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Summary

1. Demographic rates can vary not only with measured individual characters like age, sex 

and mass but also with unmeasured individual variables like behaviour, genes and 

health.

2. Predictions from population models that include measured individual characteristics 

often differ from models that exclude them. Similarly, unmeasured individual 

differences have the potential to impact predictions from population models. However, 

unmeasured individual differences are rarely included in population models.

3. We construct stage-and-age structured models (where stage is mass) of a roe deer 

population, which are parameterized from statistical functions that either include, or 

ignore, unmeasured individual differences.

4. We found that mass and age structures substantially impacted model parameters 

describing population dynamics, as did temporal environmental variation, while 

unmeasured individual differences impacted parameters describing population 

dynamics to a much smaller extent once individual heterogeneity related to mass and 

age has been included in the model. We discuss how our assumptions (unmeasured 

individual differences only in mean trait values) could have influenced our findings and 

under what circumstances unmeasured individual differences could have had a larger 

impact on population dynamics.
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5. There are two reasons explaining the relative small influence of unmeasured individual 

differences on population dynamics in roe deer. First, individual body mass and age 

both capture a large amount of individual differences in roe deer. Second, in large 

populations of long-lived animals, the average quality of individuals (independent of 

age and mass) within the population is unlikely to show substantial variation over time, 

unless rapid evolution is occurring. So even though a population consisting of high 

quality individuals would have much higher population growth rate than a population 

consisting of low quality individuals, the probability of observing a population 

consisting only of high quality individuals is small.
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Introduction

The effects of among- and within-individual variation can markedly influence population 

dynamics, particularly in mammals (Benton, Plaistow & Coulson, 2006; Caswell, 2001). 

Most previous studies of factors generating individual variation in survival and reproduction 

have focused on size/mass, sex and age (Caswell, 2001). Age and mass both influence 

population growth when survival and reproductive rates vary substantially between small 

and large individuals, or between those that are young, prime-aged and elderly (Eberhardt, 

1985; Gaillard et al., 2000b; Caswell, 2001). Most studies have focused on these attributes 

because they are both important for population dynamics (Albon et al., 2000; Gaillard et al., 
2000b; Caswell, 2001) and often easy to measure. However, among the myriads of 

characters that are left unmeasured in most studies, some are known to influence survival 

and/or reproductive rates (e.g., behaviour (Reid et al., 2004), genes of known and unknown 

function (Peripato et al., 2002), disease state (Jolles, Cooper & Levin, 2005)) and thus might 

be important for modeling population dynamics.

Age or stage structure can shape population dynamics when the age or mass structure of the 

population fluctuates in response to environmental variation caused by climatic conditions or 
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intra- or inter-specific competition (Coulson et al., 2001). The same logic applies to 

unmeasured individual differences: changes in the proportion of high quality individuals 

within the population in response to variation in environmental conditions or population 

density will cause the distribution of unmeasured individual differences to change, which 

should alter population dynamics. Although unmeasured individual differences influence 

numerous life history traits, little is known about their impact on population dynamics (but 

see Rees et al. (1999) on plants, Caswell (2011)). Nonetheless there is growing evidence that 

unmeasured characters have the potential to affect demography (Vindenes, Engen & Sæther, 

2008; Kendall et al., 2011). For example, individuals differ in their expected survival and 

reproduction as a function of their susceptibility to stochastic factors (Kendall & Fox, 2003), 

with individual stochasticity strongly shaping the distribution of individual lifetime 

reproductive success in birds (see Tuljapurkar, Steiner & Orzack (2009) on swans, Cygnus 
olor and Steiner, Tuljapurkar & Orzack (2010) on kittiwakes, Rissa tridactyla).

Individual differences in performance that cannot be easily attributed to a specific measured 

character (Lewis et al., 2006; Stopher et al., 2008; Aubry et al., 2009; Knape et al., 2011) are 

widely studied in ecology and evolution via the use of generalized linear mixed effect 

models. The use of these models supports the existence of individual heterogeneity in 

reproductive traits (van de Pol & Verhulst, 2006) and survival (Cam et al., 2002) that can 

mask life history trade-offs (van Noordwijk & de Jong, 1986), including senescence (Nussey 

et al., 2008). Assumptions about unmeasured individual differences vary among studies but 

they all aim to capture individual differences that are not accounted for by measured fixed 

effects such as age or mass. The influence of unmeasured characters (whether genetic, 

phenotypic, morphological or something else) on a life history is captured by models that 

include individual identity as a random effect. Such random effects have been used to 

estimate latent individual quality and have been interpreted as heterogeneity in individual 

frailty (Link, Cooch & Cam, 2002; Vaupel, Manton & Stallard, 1979) but they can also be 

generated by stochastic factors. For instance, individuals with the same latent quality are 

likely to have different fates in response to random events and thereby display different 

trajectories of reproduction and/or survival (dynamic heterogeneity sensu Tuljapurkar, 

Steiner & Orzack 2009; Caswell 2011).

The influence of unmeasured individual differences on population growth can be estimated 

in two ways (Coulson, 2012). First, one can compare predictions from population models 

parameterized with estimates obtained from statistical analyses that do, and do not, correct 

for unmeasured individual differences. Second, the magnitude of unmeasured individual 

differences in demographic performance can explicitly be incorporated into models (Rees et 
al., 1999; Ellner & Rees, 2006; Lindberg, Sedinger & Lebreton, 2013) to compare 

populations of high or low quality. We used both approaches to construct Integral Projection 

Models (IPMs) for a population of roe deer. IPMs provide a useful tool to study the 

consequences of individual variation on demography (Vindenes, Engen & Sæther, 2008) 

because they offer a process-oriented way to study the dynamics of continuous character 

distributions (Easterling, Ellner & Dixon, 2000; Ellner & Rees, 2006). IPMs are 

straightforward to parameterize using generalized linear mixed effect models (Ellner & 

Rees, 2006; Jacquemyn, Brys & Jongejans, 2010; Coulson, 2012) and perturbation analyses 
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can be used to explore how sensitive model predictions are to model parameters (Caswell, 

1978; Rose, Rees & Grubb, 2002; Coulson, Tuljapurkar & Childs, 2010).

We compared the influence of age and mass, measured characters, with the additional (in 

models already including measured characters) influence of unmeasured random individual 

differences on the dynamics of a population of roe deer (Gaillard et al., 1998b, 2000a). 

Considering the influence of individual heterogeneity on demographic rates (Nussey et al., 
2008) and on demographic stochasticity and population dynamics (Kendall et al., 2011), we 

expect individual differences to impact population growth rate, net reproductive rate and 

generation time as well as demographic structure. Nevertheless, given the large amount of 

variation in body mass (Nussey et al., 2011) and age (Coulson et al., 2001) observed in 

populations of large herbivores, we expected that variation in body mass and age would 

impact population dynamics more than other (unmeasured) individual differences.

Materials and methods

Study population and data collection

The studied population of roe deer inhabits an enclosed area of 1,360 ha in the Trois 

Fontaines forest in North-eastern France (48°43’N, 2°61’W). Over the study period, 

population size was controlled to be around 250 individuals older than 1 year of age by 

yearly removals (Gaillard et al., 1993), except between 2001–2005 when an experimental 

manipulation of density was performed and population size peaked at 450 individuals. The 

roe deer is a long-lived and iteroparous species, with most females (>95%, Gaillard et al. 
1998b) aged two years or older giving birth every year in May to either a single or twin 

fawns. The maximum known age at death of females was eighteen years, with a mean 

lifespan of 8.5 years. The demographic rates of roe deer are largely influenced by age 

(Gaillard et al., 1993, 1998a). Newborn fawns are characterized by a low survival and a 

rapid growth, prime-aged individuals show a high and constant survival, body mass and 

reproductive rates, and demographic rates decrease among old individuals from 8 years of 

age. Reproductive patterns are also influenced by individual body mass (Hamel et al., 
2009a). The population is not subject to systematic predation by large predators or by 

hunting, and the few animals killed by humans were right-censored.

The roe deer population has been intensively monitored since 1975 by the Office National de 

la Chasse et de la Faune Sauvage (Gaillard et al., 1993). Most roe deer are marked with both 

numbered ear tags and leather collars. Each year, between 120–300 roe deer are caught 

between December and March. Individuals captured for the first time are sexed and marked 

and all captured individuals are weighed to the nearest 100g. The age and sex of all 

individuals considered here are accurately known because they were captured within their 

first year of life either as newborn (Delorme, Gaillard & Jullien, 1988) or as 8 months old 

during winter captures when age is determined by the tooth eruption sequence (Flerov, 

1952). When possible, the identity of the mother of a fawn is assigned by direct observations 

of lactating behaviour or by the identification of an escaping female in the vicinity of the 

fawn.
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Estimation of demographic rates

We start by defining a as age, t as time and z as the continuous measured character, body 

mass. IPMs model the dynamics of a distribution of a continuous character over time 

(Easterling, Ellner & Dixon, 2000; Ellner & Rees, 2006). IPMs include four functions (the 

demographic rates) that fully describe changes in the character distribution between two 

consecutive time steps (year). These are: i) the association between the character and 

survival (S(a, t, z)), ii) the association between the character and recruitment (M(a, t, z)), iii) 

the probability of expressing a given character value at time t + 1 given the character value at 

time t conditional on survival (Growth, G(a, t, z′|z)), and iv) the probability of producing an 

offspring with a given character value at time t + 1 given the parental character value at time 

t conditional on reproduction (Inheritance, D(a, t, z′|z)). Following standard terminology in 

IPM literature (Coulson et al., 2011; Coulson, 2012), we defined inheritance as the part of 

the trait that is transmitted from mothers to offspring, whatever the mechanism of 

transmission. The distribution of body mass n(a + 1, t + 1, z′) in the population at time t + 1 

depends on the distribution of body mass n(a, t, z) at time t and on the four functions. Then:

Vital functions are integrated over a range larger than observed body mass values. The 

continuous IPM can be approximated as a high dimensional discrete matrix A (see Appendix 

S1) (Easterling, Ellner & Dixon, 2000).

We restricted the analyses to females because the required data for males (father-fawn 

affiliation in particular) were lacking. We thus modelled the distribution of female body 

mass only. To parameterize IPMs, we estimated the four functions using regression models 

that included year as a random effect to correct for yearly variation of each demographic 

rate, body mass as a fixed covariate, age class as a fixed factor and an individual random 

effect in models including the influence of unmeasured individual differences. Body mass is 

a good predictor of individual quality in roe deer (Hamel et al., 2009b) with statistically 

significant positive effects in all IPM functions (see Table S3). Both survival and 

reproduction of roe deer are strongly age-structured. As in most species of large herbivores 

studied so far (Gaillard et al., 2000b), demographic performance of roe deer females first 

increases from yearling to prime-aged adults (from 2 to 8 years of age, Gaillard et al. 1993), 

and then decreases as a result of senescence (in a two-step process in roe deer survival, a 

first between 8 and 11 years of age and a second after 11 years of age, Festa-Bianchet, 

Gaillard & Côté 2003). Thus, the most complex age model included 4 different classes (1, 

2–7, 8–11, 12+). Unmeasured individual differences can be corrected for in statistical 

models using generalized linear mixed effect models with individual identity as a random 

effect on the overall intercept (Nussey et al., 2008). For instance, the estimated variance of 

unmeasured individual differences for recruitment represents the amount of individual 

Plard et al. Page 5

J Anim Ecol. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences that is unrelated to age and body mass if these are fitted as fixed effects in 

expected recruitment.

The recruitment function adds new individuals to the population and in our case, gives the 

number of offspring a female of a given age and body mass has weaned successfully (i.e., 

that survived until 8 months of age) The recruitment function, i.e. the number of offspring 

successfully weaned by mothers of body mass z and age a was decomposed into two 

functions: the probability of successfully weaning at least one fawn (realized fertility, F(a, t, 
z)), and the probability of producing twins conditional on successful reproduction (twinning 

rate, ϕ(a, t, z)). The parameters in the functions F(a, t, z) and ϕ(a, t, z) were estimated using a 

generalized linear mixed model with a binomial error structure linking realized fertility or 

twinning rate to body mass, age, year (Y ) and individual identity (I, when including 

unmeasured individual effect in the model) using the lme4 package in R. For the realized 

fertility function for instance,

where α and β are the intercept and the slope of the model, and,  and  are the variances 

of the random effect of year (Y) and individual identity (I), respectively.

Regressions were performed on 805 potential breeding events of 233 females for realized 

fertility (Fig. 1 D) and on 588 effective breeding attempts of 212 females for twinning rate 

(Fig. 1 E). The recruitment function for a female of body mass z, age class a, at time t was 

then F(a, t, z)*(1+ϕ(a, t, z))/2. We divided the recruitment by 2 because we used a female-

based model. We then assumed a balanced sex ratio at recruitment (i.e. 8 months of age). In 

the absence of between-sex differences in fawn survival in roe deer (Gaillard et al., 1997), 

this measure provides a reliable estimate of the number of daughters recruited by females.

The survival function removes individuals from the distribution through mortality by linking 

individual probability of surviving to body mass. The exact age of death was known for all 

females in the data set used to estimate the survival function. We consequently did not need 

to correct for the confounding effects of imperfect detection on survival estimates (Gimenez 

et al., 2008). For the survival function, random effects cannot reliably estimate heterogeneity 

in survival because a given individual must only die once. To assess the amount of 

unmeasured individual differences in the survival function we used a frailty model. We 

tested for individual heterogeneity in the survival function using a parametric model with a 

logit link, including continuous effects of body mass and age but excluded the effect of year 

to minimize the number of parameters to estimate. We modeled individual frailty as a 

normally distributed random effect with one degree of freedom, using the functions frailty 
and survreg of the package "survival" (Therneau, 2014) in R. We found no significant effect 

of unmeasured individual differences on the survival function. To avoid missing any 

heterogeneity in frailty in the population which can have important effect on population 

dynamics (Vaupel & Yashin, 1985), we investigated potential model convergence problems. 

To do so, we used a generalized linear mixed model and the package MCMCglmm to model 
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the survival between two time steps with a two-level (0,1) multinomial distribution and 

including fixed effects of body mass and age classes, and random effects of both 

unmeasured individual differences and year. Using this Bayesian framework, we investigated 

the robustness of parameter estimates with varying prior distributions and numbers of 

iterations. As with the frailty survival model, we found no influence of unmeasured 

individual differences on survival. Consequently, we used the parameters estimated from a 

generalized linear mixed model with both discrete age classes and continuous body mass as 

fixed effects, and a random effect of year to parameterize the S(a, t, z) function of our IPM 

based on 398 episodes of survival for 99 females (Fig. 1C). The parameterization of the 

survival function is therefore similar to the fertility and the twinning rate functions, but 

excluding individual random effect.

The growth function transforms mass within the distribution by giving the transition 

probability between mass at t and at t+1 and the inheritance function determines the mass of 

the new recruits in the population as a function of the mass and the age of their mother. The 

growth G(a, t, z′|z) and inheritance D(a, t, z′|z) functions were assumed to be normal 

probability density functions with means μGro(a, t, z) and μInh(a, t, z) and variances 

 and , respectively. For growth (inheritance), each body mass 

(maternal body mass) z at t predicts a normal distribution of body masses (offspring body 

mass) z′ at t + 1:

The growth function was estimated using 488 measures of body mass for 233 females (Fig. 

1 A). As we expected that relationship between two successive body masses should change 

with age class (i.e. a yearling must grow faster than any prime-aged individual), we 

performed two models including or not an interaction between age and body mass. We 

found no evidence of such an interaction between body mass and age (Likelihood ratio test: 

χ2 = 2.140, df = 2, P = 0.343). As a consequence, the mean of the growth function, μG(a, t, 
z) was estimated from the linear mixed model between body mass z′ at time t + 1 and body 

mass z, age a at time t, and year and individual identity (when included) as random effects. 

The variance  was estimated with a the linear mixed regression using the squared 

residuals of the previous relationships (see Coulson 2012; Rees, Childs & Ellner 2014 for 

further details). As the model for the variance of the growth function was never investigated 
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in roe deer, we selected the best model that described the data using the Akaike Information 

Criterion. We fitted four models: a model including an effect of age and body mass, a model 

including an effect of age, a model including an effect of body mass and an intercept only 

model. The variance of the growth function was best fitted by a model with an effect of age 

(all ΔAIC > 3).

The inheritance function was defined similarly to the growth function. The regression 

between mother and offspring body mass was performed on 109 offspring from 64 mothers 

and an additive effect of sex was included in the model to keep only the intercept linking 

mothers to female fawns (Fig. 1 B, Table S1). By visual inspection, we could suspect that 

offspring body mass deviates from a Gaussian distribution. However, a Kolmogorov-

Smirnov test did not lead us to reject the hypothesis that the distribution followed a Gaussian 

distribution (Inheritance: D = 0.087, P = 0.379). The variance of the inheritance function 

was best fitted using a model with an intercept only (all ΔAIC > 1).

We recorded the parameters (intercepts, slope and variances of the random effects) of each 

function to parameterize IPMs. We created 200 body mass classes between 1 and 44kg, the 

heaviest female roe deer recorded being 32kg. The matrices contained 12 ages (with similar 

survival, growth, reproduction and inheritance within a given age class). The last age-class 

pooled together all females older than 12 years (senescent females). Consequently, our 

matrix A had 2400 (12 × 200) columns and rows (see Appendix S1). The outputs of the IPM 

were the parameters describing the population dynamics: the population growth rate, the net 

reproductive rate and the generation time. These parameters were estimates that were 

averaged over years as we used year as a random effect to parameterize the functions and 

build an IPM that does not vary over years. All statistical analyses were performed with the 

software R using code (see Appendix S2) based on Easterling, Ellner & Dixon (2000) and 

Coulson, Tuljapurkar & Childs (2010).

IPM model: modelling unmeasured individual differences

The first analysis that can be done to investigate the influence of unmeasured individual 

differences on population growth involves constructing IPMs using statistical functions 
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identified from generalized linear mixed models with, and then without, individual identity 

included as a random intercept. For example, the recruitment function could take two forms:

without unmeasured individual differences:

where α(a, t) is the intercept β, the slope linking recruitment to body mass and  is 

the variance of the random effect of year of the recruitment function. f represents a 

link function.

including unmeasured individual differences:

where  is the variance of the random effect of individual identity on the intercept of 

the recruitment function.

The second analysis that can be performed is a perturbation analysis by adding PI to the 

intercept of one of the four functions, corresponding to a change in the average of the 

unmeasured trait(s) among individuals within the population. For instance, the recruitment 

function becomes:

The influence of unmeasured individual differences on population dynamics can be assessed 

by comparing situations in which PI represents a hypothetical population consisting of high 

(PI > 0) or low (PI < 0) average quality of individuals within the population (Coulson, 2012).

When applied to recruitment, these perturbations will impact the first rows of the matrix A 
(see Appendix S1) where each entry can be defined by a line corresponding to the age a’ and 

mass z’ and a column corresponding to the age a and mass z:

Similarly, when the inheritance function is perturbed, each entry becomes:

When the growth or the survival functions are perturbed, all entries of the matrix for which a
′ > 1 will be perturbed. We can perturb each function independently, or we can perturb all 

functions simultaneously. These perturbations assume populations consisting of individuals 

with an average value of performance PI.
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Analysis

First, we investigated the effects of body mass and age structure on population dynamics 

without modelling unmeasured individual differences. All models included year as a random 

effect on the intercept to account for yearly variations in demographic rates. We built four 

different matrix models containing different age structures and excluding any relationship 

between the different functions and body mass (see Table 1). The most complex age-

structured model included four age classes as described in this population (Gaillard et al., 
1998a): yearlings (i.e., one-year-old females, that do not breed in roe deer, Gaillard et al. 
1992), prime-aged adults (2–7 y.o.), old (8–11 y.o.) and senescent females (>11 y.o. with 

reduced survival and reproductive performance). Then, we simplified this model to 

investigate the influence of age-structure on population dynamics. The third model 

contained three age classes: yearlings, prime-aged adults (2–7 y.o.) and senescent females 

(>7 y.o.). The second model contained only two age classes: yearlings and adult females (>1 

y.o.). The simplest model had no age structure. We recorded the parameter estimates for 

each statistical model (Table S1). We examined the effects of age structure by comparing 

survival and recruitment, population growth rate, net reproductive rate and generation time 

with the most complex model.

For the following analyses, we selected the most parsimonious age-structured model: the 

model with the minimum number of age classes that gave the same parameters describing 

the population dynamics as our most complex model describing reliably (based on previous 

detailed analyses of age-dependent demography in the focal population, e.g. Festa-Bianchet, 

Gaillard & Côté 2003; Gaillard et al. 2013) the demographic rates of our population. Then, 

we investigated the influence of the body mass structure by comparing a matrix model 

(including the most parsimonious age structure) and an IPM including the influence of body 

mass in addition to the influence of age. From this IPM, we estimated the asymptotic 

population growth rate (λ), the reproductive values and the stable age-size distribution, the 

net reproductive rate (R0) and the cohort generation time (Tc) and compared it to the result 

of the matrix model. We also estimated mean body mass and mean survival and recruitment 

rates across all ages and body masses from this IPM (Coulson, Tuljapurkar & Childs, 2010; 

Coulson, 2012).

We next performed an elasticity analysis using the body mass- and age-structured IPM 

without modelling unmeasured individual differences to identify the body mass class that 

most influences the population growth rate. Elasticity measures the proportional change in 

predicted population growth rate (λ) generated by a proportional perturbation of the matrix 

entries. We calculated elasticities at the level of the matrix entries (Caswell, 2001). Then we 

summed elasticities over body mass classes to obtain elasticities for each age class.

Second, we used IPMs to model unmeasured individual differences (model 6, Table 1, R 

code is provided in Appendix S2). As described in the section on modelling unmeasured 

individual differences, we first compared the parameters describing the population dynamics 

estimated from an IPM including only age and mass-structure to the ones estimated from an 

IPM that also included unmeasured individual differences. Second, to look at the relative 

influence of unmeasured individual differences in each function, we performed a 

perturbation analysis and compared the dynamics of populations characterized by a median 
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average individual quality (PI = 0 in all functions), a high average individuals quality for this 

given function (PI = 0 in all functions except that with PI = QI) or a low average individual 

quality for this given function (PI = 0 in all functions except that with PI = −QI). For 

instance, the influence of unmeasured individual differences in the realized fertility function 

was investigated by setting PI = 0 in the growth, twinning rate, survival and inheritance 

functions and successively PI = QI,F and PI = −QI,F in the realized fertility function. We 

estimated QI,F by simulating the individual intercept representing the average individual 

quality value in realized fertility of populations of 250 individuals using a normal 

distribution with mean 0 and standard deviation sI,F (standard deviation of the component for 

unmeasured individual difference estimated from the generalized linear model of realized 

fertility). QI,F was the third quartile (and so −QI,F was the first quartile) of the distribution of 

the average individual quality values of 500,000 simulated populations. It is not realistic to 

consider that a population with a high average individual quality will be constituted only by 

high quality individuals because in any population there is always a distribution of individual 

quality. The question is thus how much the average quality of individuals within a 

population varies across environmental conditions. This is especially important to compare 

reliably the influence of individual heterogeneity with that of environmental heterogeneity in 

population dynamics. As a consequence, we needed to take into account how often a “good 

population” occurs. We repeated this analysis for each function separately. Then, we 

investigated how two populations either of high (with PI = QI) or low (with PI = −QI) 

average individual quality (i.e. high or low performance for all demographic rates) differed 

in terms of population growth rate, net recruitment rate, and generation time.

Finally, we compared the perturbations generated by unmeasured individual differences to 

those generated by yearly variation in environmental conditions, by adding an average value 

of year quality PY to the intercept. PY was successively set to PY = QY (favorable year) and 

PY = −QY (unfavorable year) with PI = 0 in both cases. We simulated a distribution of 

500,000 years using a normal distribution of mean 0 and standard deviation sY (standard 

deviation of the component for year, different for each function). QY was the third quartile 

of this distribution. As for unmeasured individual differences, we altered the intercept (and 

not the slope) in each function successively and then in all functions at the same time.

Results

Effects of age and size structure

The parameters describing the population dynamics were similar for models incorporating 

either three or four age classes in models of survival, growth, recruitment and inheritance 

(log(λ4) = 0.076 vs. log(λ3) = 0.075, R04 = 2.042 vs. R03 = 2.023 and Tc4 = 4.104 vs. Tc3 = 

4.071 for four and three age classes respectively, Table 1, models 4 and 3). While models 

with one or two classes of older females provided similar results, the model without any 

senescence (model 2, Table 1), and even more the model lacking a yearling class (i.e., model 

with no age, 1), led to markedly different results compared to the model with three age-

classes. When using two age-classes (yearling vs. adult females, model 2), log(λ) and R0 

decreased by 25% and 14%, respectively, whereas Tc increased by 5% (Table 1) compared 

with a model including three age classes, likely because of a shorter life expectancy (by 5 
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months) in a model with only two age classes (Table 1). In a model without any effect of age 

(model 1), all individuals can potentially reproduce, so the mean recruitment increased by 

46% compared to a model with three age-classes, leading R0 and log(λ) to increase (13% 

and 61%, respectively, Table 1). We therefore selected the model with three age classes for 

the following analyses.

To investigate the influence of the body mass structure on population dynamics, we 

compared the model with three age classes (model 3, Table 1) to an IPM including body 

mass in addition to age (model 5). The third model excluding the effect of body mass over-

estimated both the population growth rate (Table 2, log(λ3) = 0.075 vs. log(λ5) = 0.053 for 

model 5) and the net reproductive rate (R03 = 2.023 vs. R05 = 1.749) and under-estimated the 

generation time (Tc3 = 4.071 vs. Tc5 = 4.540) compared to the IPM including the influence 

of individual body mass (model 5). This high population growth rate was a consequence of 

an over-estimation of recruitment (0.389 vs. 0.365) due to the non-linear relationship 

between body mass and the realized fertility (Fig. 1 D.).

The elasticity analysis performed on model 5 (including body mass and age) revealed that 

survival among prime-aged females had the highest potential impact on the population 

growth rate (eSpa = 0.51, Fig. S1 A.). Relative perturbations in survival among yearlings and 

recruitment among prime-aged females also had substantial potential impact on λ5 (eSy = 

0.24 and eRpa = 0.23, respectively). However, survival and recruitment among senescent 

females only weakly influenced λ5 (eSsen and eRsen < 0.02). Among prime-aged females, the 

elasticities were highest for survival and recruitment of 23kg (Fig. S1 B.) and 23.5kg 

females, respectively.

Influence of unmeasured individual differences

We built IPMs including unmeasured individual differences in addition to body mass and 

age. The variance of the random intercept of individual identity was estimated to be zero in 

the mean of the growth function, with age explaining most of the observed differences 

among individual growth rates (the effect of individual identity explained 62%, 33% and 0% 

of the variation of individual growth in a model including no age and no body mass, mass 

but no age and body mass and three age classes, respectively). No heterogeneity was 

detected in the survival function. Using a frailty model, we found no detectable individual 

heterogeneity in the survival function (χ2 = 1.57, df = 1, P = 0.210). Using a generalized 

linear mixed model and the MCMCglmm package, we found estimates of the fixed effects 

similar to the ones found using a frailty model or a generalized linear mixed model (using 

the lme4 package). However, the variance of the individual random effect was highly 

variable among the different runs, a twofold variation from 0.07 to 0.15 with very large 

confidence intervals at 95%: [0.0002 0.5], compared to those obtained for fixed parameters. 

We thus parameterized our IPMs using the results of the generalized linear mixed model 

(from the lme4 package), excluding the random individual effect. We analysed the influence 

of unmeasured individual differences on population dynamics only in realized fertility, 

twinning rate and inheritance functions.

Changes in slope of body mass were high when comparing models including or not 

unmeasured individual differences (6% to 23% of difference) for realized fertility, twinning 
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rate and inheritance functions. However, variations in population growth rate, net 

reproductive rate and generation time were small when unmeasured individual differences 

were corrected for in the statistical analyses used to identify the functions for the IPMs 

(Table 1, models 5 and 6). The reproductive value as a function of body mass remained 

similar in models with and without unmeasured individual differences (Fig. 2 B), whereas 

the stable age-size distribution differed between these two models (Fig. 2 A). The 

distribution of yearling body mass (first “hump”) can be clearly distinguished from the 

distribution of adult body mass when including unmeasured individual differences (model 6 

and 5, Fig. 2 A).

Because unmeasured individual differences affected parameter estimation, we explored its 

potential impact on population dynamics by using the variance components estimated from 

the generalized linear mixed effect models to construct populations characterized by low, 

mean and high average quality of individuals (model 6 with PI = −QI, PI = 0 or P = QI) in 

each function separately, and then in all functions at the same time (except the survival and 

mean of the growth functions in both cases). In all cases, populations consisting of high 

versus low average individual quality exhibited small changes in parameters describing 

population dynamics (Fig. 3). The population growth rate (on a logarithmic scale) and the 

net reproductive rate decreased by 6.3% and 3.2%, respectively and the generation time 

increased by 0.6% from a high (PI = QI) to a low (PI = −QI) performance population, on 

average (model 6 with (PI ≠ 0 in all functions). Such differences were mostly (60%) driven 

by changes in mean recruitment. The realized fertility function contributed slightly more to 

changes in parameters describing population dynamics than the twinning rate function (34% 

and 26%, respectively). The presence of positive co-variation among individual intercepts 

across functions had almost no effect on model parameters describing population dynamics 

(Fig. 3).

The perturbation of growth rate produced by variation in year quality was higher than that 

produced by variation in unmeasured individual differences. The population growth rate (on 

a logarithmic scale) and the net reproductive rate decreased by 74% and 46%, respectively 

and the generation time increased by 5% between favorable and unfavorable years when 

environmental conditions affected all functions (Fig. 3). As for unmeasured individual 

differences, the recruitment function was the target of changes in environmental conditions. 

When only realized fertility or twinning rate was affected, the population growth rate (on a 

logarithmic scale) decreased by 28% and 25%, respectively between favorable and 

unfavorable years (when survival, inheritance or growth were affected, log(λ) decreased by 

0%, 21% and 25% respectively).

Discussion

Although the recruitment and inheritance functions were clearly influenced by unmeasured 

individual differences (modeled as random effects on the intercept of these functions), the 

parameters describing the population dynamics from our models were not. The age-

structure, size-structure and yearly variation all affected the population dynamics to a much 

larger extent than unmeasured individual differences modeled as an individual random effect 

in the different functions of the IPM.
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Let us replace individual random effects with an important but most often unmeasured life-

history trait, birth date. Birth date is a typical trait that is strongly linked to individual quality 

because individual fitness is higher for early-born than for late-born individuals (Plard et al., 
2015). However, the influence of birth date on population dynamics is much lower than the 

influence of environmental variations in roe deer because the distribution of individual birth 

dates does not change over years (Plard et al., 2014a), whereas climate change has strong 

negative influence on the population growth rate (Gaillard et al., 2013). By including birth 

date in addition to body mass and age in the different functions of the IPMs (Table S2 for the 

estimates of the different models of demographic rates including birth date or not on a 

smaller dataset including only individuals with known birth date), the estimated intercepts 

and slope of these functions do not change much compared to results obtained when using 

individual random effects. There are two reasons for this: first, birth date is a normally 

distributed trait in roe deer (Plard et al., 2013) and should be correctly modeled using 

random individual effects. Second and more importantly, most of the influence of birth date 

on future reproductive abilities and on fitness is mediated through body mass (Plard et al., 
2015). Indeed early-born females have a higher fitness than late-born females because they 

reach a higher body mass as adults. Heterogeneity in body mass should approximately 

reflect heterogeneity in individual birth date and adding birth date in a model of population 

dynamics using body mass does not substantially change the parameters describing the 

population dynamics.

In other words, the influence of heterogeneity created by some unmeasured variables (that 

can be important for each specific demographic rate) on population dynamics can be 

negligible if the individual differences in some measured variables (body mass and age) 

already capture a large part of the individual heterogeneity existing in the population or if 

the individual distribution of this unmeasured trait does not change much with time. Our 

results support two previous studies that included unmeasured individual differences in 

IPMs. In the Soay sheep, Ovis aries, when accounting for body mass, correcting for random 

effects of individual identity had less influence on the population dynamics than correcting 

for population density (Coulson, 2012). Likewise, Rees et al. (1999) found that unmeasured 

individual variation (modeled as an individual random effect on the intercept) in growth and 

mortality rates had only small impacts on the population dynamics of a plant species, 

Onopordum illyricum.

Unmeasured individual differences have been reported to be a major source of variation to 

consider when estimating survival and reproductive parameters. Moreover, the failure to 

account for unmeasured individual differences can lead to biased estimates of demographic 

variability and the parameters describing population dynamics (Clark, 2003; Kendall et al., 
2011). Recently Vindenes & Langangen (2015) developed an IPM including fixed individual 

differences suggesting that individual heterogeneity has the potential to influence population 

dynamics. They, however, had no data to estimate empirically the parameter (alpha) through 

which individual differences influenced the survival function (they chose a random range for 

alpha) and so did not provide empirical evidence. Our findings indicate that in the case of 

roe deer, individual heterogeneity plays only a minor role in population dynamics once 

individual differences associated with age and body mass are accounted for, but also support 
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Vindenes and Langangen’s view that individual differences can be important to the evolution 

of populations in variable environments and to eco-evolutionary dynamics.

In our analysis, unmeasured individual differences influenced both the recruitment and the 

inheritance functions but not the mean of the growth and the survival functions. Despite the 

fact that heterogeneity in survival can be an important cause of variation in population 

dynamics (Kendall et al., 2011), previous studies have reported little variation in population 

growth rate even after correcting for individual heterogeneity in survival and growth (Rees et 
al., 1999; Coulson, 2012). Nevertheless, the weak influence of unmeasured individual 

differences in survival could be due to an underestimation of the variance component of our 

model caused by our relatively low sample size (n = 99). Thus, we considered a hypothetical 

case where unmeasured individual differences influence survival to a greater extent to assess 

the potential impact of individual heterogeneity in survival on population dynamics (see Fig. 

S2). In this case, unmeasured individual differences in survival did influence the population 

dynamics. However, variation in environmental conditions had still a larger influence on 

population dynamics than unmeasured individual differences in both reproduction and 

survival (Fig. S2). As a consequence, species showing large individual differences in 

survival are expected to be more influenced by individual heterogeneity than our study 

species. In long-lived species, such as roe deer, adult survival displays little variation and has 

been described as representing a case of environmental canalization (Gaillard & Yoccoz, 

2003). Consequently, in species showing this kind of demographic tactic, individual 

differences independent of age and mass are expected to have little impact on population 

dynamics.

The recruitment of individuals with a median mass remained similar in models that either 

corrected (or not) for unmeasured individual differences. As expected, light (heavy) 

individuals recruited fewer (more) offspring in models including unmeasured individual 

differences than in models excluding them. Including unmeasured individual variation 

mainly impacted very light and very heavy individuals (it was the same in Coulson (2012) 

for Soay sheep). Population growth rate was weakly sensitive to extreme individuals as 

revealed by the elasticity analysis. Females weighing around 22–24 kg had the largest 

impact on population growth. Including unmeasured individual differences in recruitment 

only had a small influence on individuals with median mass and consequently only little 

influenced population growth rate.

Nevertheless, our study made two assumptions that, if not fulfilled, could have contributed 

to decrease the influence of unmeasured individual differences on population dynamics. 

First, we assumed that individual random effects reliably capture individual heterogeneity 

caused by unmeasured traits. This is not necessarily the case. For instance, when individual 

differences in the unmeasured trait follows a multinomial distribution (e.g. by displaying 

different groups of individuals according to their fixed quality), then individual random 

effects (which assume a normal distribution of individual differences) could not reliably 

capture such individual heterogeneity and would fail to model correctly the influence of 

unmeasured individual differences. However, this is not expected to occur in roe deer for 

which other characters known to influence individual quality follow a Gaussian distribution 

(like birth date in roe deer, see above). Second, we only included random effects of 
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individual differences on the intercept of the function, but not on their slope. Krishnakumar 

et al. (unpublished results) have shown that random effects associated with slopes have a 

much larger and more non-linear influence on the parameters that describe population 

dynamics (the generation time, the net reproductive rate and the asymptotic population 

growth rate) than random effects associated with intercepts. Thus, unlike random effects 

associated with intercepts, random effects associated with slopes do not produce the same 

proportional change for lighter and heavier individuals. As a result, we can expect that 

unmeasured individual differences are not likely to produce a major impact on model output 

except if these unmeasured differences interact with the measured trait when influencing the 

different demographic rates. Moreover, the impact of unmeasured individual differences 

should be more important in small populations or in populations during the process of 

colonization (Vindenes, Engen & Sæther, 2008) as the probability to have a population 

consisting mostly of low or high quality individuals increases in small populations.

Individual differences in demographic rates of large herbivores mostly result from 

differences in body mass, with heavier individuals living longer and having higher annual 

reproductive success than light individuals (Gaillard et al., 2000b). Therefore, measured 

individual differences in body mass and age shape most observed variation in individual 

fitness (Plard et al., 2014b). A model including heterogeneity in body mass and age should 

thus capture a large proportion of individual heterogeneity within a population of large 

herbivore such as roe deer. Unmeasured individual differences in other traits are likely to be 

correlated to differences in body mass at a given age (leading to the concept of individual 

quality, Wilson & Nussey 2010) or to be relatively small and have only a weak effect on 

population dynamics. While for some species, age-dependent models can be advantageously 

replaced with mass-dependent models because reproduction and survival are mostly related 

to body mass (Sauer & Slade, 1987; Gamelon et al., 2012), the distribution of body mass 

alone does not allow to estimate a reliable individual age of first reproduction in roe deer. 

Age variation therefore matters, especially because, as recruitment continuously increases 

with body mass, yearlings are allowed to give birth before the observed age of first 

reproduction in roe deer (2 y.o.). Not accounting for this constraint leads to erroneous 

metrics of population dynamics when age structure is not explicitly included in models.

In conclusion, our study demonstrates that individual heterogeneity in age and mass 

generates crucial sources of individual variation that influence the dynamics of a population. 

On the other hand, unmeasured individual differences are important for many things, but not 

necessarily for all things, in this population. In a long-lived species like roe deer, the 

individuals constituting the population remain similar from one year to the next (with a 

generation time of about 4 years, about 25% of individuals are replaced each year). As 

individual quality is highly repeatable (e.g. Plard et al. 2013), temporal variation in average 

individual quality in a population of a long-lived species like roe deer should be dampened, 

explaining why we report only a minor influence of individual heterogeneity on population 

dynamics compared to the impact of age-structure and yearly variation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Growth (A), inheritance (B), survival (C), realized fertility (D) and twinning rate (E) 

functions used to build the three age-class IPM (Model 6, Tables 1 and S1): yearling (dark 

grey dotted lines), prime-aged (2–7 y.o., black solid lines) and senescent (>7 y.o., grey 

dashed lines) females. For the growth (inheritance) function, at each female body mass at t 
corresponds a normal distribution of female (offspring) body mass at t+1. The mean 

transitions from female body mass at t to female (offspring) body mass at t + 1 are 

presented. (A–B) Each point represents an individual. (C–D) The size of points are 

proportional to the number of observed individual values for a given body mass.
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Figure 2. 
Stable body mass distributions (A) and reproductive values (B) modelled using three age-

classes and including (model 6, Table 1, solid lines) or not (model 5, Table 1, dashed line) 

unmeasured individual differences.
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Figure 3. 
Influence of unmeasured individual differences compared to the influence of variation in 

environmental conditions on three parameters describing population dynamics: the 

population growth rate (log(λ), A), the cohort generation time (Tc, B) and the mean 

recruitment rate (C). Two populations of different (high (black) and low (white)) average 

performance were compared to two populations facing contrasting (favorable (black 

hatched) and unfavorable (grey hatched)) years using the model 6 (Table 1). Median 

parameters are represented by a black solid line. Each function was successively perturbed 
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(Realized fertility, Twinning rate, Inheritance and Growth) before being all perturbed at 

same time (all).
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