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Abstract

Underdominant mutations have fixed between divergent species, yet classical models suggest that 

rare underdominant alleles are purged quickly except in small or subdivided populations. We 

predict that underdominant alleles that also influence mate choice, such as those affecting 

coloration patterns visible to mates and predators alike, can fix more readily. We analyze a 

mechanistic model of positive assortative mating in which individuals have n chances to sample 

compatible mates. This one-parameter model naturally spans random mating (n =1) and complete 

assortment (n → ∞), yet it produces sexual selection whose strength depends non-monotonically 

on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. 

As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, 

even though sexual selection and underdominance independently each suppress rare alleles. This 

mechanism allows underdominant alleles to fix in large populations and illustrates how life history 

can affect evolutionary change.
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1. Introduction

An allele is underdominant if it experiences reduced fitness as a heterozygote compared to 

either homozygote. Underdominance reduces diversity and has been studied as a mechanism 

for population differentiation and speciation [Wright, 1941, Lande, 1979]. Underdominance 

typically occurs when the two homologous gene copies at a diploid locus must act in concert 

with one another. One classical example is a chromosomal alteration that disrupts meiosis in 

heterozygotes [Lande, 1979]. Although much research on the fate of underdominant alleles 

has focused on chromosomal rearrangements, underdominant alleles arise and have 

evolutionary consequences in many other contexts. Underdominance has been observed at 

loci that regulate gene expression [Smith et al., 2011, Stewart et al., 2013], and engineered 

underdominant transgenes play an important role in strategies to control insect disease 

vectors [Sinkins and Gould, 2006, Reeves et al., 2014]. Underdominance has also been 

observed at loci controlling quantitative traits, such as body size [Kenney-Hunt et al., 2006], 

that are known to influence mate choice [Crespi, 1989]. Likewise, heterozygote deficits in 

hybrid zones have been observed at the loci encoding color patterning in Heliconius 
butterfly species, where coloration has been implicated both in assortative mating [Jiggins et 

al., 1996, Arias et al., 2008] and also in viability via the avoidance of predators [Mallet and 
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Barton, 1989, Kapan, 2001, Langham and Benkman, 2004]. Motivated by these examples, 

we focus here on the fate of alleles that simultaneously influence mate choice and viability. 

We ask whether assortative mating will facilitate or impede the fixation of an underdominant 

allele.

In general, the fixation of an underdominant allele is exceedingly rare, at least in theory. A 

classical approximation due to Lande [1979] for the probability of fixation u of a novel 

underdominant allele with heterozygote disadvantage s in a well-mixed population of size N 
is:

(1)

This fixation probability decreases exponentially with the effective population size, Ne. 

Under this analysis fixation through drift of a novel underdominant allele is possible only 

when the effective population size is extremely small — on the order of tens or hundreds of 

individuals. Nonetheless, empirical observations provide strong evidence that 

underdominant alleles have indeed fixed in populations.

Several possible resolutions to this paradox have been proposed. One common solution is 

based on Wright’s shifting balance theory [Wright, 1931]. According to Eq. 1, 

underdominant alleles may fix in extremely small populations, so that fixation across a 

species as a whole might occur through successive fixation in small, mostly-isolated 

subpopulations [Wright, 1941, Lande, 1979, Slatkin, 1981, Barton and Rouhani, 1991, 

Whitlock, 2003, Altrock et al., 2011]. However, for this process to occur effectively it is 

typically necessary to include extinction and recolonization of demes [Lande, 1979, 

Michalakis and Olivieri, 1993, Roze and Rousset, 2003]. Other theoretically possible 

explanations [Hedrick, 1981] include meiotic drive and partial selfing [Charlesworth, 1992]. 

Other authors have investigated linkage to locally adaptive alleles [Navarro and Barton, 

2003, Kirkpatrick and Barton, 2006].

Here we consider mate choice as a mechanism to explain the fixation of underdominant 

alleles at loci that influence both mate choice and viability. Phenotypes that serve as mating 

cues are often also subject to surveillance by predators, where rarity is typically detrimental 

to survivorship. In the context of coloration patterns in the Heliconia, for example, rare 

phenotypes often both experience increased predation and also determine assortment [Mallet 

and Barton, 1989, Kapan, 2001, Langham and Benkman, 2004, Jiggins et al., 1996, Arias et 

al., 2008]. Likewise, in vertebrates ranging from cichlids [Sefc et al., 2014, Anderson et al., 

2015] to finches [Blount, 2004, Blount et al., 2003], carotenoid coloration phenotypes are 

well known to influence mate choice and viability alike.

A broad literature has successfully addressed questions about diversity of mating systems in 

nature [Andersson, 1994, Andersson and Simmons, 2006, Clutton-Brock and McAuliffe, 

2009], their evolutionary maintenance and optimality [Lande, 1981, Lande and Schemske, 

1985, Real, 1990, Goodwillie et al., 2005, Kokko et al., 2006, Jones and Ratterman, 2009, 
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Wiegmann et al., 2010], and their consequence for allele frequency change (e.g. inbreeding 

depression [Charlesworth, 1992, Nagylaki, 1992, Whitlock, 2000]). While there are many 

analytical studies on the effects of mating systems on allele dynamics, they tend to provide 

either a deterministic treatment under a specific model of mate choice [Karlin, 1978, 

O’Donald, 1980, Kirkpatrick, 1982, Seger, 1985, Otto et al., 2008], or a full stochastic 

treatment but only for mating systems that are essentially equivalent to a fixed population 

structure (i.e. a constant inbreeding coefficient, F, [Caballero and Hill, 1992, Damgaard, 

2000, Roze and Rousset, 2003, Glémin, 2012]).

Rather than stipulate a fixed population structure or a constant probability of selfing, we will 

provide a stochastic analysis of a mechanistic model of assortative mating. The model is 

defined in terms of the absolute number of individuals, n, that an organism can survey before 

eventually choosing a mate. This one-parameter model of positive assortative mating 

coincides with classical partial self-fertilization in two limiting cases. For n = 1 the model 

corresponds to random mating, whereas as n → ∞ it corresponds to complete assortment. 

Although the fixation probability of a new mutation under partial selfing smoothly 

interpolates between these two extreme cases [Charlesworth, 1992], we will show that the 

fixation probability in our model has a non-monotonic dependence on the life-history 

parameter, n. Increasing the number of mating opportunities beyond n = 1 initially inhibits 

the fixation of underdominant alleles, but increasing n yet further eventually facilitates 

fixation, allowing rates approaching that of neutral substitutions. These results are surprising 

because the mate choice model induces a form of positive frequency-dependent sexual 

selection that, in the absence of viability selection, always inhibits the fixation of rare 

alleles. We will explain these results in terms of the geometry of a slow manifold that arises 

under preferential mating, analogous to the Hardy-Weinberg equilibrium for random mating, 

and we discuss implications for the evolution of underdominant alleles in nature.

2. A mechanistic model of mate choice

Models of mate choice, assortative mating, and sexual selection have been extensively 

studied and characterized [Gavrilets, 2004]. In partial self-fertilization or mixed mating 

models, individuals mate with themselves with a fixed probability and the mating system 

does not alter allele frequencies [Haldane, 1924]. In partial assortative or preferential mating 

models, parents prefer to mate with their own genotype, or with particular other genotypes, 

and the mating system itself can alter allele frequencies by sexual selection. Such models are 

typically formulated [Karlin, 1978] by specifying, exogenously, the chance that one 

genotype will mate with another genotype, which allows mating with rare types according to 

preference regardless of the frequency of the rare type. This formulation implies that 

individuals are able to census all other individuals in the entire population in the decision to 

mate — which is unrealistic for many biological populations. Even some models that 

incorporate a search cost [Otto et al., 2008] still have the property that the cost of finding 

vanishingly rare types is fixed, regardless of their frequency.

Here we study a one-locus, two-allele model of hermaphroditic diploid individuals in which 

parents prefer to mate with their own genotype. This models situations where each genotype 

has a distinct, visible phenotype subject to assortative mating, and viability selection 
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disfavors the heterozygous phenotype. Over the course of successive discrete generations we 

track the frequencies of all three diploid genotypes, xi for i ∈ {aa, aA, AA}, in a population 

of constant size N. A parent can mate with any individual from a pool of n prospective 

mates, drawn uniformly with replacement from the population. If there is a mate of the 

parent’s own genotype among these n prospective mates, then the parent chooses that mate; 

otherwise, the parent chooses uniformly at random from the pool of n prospective mates. 

The mating always produces one offspring. This model is equivalently described as parents 

having n chances to find a compatible mate by sampling randomly from the population. 

Parents sample mates from the population up to n times, mating immediately with any 

individual of their own genotype, or ultimately accepting any genotype on their nth chance. 

Because all parents choose among n potential partners, we call this the n-choice model. 

Several similar models, proposed by O’Donald [1980] and Janetos [1980], have previously 

been analyzed in a deterministic setting [O’Donald, 1980, Seger, 1985].

The n-choice model is a simple, mechanistic implementation of positive assortative mating 

that accounts for the fact that in reality rare genotypes are less likely to find preferred mates. 

Importantly, the model does not rely on an intrinsic capacity for selfing. In other words, 

there is no fixed chance that an individual will reproduce with its own genotype regardless of 

the frequency of that genotype. Rather, individuals census a limited number of possible 

mates from the population with replacement. While this sampling scheme includes a small 

probability that an individual will ‘encounter’ and mate with itself, we demonstrate 

robustness of the results to this and other biological assumptions in the Discussion section.

The outcomes of mating are dependent on all genotype frequencies, and so we must tabulate 

the probability of each mating [Nagylaki, 1992]. The n-choice model does not explicitly 

distinguish between sexes, as with hermaphroditic or monoecious populations. Nevertheless, 

we may consider the mate-choosing parent in any pairing as the “female” or macrogamete-

donor parent. According to the model, the probability that a female (i.e. mate-choosing) 

parent with diploid genotype i finds a mate of her own genotype is (1−(1−xi)n). Otherwise, 

the parent reproduces with a different genotype with probability proportional to that 

genotype’s frequency in the population. The probability distribution of mating types G 
conditional on the female’s genotype P is thus

The genotypic distribution of offspring from a given mating pair is Mendelian. We can 

therefore compute the distribution of zygotic genotypes Z after mate choice and 

reproduction by conditioning on the distribution of matings:

(2)
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where Pr(Z =k|G =i × j) denote the standard Mendelian probabilities, and i, j, k range over 

the three diploid genotypes aa, aA, and AA.

Following mate choice and production of a large zygotic pool we assume that viability 

selection modifies the frequencies of zygotic genotypes. The subsequent generation of 

reproductive adults is then drawn from the post-selection zygotic pool. Assuming the zygote 

pool is very large relative to the population size, the genotype of each surviving sampled 

adult in the next generation is drawn from the trinomial, fitness-weighted zygote 

distribution. Genotype i is drawn with probability

(3)

We express the fitness scheme for underdominant alleles as waa =wAA =1, and waA =1− s.

3. Analysis

We explore the influence of mate choice on the fixation rate of alleles by analyzing the n-

choice assortative mating model in finite populations.

In a finite population of constant size N adults, the frequencies of the adult genotypes of the 

next generation are drawn from the trinomial distribution with the probability of genotype i 
given by Eq. 3. We denote the outcome of this trinomial draw, for each genotype i ∈ {aa, aA, 

AA}, by . In other words, the values  denote the frequencies of the three genotypes in the 

next generation of adults, given the frequencies xi in the current generation.

The expected frequency of genotype i among adults in the next generation is given simply 

by the frequency of that genotype in the post-selection zygotes, that is by Eq. 3 above, which 

we henceforth denote . Under the multinomial sampling assumption the variance in the 

frequency of genotype i among the adult individuals in the next generation is simply 

, and the covariance between different genotypes is .

Genotype frequencies exist on the simplex xaa + xaA + xAA = 1, xi > 0. We can thus remove 

one variable from the model by tracking genotype frequencies in a two-dimensional basis. 

We will track the frequency of the a allele among adults, denoted p = xaa +(1/2)xaA, and one-

half the frequency of heterozygous adults, denoted h = xaA/2. One-half the frequency of 

heterozygotes may be thought of as the frequency of the a allele present in heterozygotes, 

and so it has the same units (allele copy frequency) as p. The coordinate h is preferable to 

other measures of heterozygosity, such as the quantity xaA/(p(1−p)), because it does not 

depend on allele frequency p.

We can express the expected allele frequency E(p′) and the expected heterozygous allele 

frequency E(h′) in the next generation in terms of the current frequencies p and h. To do so, 
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we first write the mean allele and heterozygote frequencies among zygotes prior to selection 

as π and η in terms of p, q =1−p and h by expanding Eq. 2:

(4a)

(4b)

We then use Eq. 3 to obtain expressions for the frequencies of post-selection zygotes in the 

(p, h) basis, which are the expected frequencies of adults in the next generation:

(5)

Finally, the variance in adult allele frequencies in the next generation can then be written as

(6)

Here we see that Cov(p′, h′) is positive only if E(p′) < 1/2. This expectation and variance 

will be sufficient to develop a diffusion approximation to the model, along the lines of 

Kimura [1964].

3.1. Behavior in two classical limits

When the sampled pool of prospective mates has only one individual, n = 1, or when the 

pool becomes much larger than the population itself, n → ∞, the n-choice mating model 
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corresponds precisely to two classical population models: random mating and complete 

inbreeding, respectively.

When only one prospective mate is allowed per parent, n = 1, the model reduces to the 

classical model of an underdominant allele in a randomly mating population. Eqs. 4 simplify 

to π = p and η = p(1− p). Thus the genotype frequencies among zygotes are at Hardy-

Weinberg equilibrium, and viability selection proceeds as in ordinary underdominance with 

E(p′)=(p−sp(1−p))/(1−2sp(1−p)). When s =0, the dynamics are neutral on 2N haplotypes. 

When there is selection against heterozygotes, s > 0, then the fixation probability of a novel 

allele agrees with Lande’s classic expression, given by equation 1.

On the other hand, when the number of mating opportunities becomes very large, n → ∞, 

preferred genotypes are always available for mating, and the model is equivalent to complete 

assortment. As we take n to infinity in Eq. 4, the frequency of heterozygotes among zygotes 

approaches η = h/2. That is, the frequency of heterozygotes is reduced by half at each 

generation. The population thus rapidly approaches heterozygote frequency zero. Setting h = 

0 in Eq. 4 and taking n to infinity gives π = p. As selection acts only on heterozygotes, E(p′) 

= p and the dynamics are neutral. The variance of p′ is E(p′)(1−E(p′))/N. This variance is 

the same as that for a population of N haplotypes, rather than the 2N actually present in the 

population. Because of complete assortment, each diploid individual behaves roughly as a 

single haplotype. In this limit of complete assortment, the dynamics of genotype frequencies 

are always neutral, regardless of s, and the fixation probability of a novel allele is always 

1/2N.

When the number of mating opportunities is intermediate between these two extremes, 

namely 1 < n < ∞, the dynamics of the n-choice model are neither neutral nor the same as 

the dynamics of classical underdominance. Importantly, these dynamics may change allele 

frequencies dramatically due to a mix of sexual selection and underdominant selection. 

Analyzing these two-dimensional dynamics requires the development of an appropriate 

diffusion approximation.

3.2. Diffusion approximation

We adopt the techniques used to analyze the fixation probability of an underdominant allele 

under random mating to derive a more general expression for the n-choice mating model. 

Under the diffusion limit of Kimura [1964], the probability density ϕ(p, h, τ) of observing 

allele frequencies p and h evolves in time according to the standard Kolmogorov forward 

equation [Gardiner, 2009], which depends on the instantaneous mean and variance-

covariance matrix of the changes in allele frequencies.

We find the instantaneous mean and variance of allele frequency changes, Mi and Vij, by 

rescaling the discrete model by the population size, N. To arrive at a non-trivial diffusion 

limit we adopt a slight variant of the model above, in which only a fraction f of the 

population undergoes mate choice each generation, while the remainder of the population is 

sampled according to strict clonal reproduction (See Supp Text 1). We take the limit as N 
approaches infinity, scaling f and s such that Nf = ζ and Ns = γ are held constant. The 

diffusion equation becomes (see Methods for derivation)
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(7)

In general, this diffusion in allele-frequency space is two-dimensional and well known to be 

computationally formidable [Epstein and Mazzeo, 2013]. In the next section we introduce a 

one-dimensional approximation that makes the diffusion tractable.

3.3. Diffusion along the slow manifold

The dynamics in two-dimensional diffusions sometimes approach and remain in the vicinity 

of a one-dimensional curve, until absorption into a boundary. This behavior can be 

interpreted as a separation of timescales [Parsons and Rogers, 2015]: there is fast approach 

to a lower-dimensional manifold, and then slow diffusion along the “slow manifold”. In the 

case of random mating for a single-locus diploid model, for example, Kimura’s one-

dimensional diffusion works because genotype frequencies are assumed to be at Hardy-

Weinberg equilibrium at all times. The quasi-linkage equilibrium approximation in 

multilocus models [Kimura, 1965] is another example. For monoecious random mating, 

approach to the manifold of Hardy-Weinberg equilibrium takes only a single generation, 

which is instantaneous in the diffusion timescale. In other mating systems, such as random 

mating with separate sexes, equilibrium is reached after two generations of mating, or the 

slow manifold may be approached geometrically. Some dynamics, such as clonal 

reproduction, do not approach any lower-dimensional sub-manifold whatsoever, and so they 

exhibit truly two-dimensional diffusions.

Principled approaches to determining the existence and form of the slow manifold are 

complex [Parsons and Rogers, 2015]. Nonetheless, the dynamics of the n-choice mating 

model clearly exhibit timescale separation when viability selection or participation in the 

mating system are strong (Ns ≫ 10 or Nf ≫ 10), which can be seen in Fig. 1. When Nf and 

Ns are both weak, convergence to the manifold is slower than diffusion in genotype space 

due to clonal reproduction. However, when Ns and Nf are zero, the diffusion equation (7) 

correspond to classical clonal diffusion. In practice, we find the quality of the approximation 

good whenever Nf > Ns, at any value of n. We analyze the diffusion along this slow 

manifold, as opposed to other techniques, because of its simplicity and analogy to Hardy-

Weinberg equilibrium.

To determine the manifold of equilibrium genotypic frequencies in the n-choice model we 

use the simple principle that frequencies at equilibrium should stay at equilibrium. 

Mathematically, this implies the condition that the infinitesimal mean change in frequencies 
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(p, h) must always be tangent to the slow manifold. Thus, the slow manifold can be defined 

as a parametric curve (p(l), h(l)) such that

(8)

This differential equation has an infinite family of solutions. Fortunately there are additional 

criteria for equilibrium genotypic frequencies. Since rare alleles are always present as 

heterozygotes, dp(l)/dh(l) must approach 1 as l approaches infinity. This criterion in terms of 

long times is difficult to use in practice, and so we use the symmetry of the dynamics: when 

p = 1/2the slow manifold is horizontal, meaning E(h′) = h. We use this symmetry criterion 

to initialize the parametric curve close to p = 1/2. This particular solution to the differential 

equation above provides a function h̃(p), which defines the manifold of equilibrium 

heterozygosity as a function of allele frequency.

If we assume that the two-dimensional dynamics in (p, h) are restricted to the slow manifold, 

defined by the curve (p, h̃(p)), then we can treat the dynamics as a one-dimensional diffusion 

along this manifold satisfying

(9)

by substituting h̃(p) for h in Eq. 4. Although Mp and Vpp depend on h, we compute h and η 
from p by substituting h̃(p) for h in Eq. 4, and we view Mp and Vpp as functions of p only. 

Following Kimura [1964], the solution to a boundary value problem gives the fixation 

probability u(p) of a mutant allele initiated at frequency p with solution

(10)

This integral can be computed numerically, giving a good approximation to the fixation 

probability for arbitrary n.

4. Results

4.1. Sexual selection in the n-choice mating model

First we consider the fixation probability of an allele in the absence of viability selection. In 

the limits of random mating and complete assortment, n = 1 and n → ∞ respectively, the 

fixation probabilities are equal to the neutral fixation probability. For an intermediate 

number of mating opportunities, n, however, the mating system itself induces strong sexual 

selection against rare alleles (cf. Fig. 1), which depresses the fixation probability of novel 

alleles much below the neutral probability (Fig. 2). And so the resulting fixation probability 
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has a complex, non-monotonic dependence on the number of mates that a parent can survey: 

increasing n beyond one reduces the fixation probability below the neutral value 1/2N, but 

increasing n yet further restores the fixation probability until it recovers to the neutral value 

1/2N in the limit n → ∞.

The strength of sexual selection against rare alleles depends on both the degree of 

participation in the mating system, Nf, and the number of mating opportunities, n. At high 

mating rates (Nf ≥ 100), fixation probabilities at intermediate values of n are so low as to be 

impractical to compute through Monte-Carlo simulation, and they can be known only 

through numerical integration of the expression derived from the diffusion approximation, 

Eq. 10. In the regime where Monte-Carlo methods are feasible, the diffusion approximation 

along the slow manifold is in close correspondence with Monte Carlo simulations across a 

broad range of values of Nf, despite many potential sources of error in the approximation 

(see Fig. 2).

When the number of potential mates n is small but exceeds one, then rare alleles are under-

represented among zygotes relative to their parents, as described by Eq. 5. Mendelian 

inheritance does not alter allele frequencies, and so it is the action of mate choice itself that 

suppresses rare alleles: parents with common genotypes are likely to find their preferred 

mates, but parents with rare genotypes are more likely to settle for a common mate. As n 
increases, however, the likelihood of any parent having to settle for a non-preferred mate 

becomes vanishingly small, and so the differences in mate availability between genotypes 

become less pronounced. When there is no difference in mate availability even the rarest of 

parental genotypes can find a mate with their own genotype, and complete assortment 

ensues.

In summary, Fig. 2 reveals that a mechanistic model of mate choice with two classical limits 

nonetheless produces a complex form of sexual selection whose strength depends non-

monotonically on number of mating opportunities, n.

4.2. Interaction between sexual selection and underdominant viability selection

What is the fate of novel alleles when we combine the intrinsic effects of n-choice mating 

with viability selection against heterozygotes? Does positive assortative mating facilitate or 

impede the fixation of an underdominant allele?

The combined effects of viability selection and sexual selection induced by n-choice mating 

are shown in Fig. 3. Here we see that when the number of mating opportunities is small but 

not one, then preferential mating impedes fixation of an underdominant allele, so that its 

fixation probability is even lower than the classical prediction of Lande for random mating 

(n = 1). For example, allowing just n = 2 opportunities to find a mate with the same 

genotype reduces the fixation probability of the underdominant allele astronomically.

Nevertheless, as the number of mating opportunities increases further we find a surprising 

result: viability selection against heterozygotes and n-choice assortative mating — two 

selective forces that each act against rare alleles — interact paradoxically to increase the 

fixation probability of new mutant alleles. At sufficiently large, finite n, the fixation 
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probability of a new underdominant allele under n-choice mating exceeds even that under 

random mating. For example, when selection is strong as Ns = 10, n-choice mating is 

beneficial to the rare underdominant allele provided the number of mating opportunities is a 

substantial fraction of the population, e.g. n =0.2N. The stronger viability selection acts 

against heterozygotes, the smaller n is required for mate choice to facilitate fixation, relative 

to random mating.

This counterintuitive interaction between viability and sexual selection occurs because the 

manifold of equilibrium heterozygosity is reduced to h̃(p)≈0, for n large. Thus, there are few 

or no heterozygotes in the population on which viability selection can act. When there are 

many mating opportunities, a heterozygote parent is likely to find another heterozygote to 

mate with, and through Mendelian segregation this mating results in half the frequency of 

heterozygous progeny in each successive generation: roughly half of the minor alleles 

present in heterozygotes are transferred to homozygotes at each mating. Thus with a 

sufficient number of mating opportunities, the mating system effectively hides hybrids from 

the eyes of underdominant selection.

5. Discussion

We have studied a mechanistic, one-parameter model of assortative mating that naturally 

spans the two classical extremes of random mating and complete assortment. The n-choice 

model fulfills the realistic condition that individuals can survey only a limited number of 

prospective mates. This simple formulation of mate selection nonetheless induces a complex 

form of sexual selection against rare alleles. In some regimes the induced selection is strong 

enough to virtually prevent the fixation of rare alleles. If the locus guiding mate choice is 

also subject to underdominant viability selection then, provided the number of mating 

opportunities is large, the n-choice mating system can mask the effects of viability selection, 

greatly elevating the fixation rate of underdominant alleles in comparison to random mating.

The n-choice mating model provides a qualitatively different resolution to the puzzle of the 

observed fixation of underdominant alleles between populations. In a well-mixed population 

the fixation rate of an underdominant mutation decreases rapidly with population size. 

Wright’s island model resolves this puzzle by exogenously subdividing the population into 

demes, so that fixation depends on the size of the demes rather than the whole population. 

For underdominant loci that also influence mate choice, the n-choice model can effectively 

decouple the fixation rate from population size without imposing a fixed population 

structure. Although both classical models of structured populations or partial selfing and the 

n-choice model facilitate fixation of underdominant alleles by suppressing heterozygosity, 

the mechanism and consequences of mating structure differ. In structured populations or 

partial selfing the inbreeding coefficient is exogenously fixed and it does not depend on 

allele frequency, whereas in the n-choice model the mating structure depends on the 

frequency of the rare allele so that, in particular, mating still occurs at random in 

monomorphic populations.

The precipitous drop in fixation probability of a novel mutant between random mating and 

n-choice mating, from n =1 to n =2 mating opportunities, is surprising. From the gestating 
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parent’s perspective, mate choice can only help rare alleles, as carriers of a rare allele copy 

have a greater chance of finding their own genotype to mate with and thus a lower chance of 

heterozygous offspring. However this gain of female function comes at a cost to male 

function. Because common types nearly always find their mates, but rare genotypes are more 

likely to settle for a common type, rare males are selected against. The relative strengths of 

reduced male fitness, heterozygote viability selection, and increased female fitness shift as 

the number of mating opportunities n increases, making preferred mates more easily 

accessible. Female fitness is enhanced through reduction of viability selection against their 

offspring, and male fitness is less affected with higher values of n. The exact crossover point 

where fixation becomes more likely under n-choice mating than random mating depends on 

the strength of viability selection against heterozygotes, Ns, and the rate of participation in 

the mating system, Nf. Fixation probabilities that depend non-monotonically on a physical 

parameter are unusual, but they have also arisen, for different reasons, in models of 

subdivided populations with extinction and recolonization [Michalakis and Olivieri, 1993, 

Roze and Rousset, 2003].

The n-choice model can be seen as a (degenerate) case of the ‘best-of-n’ model introduced 

to study the efficiency of mate choice mechanisms [Janetos, 1980]. Best-of-n models have 

been used in deterministic and stochastic settings to study the maintenance and efficiency of 

sexual selection [Seger, 1985, Pomiankowski, 1987] and speciation [Higashi et al., 1999, 

Arnegard and Kondrashov, 2004, Servedio and Bürger, 2014]. Incorporating best-of-n 
mating into population-genetic models is known to produce different conclusions than under 

fixed relative preference assortative mating [Seger, 1985, Kuijper et al., 2012] for the 

efficiency of speciation [Arnegard and Kondrashov, 2004, M’Gonigle and FitzJohn, 2010, 

Servedio and Bürger, 2014]. Despite these findings, most work on the fate of alleles in finite 

populations neglects mechanisms of non-random mate choice. The methods we have used to 

study the effects of n-choice mating in finite populations may be extended to other 

frequency-dependent mechanisms of mate choice and to other forms of viability selection 

and dominance on alleles.

We have described the n-choice model in the context of diploid parents, but minor variants 

of the model show similar behavior. For example, an analogous model in which a diploid 

parent censuses haploid microgametes, as occurs in flowering plants, has a different fixation 

probability in the limit n → ∞(see Supplementary Fig. S1), but the same qualitative 

behavior remains: n-choice mating still induces sexual selection against rare types that can 

interact with underdominant viability selection to either impede or facilitate fixation of new 

mutants. Alternatively, if we prohibit selfing in the diploid model, n-choice mating is still 

more effective than random mating at fixing underdominant alleles at high n and Ns 
(Supplementary Fig. S2). For simplicity, we have dealt only with symmetric 

underdominance, that is waa = wAA. When this assumption is relaxed and one homozygote is 

preferable to the other, underdominance becomes a valley-crossing problem. Monte Carlo 

simulations exhibit qualitatively similar results here as well, with intermediate values of n 
retarding fixation of new mutations that are advantageous when homozygous but deleterious 

in heterozygotes, then facilitating fixation at sufficiently high n.
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The complex sexual selection induced by the n-choice mating model and its counterintuitive 

interaction with underdominant viability selection remind us that relaxing population-

genetic assumptions can radically alter allele frequency dynamics in surprising ways. The 

astounding diversity of life-histories across taxa provides ample motivation to rethink 

conclusions drawn from standard models of randomly-mating diploid populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The dynamics of genotype frequencies in the n-choice model of assortative mating. Each 

ternary plot corresponds to a different set of parameter values for the number of mating 

opportunities, n, the per-generation rate of participation in the mating system, Nf, and the 

strength of viability selection against heterozygotes, Ns. Arrows indicate the expected 

change in genotype frequencies in one generation. On each plot, dots represent the genotype 

frequencies after 30 generations of stochastic simulation in 500 replicate populations of size 

N = 1, 000 each initialized at the center ( ). The dynamics quickly converge 

towards a one-dimensional submanifold within the frequency space. Dashed lines show the 

analytically-derived position of this one-dimensional manifold, which corresponds to the 

Hardy-Weinberg equilibrium in the case of random mating (n =1). Increasing the strength of 

selection, Ns, moves the manifold towards zero heterozygosity, while the effect of 

participation in the mating system, Nf, on the shape of the manifold depends on the number 

of mating opportunities, n. In most regimes depicted, information about the initial height 

(heterozygosity) of the population is lost after 30 generations, as the genotype frequencies 

have converged to the slow manifold.
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Figure 2. 
Sexual selection induced by the n-choice model of assortative mating. The plot shows the 

fixation probability of a new mutation (one initial heterozygote) in the absence of viability 

selection, as a function of the number of mating opportunities, n, and for different rates of 

participation in the mating system, Nf. Solid lines indicate fixation probabilities computed 

by the diffusion approximation along the slow manifold. Bands and error bars indicate the 

95% confidence interval on the mean fixation rate observed in up to 100,000,000 simulated 

populations of size N = 1, 000. Overlapping error bars are dodged for clarity. Error bars with 

no lower bound indicate no fixations observed in 100,000,000 simulations. The fixation 

probability equals the neutral fixation probability for either n = 1 or n → ∞. Otherwise, 

participation in the mating system induces a complex form of sexual selection against rare 

alleles, whose strength depends non-monotonically on n.
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Figure 3. 
The effect of assortative mating on the fate of an underdominant allele, in the n-choice 

model (left) compared to the classical model of assortative mating by partial self-fertilization 

(right). The plot shows how the fixation probability of a new mutation present in one initial 

heterozygote depends on the number of mating opportunities, in the case of n-choice mating, 

or on the self-fertilization probability, in classical assortative mating. Vertical bars indicate 

the 95% confidence interval on the mean fixation rate observed in 100,000,000 simulated 

populations of size N = Nf = 1, 000 under no viability selection (Ns = 0), weak viability 

selection (Ns = 1), and strong viability selection (Ns = 10). Dashed horizontal lines indicate 

the corresponding fixation probabilities of the underdominant allele under random mating. 

Fixation probabilities under the two models of assortative mating are equal either when n =1 

and the selfing probability is zero, or when n → ∞ and the selfing probability equals one. 

Under classical assortative mating the fixation probability interpolates smoothly between 

these two limits. However, the n-choice model has a complex effect on fixation probabilities 

between these two limiting cases, and the probability may be higher or lower than random 

mating depending on n. Thus n-choice assortative mating can either impede or facilitate 

fixation of an underdominant allele.
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