping with sparsity 
constraint. Proceedings of IEEE International Symposium on Biomedical Imaging; San Francisco, 
USA. 2013. p. 1-4.

52. Zhao B, Lam F, Liang ZP. Model-based MR parameter mapping with sparsity constraints: 
Parameter estimation and performance bounds. IEEE Trans Med Imaging. 2014; 33:1832–1844. 
[PubMed: 24833520] 

53. Bhave S, Lingala SG, Johnson CP, Magnotta VA, Jacob M. Accelerated whole-brain multi-
parameter mapping using blind compressed sensing. Magn Reson Med. 2016; 75:1175–1186. 
[PubMed: 25850952] 

54. Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 
relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med. 2016; 
76:1865–1878. [PubMed: 26762702] 

55. Zhou Y, Pandit P, Pedoia V, Rivoire J, Wang Y, Liang D, Li X, Ying L. Accelerating t1ρ cartilage 
imaging using compressed sensing with iterative locally adapted support detection and JSENSE. 
Magn Reson Med. 2016; 75:1617–1629. [PubMed: 26010735] 

56. Lee D, Jin KH, Kim EY, Park SH, Ye JC. Acceleration of MR parameter mapping using 
annihilating filter-based low rank hankel matrix (ALOHA). Magn Reson Med. 2016; 76:1848–
1864. [PubMed: 26728777] 

Zhao et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Low-rank approximations of a Casorati matrix associated with a set of in vivo MRF time-

series images with M = 700. a: Normalized singular value spectrum of the Casorati matrix. 

b: NRMSE of MR tissue parameters estimated from the Eckart-Yong approximations with 

different ranks. c: NRMSE of MR tissue parameters estimated from the proposed low-rank 

and subspace models with different ranks.
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Fig. 2. 
Representative MRF time-series images from the reference (reconstructed with a set of 

fully-sampled data), as well as the gridding reconstruction and the proposed low-rank 

reconstruction (both reconstructed with a 48× accelerated spiral acquisition). a: Time-series 

images from the reference. b: Time-series images from the gridding reconstruction. c: Time-

series images from the proposed low-rank reconstruction. Here the regions associated with 

the background are set to be zero. As can be seen, the proposed method reconstructs high-

quality time-series images from highly-undersampled data, whereas the gridding 

reconstruction suffers from severe aliasing artifacts.
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Fig. 3. 
Reconstructed T1 maps for the slice 1 from the conventional MRF reconstruction, the ML 

reconstruction, and the proposed method (L = 8) with two acquisition lengths (i.e., M = 700 

and 1400). a: Reconstructed T1 maps and corresponding error maps from the acquisition 

length M = 700. b: Reconstructed T1 maps and corresponding error maps from the 

acquisition length M = 1400. Note that the overall NRMSE is labeled at the lower right 

corner of each error map, and that the regions associated with the background, skull, scalp, 

and CSF are not included into the NRMSE calculation, and are set to be zero in each error 

map.
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Fig. 4. 
Reconstructed T2 maps for the slice 1 from the conventional MRF reconstruction, the ML 

reconstruction, and the proposed method (L = 8) with two acquisition lengths (i.e., M = 700 

and 1400). a: Reconstructed T2 maps and corresponding error maps from the acquisition 

length M = 700. b: Reconstructed T2 maps and corresponding error maps from the 

acquisition length M = 1400. Note that the overall NRMSE is labeled at the lower right 

corner of each error map, and that the regions associated with the background, skull, scalp, 

and CSF are not included into the NRMSE calculation, and are set to be zero in each error 

map.
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Fig. 5. 
Reconstructed spin density maps for the slice 1 from the conventional MRF reconstruction, 

the ML reconstruction, and the proposed method (L = 8) with two acquisition lengths (i.e., 

M = 700 and 1400). a: Reconstructed spin density maps and corresponding error maps from 

the acquisition length M = 700. b: Reconstructed spin density maps and corresponding error 

maps from the acquisition length M = 1400. Note that the overall NRMSE is labeled at the 

lower right corner of each error map, and that the regions associated with the background, 

skull, scalp, and CSF are not included into the NRMSE calculation, and are set to be zero in 

each error map.
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