
ACTIVE MEAN FIELDS FOR PROBABILISTIC IMAGE 
SEGMENTATION: CONNECTIONS WITH CHAN-VESE AND 
RUDIN-OSHER-FATEMI MODELS

MARC NIETHAMMER*, KILIAN M. POHL†, FIRDAUS JANOOS‡, and WILLIAM M. WELLS III§

*University of North Carolina at Chapel Hill, Department of Computer Science and Biomedical 
Research Imaging Center (BRIC)

†Center for Health Sciences, SRI International

‡Two Sigma Investments

§Harvard Medical School and Brigham and Women’s Hospital

Abstract

Segmentation is a fundamental task for extracting semantically meaningful regions from an image. 

The goal of segmentation algorithms is to accurately assign object labels to each image location. 

However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in 

label assignment. Estimating the uncertainty in label assignment is important in multiple 

application domains, such as segmenting tumors from medical images for radiation treatment 

planning. One way to estimate these uncertainties is through the computation of posteriors of 

Bayesian models, which is computationally prohibitive for many practical applications. On the 

other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore 

propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian 

modeling that uses a mean-field approximation to efficiently compute a segmentation and its 

corresponding uncertainty. Based on a variational formulation, the resulting convex model 

combines any label-likelihood measure with a prior on the length of the segmentation boundary. A 

specific implementation of that model is the Chan–Vese segmentation model (CV), in which the 

binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of 

the segmentation boundary. Furthermore, the Euler–Lagrange equations derived from the AMF 

model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image 

denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-

efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on 

synthetic data as well as on real natural and medical images. For a quantitative evaluation, we 

apply our approach to the icgbench dataset.
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1. Introduction

Image segmentation approaches rarely provide measures of segmentation label uncertainty. 

In fact, most existing and probabilistically-motivated segmentation approaches only compute 

the maximum a posteriori (MAP) solution [34, 35, 8, 20, 44]. Using these models to 

segment ambiguous boundaries is troublesome especially for applications where confidence 

in object boundaries impacts analysis. For example, many radiation treatment plans base 

dose distribution on the boundaries of tumors segmented from medical images with low 

contrast [37]. This can be problematic, as segmentation variability can have a substantial 

effect on radiation treatment; Martin et al. [37] report that such variability caused mean 

observer tumor control probability (i.e., the probability to control or eradicate a tumor at a 

given dose) to range from (22.6 ±11.9)% to (33.7±0.6)% between six participating 

physicians in a study of intensity-modulated radiation therapy (IMRT) of 4D-CT-based non-

small cell lung cancer radiotherapy. The precision of the planning could be improved around 

highly-confident tumor boundaries [37, 30] thereby reducing the risk of damaging healthy 

tissue in those areas. As significant information about label uncertainty is contained in the 

posterior distribution, it is natural to go beyond determining a MAP solution and instead to 

either compute the posterior distribution itself or a computationally efficient approximation.

This paper develops such a method for an efficient approximation of the posterior 

distribution on labels. Furthermore, it connects this method to the Rudin-Osher-Fatemi 

(ROF) model for image-denoising [51, 57, 3] and previously existing level-set segmentation 

approaches [42], in particular the Chan-Vese segmentation model [15]. Due to these 

connections we can (i) make use of the efficient solvers for the ROF model to approximate 

the posterior distribution on labels and (ii) compute the solution to the Chan-Vese model 

through the MAP realization of our approximation to the posterior distribution, i.e., our 

model is more general and subsumes the Chan-Vese model. In contrast to the implicit style 

of active-contour methods that represent labels by way of zero level-sets, such as the 

classical formulation of the Chan-Vese model, we use a dense logit (“log odds”), 

representation of label probabilities. This is akin to the convex approaches for active 

contours [2], but in a probabilistic formulation.

1.1. Motivations

Beyond optimal labelings, posterior distributions on labelings offer some advantages. For 

example, in many instances, one wishes to obtain information about segmentation 

confidence; or in change detection, distributions can help to determine whether an observed 

apparent change may be due to chance. Furthermore, probabilistic models on latent label 

fields can be useful for constructing more ambitious systems that, e.g., perform simultaneous 

segmentation and atlas registration [49]. However, the computation of posterior distributions 

is typically costly. Conversely, the computation of deterministic segmentation results, as for 

example by the popular active-contour approaches, is inexpensive and has shown to be an 

effective approach. Hence, we were motivated to merge both technologies, to obtain an 

active-contour inspired segmentation approach capable of estimating posterior distributions 

efficiently.
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In previous work [50], we described an Active Mean Fields (AMF) approach to image 

segmentation that used a variational mean field method (VMF) approach along with a logit 

representation to construct a segmentation system similar to the one described here. This 

method empirically generated accurate segmentations and converged well, but used a 

different, and more awkward, approximation of the expected value of the length functional. 

In this present work, we use a linearization approach via the Plefka approximation. Using 

this approximation has profound consequences as it allows to make connections to the Chan-

Vese [15] segmentation model and the ROF denoising model [51] in the continuous space. 

This connection in turn makes possible the efficient implementation of the AMF model 

through approaches used for ROF denoising. Hence, the overall model is convex, easy to 

implement and fast. Furthermore, we show good approximation properties in comparison to 

the “exact” distribution.

1.2. Contributions

The main contributions of this article are:

• It derives an AMF approach that allows a computationally efficient estimation of 

the posterior distribution of the segmentation label map based on the VMF 

approximation for binary image segmentation regularized via a boundary length 

prior.

• It establishes strong connections between the proposed AMF model, active-

contour models and total-variation (TV) denoising. In particular, the model 

retains the global optimality of convex active-contours while estimating a level-

set function that has a direct interpretation as an approximate posterior on the 

segmentation. This is in contrast to level-set techniques which use the zero level-

set only as a means for representing the object boundary with no (probabilistic) 

interpretation of the non-zero level-sets.

• It demonstrates how the Rudin-Osher-Fatemi (ROF) TV denoising model can be 

used to efficiently compute solutions of the AMF model. Hence, given the 

widespread availability of high-performance ROF-solvers, the AMF model is 

very simple to implement and will be immediately usable by the community with 

little effort.

1.3. Background

The earliest and simplest probabilistic image segmentation approaches frequently used 

pixel-wise independent Maximum Likelihood (ML) or MAP classifiers [56], that could be as 

simple as image thresholding. Better performance, in the face of noise, motivated the use of 

regularization, or prior probability models on the label fields that discouraged fragmentation 

[4], leading to the wide-spread application of Markov Random Field (MRF) models [28, 59]. 

Image segmentation with MRF models was initially thought to be computationally complex, 

which motivated approximations, including the mean field approach from statistical physics 

[31, 17]. Moreover, recently, fast solvers have appeared using graph-cuts, belief propagation 

or linear programming techniques that yield globally optimal solutions for certain energy 

functions [54].
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Typically, the segmentation problem is posed as the minimization of an energy or negative 

log-likelihood that incorporates an image likelihood and a regularization term on the 

boundaries of segmented objects. This regularization may be specified either: (i) directly on 

the boundary (explicitly as a parametric curve or surface, or implicitly through the use of 

level-set functions); or (ii) by representing objects via indicator functions, where 

discontinuities in those functions identify boundaries. The direct boundary representation is 

attractive because it reduces complexity as only objects of co-dimension one need to be dealt 

with (i.e., a curve in 2D, a surface in 3D, etc.). The price for this reduction in complexity is 

that, usually, minimization becomes non-convex, and hence can get trapped in poor local 

minima in the absence of good initializations. In the snakes approach [32], a popular 

example of explicit boundary representation, the boundary curve represented by control 

points is evolved such that it captures the object of interest (for example, by getting attracted 

to edges) while assuring regularity of the boundary by penalizing rapid boundary changes 

through elasticity and rigidity terms. Although computationally efficient, explicit parametric 

representations cannot easily deal with topological changes and have numerical issues due to 

their fixed object parameterization (e.g. when an initial curve grows or shrinks drastically). 

Furthermore, though not an intrinsic problem of explicit parameterizations, such methods 

are typically not geometric, making evolutions dependent on curve parameterizations.

In contrast, level-set representations [42, 36] of active-contour methods [10, 33] do not 

suffer from these topological and parameterization issues. These methods use implicit 

representations of the label-field, where an object’s boundary is, for example represented 

through the zero level-set of a function. A parametric boundary representation is evolved 

directly, for example by moving its associated control points. For a level-set representation 

the level-set function is evolved, which indirectly implies an evolution of the segmentation 

boundary. Specifically, an evolution equation is imposed on the level-set function such that 

its zero level-set moves as desired. As the level-set function is (by construction) either 

strictly positive or negative (depending on convention used) inside the object and strictly 

negative or positive on the outside of the object, a labeling can be obtained by simple 

thresholding. Level-set approaches for image segmentation make use of advanced numerical 

methods to solve the associated partial differential equations [42, 53]. To assure boundary 

regularity, segmentation energies typically penalize boundary length or surface area.

While initial curve and surface evolution methods focused on energy minimization based on 

boundary regularity and boundary misfit, later approaches such as the Chan-Vese model 

[15], added terms that encoded statistics about the regions inside and outside the 

segmentation boundary. Such region-based models can be as simple as homoscedastic (i.e., 
same variance) Gaussian likelihoods with specified (but distinct) means for foreground and 

background respectively, as in the Chan-Vese case. They can also be much more complex 

such as trying to maximally separate intensity or feature distributions inside and outside an 

object [26]. Overall, a large variety of region-based approaches exist, providing great 

modeling freedom [20]. While region-based models are less sensitive to initialization, they 

are still non-convex when combined with weighted curve-length terms for regularization. 

Hence, a global optimum cannot be guaranteed by numerical optimization for such 

formulations. The dependency on curve and surface initializations popularized the 

formulation of energy minimization methods which can find a global energy optimum. One 
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such approach is to reformulate an energy minimization problem as a problem defined over 

an appropriately chosen graph.

In the context of image segmentation, the idea is to create a graph with added source and 

sink nodes in such a way that a minimum cut of the graph implies a variable configuration 

which minimizes the original image segmentation energy [7]. For a large class of binary 

segmentation problems, these graph-cut approaches allow for the efficient computation of 

globally optimal solutions through max-flow algorithms [34]. In particular, discrete versions 

of the active-contour and Chan-Vese models (with fixed means) can be formulated. To avoid 

computing trivial solutions for the boundary-only active contours, graph-cut formulations 

add seed-points, specifying fixed background and foreground pixels or voxels (in 3D). While 

conceptually attractive, graph-cut approaches suffer from the need to build the graphs and 

the necessity to specify discrete neighborhood structures which may negatively affect the 

regularity of the obtained solution by creating so-called metrication artifacts.

Recently, the focus has shifted away from level-set and graph representations to 

formulations of active contours and related models by means of indicator functions [2, 8] 

defined in the continuum and allowing for convex formulations. These methods are closely 

related to segmentation via graph-cuts, but avoid the construction of graphs and can alleviate 

metrication artifacts. A key insight here is that the boundary-length or area term can be 

formulated through the total variation (TV) of an indicator function. This regularization 

formulation becomes convex when followed by relaxation of the indicator function to the 

interval [0, 1]. Hence these approaches strike an attractive balance between Partial 

Differential Equation (PDE)-based level-set formulations and the global properties of graph-

cut methods. As they are specified via PDEs, highly accurate and fast implementations for 

these solvers are available [47]. As these convex formulations make use of TV terms, they 

are conceptually related to TV image-denoising. The use of TV regularization for denoising 

was pioneered by Rudin, Osher and Fatemi (the ROF model [51]). The ROF model uses 

quadratic (i.e., ℓ2) coupling to the image intensities and TV for edge-preserving noise-

removal [9]. Approaches with ℓ1 coupling yielding a form of geometric scale-space have also 

been proposed [13]. As we will see, our proposed approach will be closely related to these 

modern TV regularization and denoising approaches.

Segmentation approaches based on energy-optimization as discussed above typically either 

have a probabilistic interpretation (as negative log-likelihoods) or have been explicitly 

derived from probabilistic considerations. The reader is referred to Cremers et al. [20] for a 

review of recent developments in probabilistic level-set segmentation. All these techniques, 

while probabilistic in nature, seek optimal labels and do not directly provide information 

about the posterior distribution or uncertainty in their solutions. In contrast, our proposed 

AMF approach will approximate posterior distributions from which one can infer a 

segmentation and corresponding uncertainty.

1.4. AMF Segmentation Approach

AMF segmentation is a Bayesian approach, which results in a posterior distribution on the 

label map. The AMF approach combines explicit representations of label likelihoods with a 
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boundary length prior. As we will show, our approach makes strong connections to ROF-

denoising, and convex active-contour as well as probabilistic active-contour formulations.

In prior work, Monte-Carlo approaches have been used to characterize posterior 

distributions on segmentations, which require sampling [24, 18, 45]. In addition, the Monte-

Carlo approach is quite general about statistical modeling assumptions so that it could be 

applied to the likelihood and regularity terms of our segmentation tasks. Approximations are 

then only caused by the sampling. A potential drawback of Monte-Carlo approaches is that 

an accurate estimation might require the generation of a large number of samples, which can 

be time consuming.

In contrast to the Monte-Carlo approach, our mean-field approximation is based on a 

factorized distribution that is quick to compute, but which is a relatively severe 

approximation. A potential drawback of our method is that samples drawn from the 

approximated posterior can have an un-natural fragmented appearance. However, our 

experimental results reveal that the approximation is surprisingly accurate (in terms of 

correlation of the posterior probabilities and the segmentation area), when compared to the 

exact model using much slower Gibbs sampling.

In summary, the primary advantages of our approach are speed, simplicity, and 

leverage of existing convex solver technology. We show in Section 3.2 that using 

ROF-denoising on the logit field of label likelihoods results in a “denoised” logit 

transform from which a label probability function can easily be obtained through a 

sigmoid transformation. Given an ROF solver, the AMF model can thus be 

implemented in one line of source-code. Furthermore, the AMF model provides a 

good approximation of the posterior of the segmentation under a curve-length prior 

as we experimentally show in Section 5.3.

1.5. Structure of the Article

In Section 2, we specify a discrete-space probabilistic formulation of segmentation with the 

goal of finding the posterior distribution of labels, given an input image. We use the VMF 

approach, along with a linearization approximation that simplifies the problem. This results 

in an optimization problem for determining the parameters of an approximation to the 

posterior distribution on pixel labels. In the style of Chan and Vese [15] and many others, we 

shift from discrete to continuous space facilitating use of the calculus of variations for the 

optimization problem, yielding the Euler-Lagrange equations for the AMF model.

In Section 3, we show that the AMF Euler-Lagrange equations for the zero level-set 

correspond to those of a special case of the Chan-Vese model [15], and that the AMF 

“approximate posterior” has the same mode, or MAP realization, as the exact posterior 

distribution. Subsequently we show that the AMF Euler-Lagrange equations have the same 

form as those of the ROF model of image denoising, and we discuss methods that may be 

used for solving AMF.

Section 4 describes other important properties of AMF. We show that for a one-parameter 

family of realizations, the approximated and exact posteriors agree ratiometrically, and we 
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explore their agreement for more general realizations. In addition, we show that the AMF 

problem is convex, and is unbiased in a particular sense.

Section 5 shows the experimental results on examples that include intensity ambiguities. It 

also demonstrates the quality of the AMF in approximating the true posterior via Gibbs 

sampling. Furthermore, Section 5 discusses AMF results for real ultrasound images of the 

heart, the prostate, a common test image in computer vision, and on a large collection of 

images from the icgbench segmentation dataset [52].

Finally, Section 6 concludes with a summary and an outlook on future work. Detailed 

derivations of the approximation properties can be found in the appendix.

2. Active Mean Fields (AMF)

This section introduces the basic discrete-space probabilistic model (Section 2.1), that 

includes a conventional conditionally independent likelihood term and a prior that penalizes 

the boundary length of the labeling. The VMF approach is used (Section 2.2), along with a 

Plefka approximation (Section 2.3), to construct a factorized distribution that, given image 

data, approximates the posterior distribution on labelings. The resulting optimization 

problem for determining the parameters of the variational distribution has a KL-divergence 

data attachment term and a TV regularizer. The objective function is converted to continuous 

space (Section 2.4), yielding the Euler-Lagrange equations of the AMF model (Section 2.5), 

that involve logit label probabilities and likelihoods along with a curvature term.

In the following sections, we use upper-case P and Q to represent probability mass functions 

and lower-case p and q to represent probability density functions.

2.1. Original Probability Model

Define the space of images as a compact domain1  indexed by x ∈ ℝ2 and let 

 denote the indices of the lattice of image pixels. Furthermore, Z denotes a 

binary random field defined on the pixel lattice whose realizations z are the binary labelings 

of a real-valued image y on the pixel lattice; given the image pixel index , zi and yi are 

the corresponding quantities specific to pixel . For convenience, we write 

 with h ∈ {0, 1}, where the definition of p(yi|zi) is problem specific and 

is assumed to be given (for example, specified parametrically or obtained through kernel 

density estimation on a given feature space; we will not address this issue here). Now, if we 

make the usual assumption that the likelihood term, i.e., the probability density of observing 

intensities conditioned on labels, is conditionally independent and identically distributed 

(iid), i.e.

1Our theory also holds for higher dimensions, i.e.,  We discuss our approach in ℝ2 for simplicity and hence talk about 
pixels. In 3D for example, we would deal with voxel grids and we would need to compute a 3D variant of total variation, but the 
overall results will hold unchanged.
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(2.1)

then the corresponding log-likelihood, defined with respect to the logit transform of the 

pixel-specific image likelihood

(2.2)

is

(2.3)

Next, we apply a prior that penalizes the length L(z) of the boundaries of the label map,

(2.4)

Here, λ ∈ ℝ+ is a constant. The larger λ the more irregular segmentation boundaries are 

penalized and therefore discouraged. We defer discussion of the length functional L(·) to 

Section 2.4.

By Bayes’ rule the posterior probability of the label map given the image is

(2.5)

so that

(2.6)

Here the constant is equal to the log-partition function of the prior distribution. This constant 

is not easily computed, as it requires a sum over all of the configurations of z.

2.2. Variational Mean-Field Approximation

As mentioned above, the partition function cannot easily be computed. In the variational 

mean-field (VMF) approach [58], we approximate the posterior distribution P via a simpler 

variational distribution Q by minimizing the distance between P and Q (here, in a Kullback-

Leibler sense – see details below). The explicit computation of the integrals involved in the 

partition function (for continuous variables) can thereby be avoided. Specifically, the mean-
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field method approximates the joint distribution of a countable family of random-variables 

as a product of univariate distributions. The VMF approximation is widely used in machine 

learning and other fields [58].

For the binary segmentation problem, we define the mean-field approximation Q(z; θ) of the 

posterior distribution P (z|y) as a field of independent Bernoulli random variables zi defined 

on the lattice  with probability θi, which constitute the random field Z:

(2.7)

(2.8)

where . Next, the parameters of Q(z; ·) are set so that it minimizes the KL-

divergence with respect to the original probability model, i.e.,

(2.9)

(2.10)

(2.11)

With minor abuse of KL-divergence notation:

(2.12)

In other words, the VMF approximation selects the parameters of the factorized variational 

distribution Q(Z; θ) such that (i) local image likelihood information, p(y|z), is captured 

while at the same time (ii) considering the expected value of the segmentation boundary 

length (which is a global property that regularizes the solution).

2.3. Plefka’s Approximation

Although minimizing the KL-divergence term in Eqn. (2.12) with respect to θ is relatively 

straightforward, minimizing  is generally not as it entails a sum over all 
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configurations of z. In the mean-field literature, difficult expectations of functions of 

random-fields have been approximated using Plefka’s method [46].

Noting that  according to Eqn. (2.7) and that the first order Taylor expansion of the 

curve length function about z* is L(z) ≈ L(z*) + (z − z*) · ∇L(z*), then Plefka’s 

approximation states that

(2.13)

so that an approximation of Eqn. (2.12) is

(2.14)

where .

Assuming L(·) is convex, as in the present case, then the Plefka approximation of Eqn. 

(2.14) is a lower bound to the original objective function of Eqn. (2.12) as Jensen’s 

inequality states . While this is not directly useful for our 

purposes, there has been some work on “converse Jensen inequalities” [23] that may provide 

useful bound relationships. In the end, approximations are justified by the quality of their 

results, such as the favorable properties highlighted in Section 4.

2.4. Continuous Variant of Variational Problem

In the previous section, we showed how the problem of computing the posterior distribution 

of a label-field under an (unspecified) boundary-length prior results in solving the 

optimization problem of Eqn. (2.14). To solve this problem using computationally efficient 

PDE optimization techniques, we first replace the random-field defined on a discrete lattice 

by one defined on continuous space.

Expanding Eqn. (2.14) by using the definition of the log likelihood (Eqn. (2.3)) and of Q(·,·) 

(Eqn. (2.8)) we get:

(2.15)

(2.16)
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(2.17)

(2.18)

To solve the above equation by extending θ to the continuum, the logit transform of the 

likelihood is now defined as

(2.19)

where x denotes the location (i.e., the continuous equivalent of the index ), and y(x), 

z(x), and θ(x) are the corresponding values of y, z, and θ at location x. Similarly, the 

continuous variant of the logit transform of the variational probability function, θ(x), is 

defined as

(2.20)

Now, if we denote with v the area of a lattice element and replace the summation over the 

lattice with integration over , then Eqn. (2.18) becomes in the continuous space,

(2.21)

By the co-area formula [5], the length of the boundaries of a binary image defined on the 

continuum is equal to its total-variation:

(2.22)

where ‖·‖2 is the 2-norm and ∇z is the (weak) gradient of z.2

Therefore putting it all together, the continuous variant of the variational problem is:

2∇(z) is defined as  for any test function ; in the case of z(x) being an 
element of a convex set, L(z) is convex.
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(2.23)

which we call the Active Mean Field approximation. Note, that ϕ(x) depends on θ(x) 

according to Eqn. (2.20).

2.5. Euler-Lagrange (EL) Equations

Defining the curvature operator,

(2.24)

the Euler-Lagrange equation describing the stationary points of Eqn. (2.23) is given by:

(2.25)

This can be derived as follows: Expanding ϕ(x) according to Eqn. (2.20), we obtain the 

objective function

(2.26)

The variation of E(θ) is [55]

(2.27)

where , δθ denotes an admissible perturbation of E(θ), and  denotes the partial 

derivative with respect to ε. The variation becomes

(2.28)

Integration by parts assuming Neumann boundary conditions and using Eqn. (2.20) results 

in

(2.29)
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As the variation needs to vanish for all admissible perturbations δθ(x) at optimality, we 

obtain the Euler-Lagrange equation

(2.30)

According to Eqn. (2.20), ϕ(x) is obtained from θ(x) through a logit transform. 

Consequentially, we can obtain θ(x) from ϕ(x) via the sigmoid function

(2.31)

as θ(x) = σ(θ(x)). The sigmoid function, σ(·), is monotonic (i.e., σ′(x) > 0) so that

(2.32)

and

(2.33)

Hence, the Euler-Lagrange equation can be rewritten as

(2.34)

In summary, the distribution Q(z; θ) approximates the “exact” distribution, P(z|y), in the KL-

divergence sense when ϕ (the logit transform of the parameter θ) satisfies the Euler-

Lagrange equation of the AMF model; we will refer to Eqn. (2.34) as the “AMF Equation.” 

As the objective function is strictly convex (see Section 4.2) in θ, the stationary point is the 

unique global optimum.

3. Connections to Chan-Vese and ROF

In this section we establish the connection between the AMF model and the Chan-Vese 

segmentation model (Section 3.1) as well as the ROF denoising model (Section 3.2). In 

particular, we show that the Chan Vese Euler-Lagrange equations correspond to those of the 

zero level-set of the AMF model, so a Chan-Vese segmentation can be obtained as the zero 

level-set of the AMF solution. We also show that the AMF Euler-Lagrange equations (Eqn. 

(2.34)) have the same form as those of the ROF model. Therefore, the solver technologies 

that have been developed for the ROF model may be deployed for AMF.
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3.1. Connection to Chan-Vese

To derive the connection between the AMF and the Chan-Vese approach, we introduce the 

energy Ecυ() for the generalized Chan-Vese model based on a relaxed indicator function 

(i.e., θ ∈ [0, 1]), which, according to [8], can be written as

(3.1)

with the first part of the function being the data term and the second term regularizing the 

boundary length. Such a length prior is essential to encourage large, contiguous 

segmentation areas. The importance of the length-prior becomes especially clear in the 

context of the Mumford-Shah model [39], of which the Chan-Vese model is a special case. 

In the absence of a length prior, the Mumford-Shah approach will assign each pixel in 

regions with constant image intensity to its own (separate) parcel. The standard Chan-Vese 

model [16] (without the area prior of this model) can be recovered from Eqn. (3.1) for the 

special case that the class conditional intensity model is Gaussian, i.e., 

and . In this case:

(3.2)

and the corresponding Chan-Vese energy becomes:

(3.3)

The means of the Gaussians (μ1, μ2) are estimated jointly in the standard Chan-Vese model 

[15] and the standard deviations are assumed to be fixed and identical. In contrast, in the 

generalized Chan-Vese model (Eqn. (3.1)), parameters of ψ(x) are typically assumed to be 

fixed and are not jointly estimated. This assures the convexity of the overall model. 

However, if desired, these parameters can also be estimated. A simple approach would be an 

alternating optimization strategy. Note that the Chan-Vese segmentation model of Eqn. (3.3) 

becomes Otsu-thresholding [43] if the length prior is disregarded (λ = 0). Hence, unlike 

Chan-Vese segmentation, Otsu-thresholding cannot suppress image fragmentation and 

irregularity.

The Euler-Lagrange equations of the generalized Chan-Vese energy (Eqn. (3.1)) are:

(3.4)

NIETHAMMER et al. Page 14

SIAM J Imaging Sci. Author manuscript; available in PMC 2018 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This is identical to the AMF Euler-Lagrange equation (Eqn. (2.30)) at the zero level-set ϕ(x) 

= 0. By construction, the zero level-set of a level-set implementation for the generalized 
Chan-Vese model has to agree with the solution obtained from the Euler-Lagrange equations 
of the generalized Chan-Vese model using indicator functions as both minimize the same 

energy function just using different parameterizations. Consequentially, also, the zero level-

sets of both the AMF model and the level-set implementation of Chan-Vese need to agree.

In contrast to the generalized Chan-Vese model described above, the original Chan-Vese 

model of [15], formulated as a curve evolution approach, is characterized by an energy 

function (penalizing segmentations with large, continuous areas) with an additional term of 

the form

(3.5)

where C denotes the curve defining the boundary of the segmentation,  is a 

nonnegative constant to weight the area influence, and Area(inside(C)) simply denotes the 

area enclosed by C. For implementation purposes C is implicitly represented by the zero 

level-set of a level set function ϕ. The corresponding Euler-Lagrange equation is, on the zero 

level-set [15],

(3.6)

Examining the ν level-set of the AMF model (Eqn. (2.34)), so that ϕ(x) = ν, we notice that 

this level-set satisfies the same Euler-Lagrange equation as the zero level-set of the Chan-

Vese model with a specified non-zero value of ν. In other words, the level-sets of the dense 

AMF solution provide a family of solutions for the Chan-Vese problem for a continuum of 

values of the area penalty.

Note that such area penalties cannot effectively be added in the indicator-function based 

approaches to the Chan-Vese active-contour models proposed by Appleton et al. [2] and 

Bresson et al. [8]. The goal of these models is to capture a binary segmentation result 

through a relaxed indicator function, (i.e., θ ∈ [0,1] instead of θ ∈ {0,1}). However, it can be 

shown [41] that in certain instances this relaxation produces undesirable segmentation 

results when combined with an area penalty.

3.2. Connection between AMF and ROF Models

In their seminal paper, Rudin, Osher and Fatemi [51] proposed a denoising method for, e.g., 

intensity images u0(x),

(3.7)

where σ > 0. As discussed by Vogel and Oman [57], this is equivalent to the following 

unconstrained problem,
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(3.8)

for a suitable choice of α > 0. They refer to this formulation as “TV penalized least 

squares.”

The corresponding Euler-Lagrange equation is

(3.9)

For α = υλ, this equation has the same form as the Euler-Lagrange equations of the AMF 

model of Eqn. (2.34), which is

(3.10)

In this equivalence, the denoised intensity image of the ROF model, u, corresponds to the 

logit parameter field of the AMF distribution, ϕ, while the noisy input intensity image of the 

ROF model, u0, corresponds to the logit-transformed label probabilities in the AMF 

problem, ψ Furthermore, if the class conditional intensity model is homoscedastic Gaussian, 

then (from Eqn. (3.2)) ψ (x) is linear in the observed intensity. Furthermore, the AMF 

solution is equivalent to solving an ROF problem that is effectively denoising the logit-

transformed label likelihoods.

Because of the equivalence of the Euler-Lagrange equations of the AMF and the ROF 

models, the considerable technology developed for solving the ROF model may be applied 

to the AMF model. In particular, a globally optimal solution (see Section 4.2 for a proof of 

the convexity of this model) of the AMF model can be computed by the ROF denoising 

approach. In other words, given an ROF solver (ROFsolve) that minimizes

(3.11)

such that

(3.12)

solving the AMF problem for a given ψ and λ then simply becomes

(3.13)
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Eqn. (3.13) is the central result concerning the implementation of our method as it connects 

the optimal AMF solution to a straightforward ROF denoising problem.

4. Additional Properties of AMF

We now summarize some approximation properties of AMF (Section 4.1), show the 

objective function to be convex (Section 4.2), and show that AMF is unbiased in a specific 

sense (Section 4.3).

4.1. Approximation Properties

Our goal is an efficient yet accurate approximation, Q(z; θ), to the exact posterior 

distribution P(z|y) for general realizations of z. To show that Q(z; θ) is in fact a good 

approximation, we study its properties here. For convenience, we only summarize the results 

of some of the approximation properties of the AMF model and refer to the appendix for 

mathematical details. In particular, the appendix shows that

a. The zero level-set of ϕ is the boundary of the most probable realization z0 of Q(z; 

θ) and it defines the MAP realization under P(z|y). This is not generally the case 

for mean field approximations.

b. Because the log partition function of the prior is not easily computed we 

compare  with , where z0 is the most probable realization 

under both distributions according to a). These probability ratios are not only in 

agreement for the zero level-set, but also for realizations that are bounded by any 

level-set of ϕ.

c. The probability ratios approximately agree for realization whose boundary 

normals are close in direction to ∇ϕ.

d. If neither a) nor b) hold, the probability ratio for Q(z, θ) will be larger than that 

for P(z|y), i.e., it underestimates the length penalty associated with the prior.

4.2. Convexity

A nice property of the AMF model is that its energy is strictly convex and therefore we can 

find a unique global minimizer. This is in contrast to the TV based segmentation models [2, 

8] which are generally convex (but not strictly so) and therefore may have multiple non-

unique optima.

To show convexity, we consider the continuum formulation of AMF which can be rewritten 

as a function of θ(x) ∈ [0,1], as:

(4.1)

where dependencies on space are dropped only for notational convenience (i.e., θ = θ (x) 

and ψ = ψ (x)) and we expressed ϕ in terms of θ. The term
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(4.2)

is convex in θ as the first summand is linear in θ, the 2-norm is convex, ∇ is a linear operator 

and both terms are summed with a positive weight λ. To see that the rest of the integrand is 

also convex, consider a function of the form

(4.3)

which implies that

(4.4)

Therefore, (1 − θ)ln(1 − θ) + θln(θ) dx is strictly convex. Because the sum of convex and 

strictly convex functions is strictly convex, the overall AMF energy is strictly convex in θ 
and therefore has a unique global minimizer (see [6] for details on convexity preserving 

operations). In particular, we note that for a non-informative data term, i.e., pixels are locally 

equally likely to be foreground or background (ψ = 0),  is the globally optimal 

solution. For the related standard TV segmentation model [2], which would only minimize 

Eqn. (4.2), any constant solution would be a global minimizer.

4.3. Unbiased in Homogeneous Regions

In this section we analyze the behavior of the AMF estimator over homogeneous (i.e., 
constant intensity) patches of an image. The AMF objective function, Eqn. (2.23), can be 

written:

(4.5)

Now, for a patch  of constant intensity, i.e., ψ(x) = ψ0, the optimum will be attained at 

ln(θ(x)/(1 − θ(x))) = ϕ(x) = ψ0 as both the KL and TV terms vanish. This in turn implies 

that the regularizer does not interact in homogeneous regions and an unbiased probability 

estimate is obtained.

In contrast, other probabilistic segmentation approaches, e.g. the Ising model [29], lack this 

“unbiased in homogeneous regions” property and because of this interaction with the 

regularizer, setting the regularization parameter λ in such cases can be tricky. To illustrate 

this point, consider a VMF treatment of the Ising model that parallels the approach and 

notation used for AMF. Defining an Ising model where N(i) are the neighbors of xi and the 

neighborhood potential term is
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(4.6)

then

(4.7)

Using the VMF approximation, we obtain:

(4.8)

(4.9)

which yields the following stationary-point equation:

(4.10)

This consistency equation characterizes the solution of the VMF approximation to the Ising 

model. It is clear from Eqn. (4.10) that the regularization term will only be zero when the 

neighborhood average of θi equals , while in other cases the unbiased property will not 

apply.

5. Experiments

This section illustrates the behavior of the proposed AMF model. Section 5.1 describes our 

numerical solution approach for the ROF model. Section 5.2 compares the AMF model to 

the standard Chan-Vese approach when dealing with ambiguous boundaries. Section 5.3 

investigates how well the AMF model agrees with the original probability model without 

approximations. Section 5.4.1 qualitatively assesses the AMF model on real ultrasound data 

of the heart and the prostate, as well as on the Fabio image often used for testing in 

computer vision. Section 5.4.2 quantitatively analyzes AMF by applying it to the images 

from the icgbench segmentation benchmark dataset.

5.1. Numerical Solution

We indirectly solve the AMF model by relating it to the ROF problem as discussed in 

Section 3.2. The ROF model was initially solved [51] using a gradient descent method, and 
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this may still be a reasonable option if AMF solving is embedded in an outer iteration, e.g. 

expectation-maximization [22]. The difficulty in computing the optimum of the ROF energy 

is due to the TV term that is not differentiable everywhere. The very first solver changed the 

optimization problem by replacing the TV term with [14], which made the 

energy function differentiable everywhere. To allow for better discretization of the TV term, 

primal-dual [14], and fully dual methods [11] have been explored. More recently, methods 

based on accelerated proximal gradient descent ( FISTA) [3] and split Bregman iterations 

[27] have been applied to solve the ROF model. See [12] for a comprehensive overview of 

recent continuous optimization strategies for the ROF model. We use FISTA for all our 

following experiments on synthetic and real data. To avoid computational issues in our 

experiments, probabilities were clamped to be in [10−5,1–10−5]. We used the Matlab FISTA 

implementation by Amir Beck and Marc Teboulle [3]. Convergence for FISTA was left at 

the default value of 10−4. The maximum number of iteration steps was set to 10,000 but was 

never reached.

5.2. Segmentation with Ambiguity

A goal of AMF is to provide label probabilities from which the MAP solution for the 

segmentation can be obtained, but which also allow the assessment of segmentation 

uncertainty. To test this behavior, we generated a highly ambiguous segmentation scenario, 

depicted in Fig. 1. We start by assuming class conditional intensity distributions for the 

foreground and the background classes (Fig. 1 right). Specifically, the class conditional 

intensity distributions were obtained as a mixture of Gaussians. We use three Gaussians with 

means μ = {30, 50, 70} and corresponding standard deviations σ = {5, 10, 5} and mix the 

first two (μ = {30, 50}; σ = {5, 10}) to obtain the background conditional intensity 

distribution and the last two (μ = {50, 70}; σ = {10, 5}) to obtain the foreground conditional 

intensity distribution. In both cases, the mixing coefficients are 0.5. The intensity 

distribution of the circle in the center of the image was chosen such that half of the circle has 

intensities that lie exactly in the middle between the foreground and background. In 

particular, the intensity of the region outside the circle is μ = 30, the intensity of the upper 

part of the circle is μ = 50, and the intensity of the lower part of the circle is μ = 70. 

Gaussian noise with mean zero and standard deviation of σ = 5 was added to the 

background, σ = 10 to the upper part of the circle, and σ = 5 to the lower part of the circle. 

The results were obtained by assuming we know the conditional distributions for the 

foreground and background classes; likelihoods were computed based on the noisy data. The 

regularization term was weighted with λ = 5.

Fig. 2 (left two images) shows the local label probabilities for the noisy input image and for 

the noise-free image (that will not be available in practice). Fig. 2 (right two images) shows 

the label probabilities after running the AMF model (left) and after thresholding 

(binarization) at P = 0.5 (right) that also corresponds to the MAP solution. Note that neither 

the foreground probability is one nor the foreground probability is zero due to the chosen 

class conditional intensity distributions: both the means of the background (μ = 30) and the 

foreground (μ = 70) have non-zero likelihood for background and foreground. As desired, 

the AMF model captures the segmentation uncertainty by estimating the upper part of the 
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circle at a probability close to P = 0.5. At the same time, due to spatial regularization, the 

AMF model removes noise effects. The MAP solution captures the most likely foreground 

area, but completely loses the ambiguous area.

Fig. 3 shows the estimated label probabilities and their true local counterparts along with a 

subtraction. The AMF method has effectively estimated the true label probabilities. Note 

that the true local label probabilities do not incorporate the effect of regularization. Hence, 

these two probabilities will slightly disagree at the segmentation boundaries.

5.3. Agreement with the Original Probability Model

In order to evaluate agreement between the original probability model, Eqn. (2.6), i.e.

(5.1)

and the AMF approximation, we conducted the following set of experiments on synthetic 

images. A binary random field was generated by sampling on a 100×100 grid from a 

Gaussian process with Matérn covariance function [21] with order parameter p and scale 

parameter l, that provides fine-grained control over the smoothness of the field. This 

continuous valued image was then thresholded at a quantile value selected uniformly at 

random to create the ground truth binary label map  to which Gaussian noise is added to 

create a noisy image y. For our experiments, we set the order parameter p =1 while varying 

the length scale parameter l = 1, 3, 5 and the noise standard deviation σ between 0.25 and 

0.4. Increasing l produces label maps with smoother boundaries and larger contiguous 

regions. Single realizations of  for l = 1, 3, 5 are shown in Fig. 4(a–c). Corresponding noisy 

images for σ = 0.4 are shown Fig. 4(d–f).

For each setting of Matérn length scale l we generated 40 ground-truth binary label maps, 

and for each binary map we generated 5 noisy images at each noise level σ. Next, for every 

realized pair of binary and noisy images (z, y), the AMF approximating distribution Q was 

computed by solving the ROF equations on the logit maps of y. The original probability 

model P of Eqn. (5.1) was also explored using Gibbs sampling with 5 chains of N = 105 

particles each, temperature T =1 and thinning factor=0.1. The temperature parameter, which 

controls the scale of the sampling distribution, is needed because the probability distribution 

P is known only up to to a scale factor (i.e. the partition function). Therefore, the Gibbs 

probability of zi = 1 is exp(−e1/T)/(exp(−e1/T) + exp(−e0/T)), where e1 and e0 are the 

energies corresponding to zi = 1 and zi = 0 respectively. Convergence was tested using the 

Gelman and Rubin diagnostic [25] resulting in approximately 2 × 104 particles being 

retained. Based on these Monte-Carlo particles, the following statistics were calculated for 

each realized image pair (z, y):

• The correlation coefficient between the probability masses of each particle 
according to P and Q. Note that although both P and Q are known only up to 

scales, it does not affect the correlation coefficient computation. As shown in 

Fig. 5 we see a strong correlation between the label map probabilities as 
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estimated by AMF and the original model. This implies that the AMF model is a 

good approximation to the original probability model. However the correlation 

seems to reduce with increase in l and σ, implying that smoother images are 

harder to approximate – probably because of an increase of non-local 

interactions that cannot be well approximated by the mean-field distribution and 

that increasing noise causes greater mis-approximation.

• The mean area of the label map estimated, for P from the Gibbs samples and for 
Q by closed-form evaluation. As shown in Fig. 6 the AMF model appears to 

underestimate the foreground’s mean-area when it is less than 50% of the full 

image, but this underestimation improves as the foreground fraction increases. 

Nevertheless there is good agreement, in terms of trend, between the mean area 

as estimated by the AMF model (in closed form) and the original probability 

model (via Gibbs sampling).

• The variance in the area of the label map, again estimated for P from the Gibbs 
samples and for Q by closed-form evaluation. As seen in Fig. 7, the second order 

statistics are not captured well by the AMF when compared to the second order 

statistics of the original model (as assessed by Gibbs sampling); especially for 

images with larger levels of smoothness. This is not surprising given that the 

mean-field approximation does not capture higher order interactions of the 

random field.

In summary, the posterior distribution of the AMF model correlates well with the posterior 

distribution obtained by Gibbs sampling. The obtained segmentation areas for the AMF 

model have the same trend as for Gibbs sampling, but tend to underestimate the 

segmentation area. As expected, higher-order statistics are not captured well due to the 

simplicity of the factorized variational distribution Q of the AMF model.

5.4. Assessment of AMF on Real Data

We illustrate the behavior of the AMF approach on real images qualitatively in Section 5.4.1 

and quantitatively in Section 5.4.2. Our goal in this section is not to beat state-of-the art 

segmentation methods for our example segmentation applications (which may for example, 

use shape models or more sophisticated machine learning approaches to improve 

segmentation results), but to illustrate the AMF approach in the context of challenging 

datasets. Note, however, that the AMF model can be based on any foreground and 

background likelihood map. Therefore, it is able to augment other more sophisticated pre-

processing to obtain foreground and background probabilities.

5.4.1. Qualitative Assessment of AMF on Real Data—We use ultrasound images of 

the prostate and the heart as well as an image of Fabio [40] to demonstrate the behavior of 

AMF under different levels of regularization. We limit ourselves to simple intensity 

distributions for the Fabio and the heart ultrasound image. We use a classifier supporting 

probabilistic outputs based on image intensities for the prostate example. Image size for the 

prostate example is 257 by 521 pixels, for the heart example 314 by 350 pixels, and for the 

Fabio image 253 by 254 pixels.
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Fig. 8 shows an ultrasound image of the heart (left), an expert segmentation into blood pool, 

myocardium, and valves (middle) and the intensity distribution for the blood pool and 

outside the heart (right). These intensity distributions clearly overlap. We initialized the 

AMF model with this user-defined intensity distribution by sampling from the image 

followed by kernel-density estimation of the intensities. We re-estimated the intensity-

distributions during the optimization. Specifically, given an intensity distribution, we 

compute the AMF solution, from that we obtain the binarized MAP solution that we use to 

re-estimate the intensity distributions using kernel-density estimation. We alternate AMF 

solution and density estimation to convergence. Fig. 9 shows the results of the AMF model 

for the estimation of label probabilities. The intensity ambiguity is captured in the estimated 

label probabilities of the AMF model. Regularization behaves as expected: low 

regularization results in noisy label probability maps. Moderate to high regularization allows 

capturing of the blood pool (for the MAP solution) while declaring other regions ambiguous 

or low-probability. Very large regularization declares the full image ambiguous, as expected, 

because the model will, in this case, prefer overly large segmentation regions.

Fig. 10 shows an ultrasound image of the prostate (left) and the corresponding results of an 

experimental prostate segmentation system (right). The prototype system analyzed Radio 

Frequency (RF) ultrasound data using deep learning and random forest classification to 

generate label probabilities. Alternating optimization, as in the heart example, was not used. 

Fig. 11 shows the results of the AMF model. The same conclusions as for the heart example 

apply. More regularity yields cleaner looking probability images as the AMF smooths the 

probability field as expected because of the connection to the ROF model. Changes are not 

as drastic as for the heart example as the initial probability map is already substantially more 

regular.

Fig. 12 show the original Fabio image including its segmentations based on a modified 

version of Otsu thresholding (where foreground and background classes can have distinct 

means and standard deviations) and the corresponding intensity histogram. This image can 

be separated reasonably well using intensity information alone. Fig. 13 shows the 

corresponding AMF results. We obtained these results by initializing AMF using the 

modified Otsu-thresholding procedure and then followed the same alternating optimization 

approach as for the heart ultrasound segmentation. Clearly, larger values for the 

regularization parameter λ put the emphasis on larger image structures.

These experiments show that the AMF model (i) results in label probabilities which are 

spatially smooth (as expected due to the connection to the ROF model), (ii) exhibits a 

balancing effect between local label likelihood and spatial regularization, and (iii) tends to 

more uncertain label assignments for strong spatial regularization.

5.4.2. Quantitative Assessment of AMF on Real Data—For quantitative analysis, we 

applied AMF to the segmentation benchmark data ( icgbench) of Santner et al. [52]. This 

benchmark dataset consists of 158 natural color images (391 by 625 pixels). For each image 

a manual segmentation is available. Furthermore, each image contains seed regions for the 

objects to be segmented. In total there are 262 seed regions and 887 objects. As proposed by 

Santner et al. [52], we train a random forest (using Matlab’s TreeBagger function) for each 
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image given pixel color information in image areas defined by user-provided seed locations 

dilated by a disk structural element of radius of 9 pixels. Each random forest consists of 100 

trees, λ was set to 10 for all the experiments; the models were trained on local CIElab color 

features. Once trained on the seeds, the resulting random forest classifier is applied to the 

full images generating noisy label probabilities. The mean computation time for an AMF 

segmentation was 22.1s for the RGB color images of the icgbench dataset using a Matlab 

CPU implementation on a 2GHz Intel Xeon, E5405. The computer had 8 cores, but the code 

was not explicitly multi-threaded (beyond what Matlab multi-threads automatically). As 

icgbench is a dataset for multi-label segmentation but our current AMF model only 

supports binary segmentation tasks3, we investigate two different segmentation approaches:

• Individual Binary Segmentations: For a given image we create binary 

segmentations by considering one class as the foreground and all other classes as 

the background.

• Quasi-Multi-Label Segmentation: Individual binary segmentations do not 

guarantee that local label probabilities over all classes sum up to one. Hence, we 

project the local label probabilities obtained from the individual binary 

segmentations onto the probability simplex. We used the standard Euclidean 

projection [19, 38] onto the simplex though other approaches could be used as 

well [48, 1].

Fig. 14(left) compares the obtained Dice scores over all 887 individual object segmentations 

based on the random forest and based on AMF applied to the random forest label 

probabilities. The Dice score between two sets S1 and S2 is defined as

(5.2)

To evaluate image segmentations, S1 and S2 correspond to sets of object pixels which are the 

most likely for a given object class label (i.e., foreground and background). AMF clearly 

improves the segmentations generated by the random forest. The mean Dice score (with 

standard deviation in parentheses) for the individual segmentations over all images is 

0.82(0.18) for the random forest, which are significantly worse (p < 10−10) according to a 

one-sided paired t-test) than individual binary AMF segmentations, whose mean Dice score 

is 0.88(0.15). The quasi-multi label AMF approach further improves the mean Dice score to 

0.89(0.14). Computing multi-label Dice-scores4 for all the images results in a mean Dice 

score of 0.84(0.11) for the random forest and 0.90(0.09) for the quasi-multi-label AMF 

segmentation, which is significantly better (p < 1e − 10 according to a one-sided paired t-

test) and matches the Dice score obtained by Santner et al. [52] when using the same 

features.

3A multi-label extension is likely possible, but it remains to be investigated if connections to the ROF and the CV models can still be 
made.
4We compute the multi-label Dice score as the mean over the individual Dice scores for the individual binary segmentations for an 
image. Hence, we obtain one multi-label Dice score per image, but as many individual Dice scores as there are objects in an image.
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Not only is our method simpler than the approach by Santner et al. [52], which uses a 

sophisticated random forest implementation coupled with a true multi-label segmentation 

approach (i.e., all labels are jointly considered during the segmentation and not in a one-

versus-all-other classes fashion as in our approach), but our method also complements the 

MAP solution with posterior label probabilities, which can be used to quantitatively assess 

the confidence in the segmentation. A possible confidence measure is to compute an area-
normalized approximation of the posterior

(5.3)

(5.4)

Area-normalization is useful as object sizes in the icgbench dataset vary greatly. 

Specifically, we define the area-normalized form of Q(·;·) as

(5.5)

We use the MAP solution of the AMF, zmap, to evaluate Qarea. For a binary θ, i.e., no 

uncertainty in the inferred binary segmentation, Qarea(zmap; θ) = 1. The value of Qarea(zmap; 

θ) decreases if θ is not binary indicating uncertainty in the inferred segmentation. In 

comparison to the approximate posterior Q, this area-normalized measure allows us to assess 

uncertainty of objects independent of their size. For Qarea(zmap; θ) to be a useful measure of 

segmentation quality, it should be high for high Dice scores and conversely low for low Dice 

scores. The scatter plot between Dice scores and Qarea(zmap; θ) in Fig. 14(right) shows that 

this is indeed frequently the case. Hence Qarea(zmap; θ) can serve as a measure of 

segmentation confidence in the absence of manual segmentations.

To gain a deeper understanding of the Qarea measure, it is instructive to review cases where 

Qarea seems unrelated to the Dice score. Fig. 15 shows a case with very high Qarea, but low 

Dice score, caused by a very confident, but incorrect output of the random forest from which 

the AMF cannot recover. Fig. 16 shows a case with very low Qarea but high Dice score. 

Here, the segmentation is good, but our approach is not confident as other regions have 

similar color. Fig. 17 and Fig. 18 show examples where segmentations receive both high 

Dice and Qarea scores, indicating high quality segmentations which also have high 

segmentation confidence according to Qarea.
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In summary, the AMF model shows good segmentation performance across a large set of 

natural images. Furthermore, the posterior distribution on labels carries useful information 

as it can provide a proxy for likely segmentation quality.

6. Conclusions

We described a method for binary image segmentation which allows efficient estimation of 

approximate label probabilities through a VMF approximation. We carefully analyzed the 

theoretical properties of the model and tested its behavior on synthetic and real datasets. A 

particularly useful feature of our model is that it has strong connections to the Chan-Vese 

segmentation model and the ROF image-denoising model. Our method can therefore be 

implemented using off-the-shelf solvers of the ROF model. This simple and efficient way to 

compute solutions makes AMF an attractive alternative to Chan-Vese-like approaches, 

which, unlike AMF, do not compute posterior distributions on labels. A current drawback of 

our method is its binary formulation. Nevertheless, our approach can be used for multi-label 

segmentation by converting multi-label problems to multiple binary segmentations. A truly 

multi-label formulation of AMF is outside the scope of this paper, but should be investigated 

in future work. It will be interesting to see if connections to the Chan-Vese and the ROF 

model can also be established in a multi-label VMF approach.
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Appendix A

We compare the approximated and exact distributions, Q(z; θ) and P (z|y), respectively, for 

general realizations of z. Because the normalizer for P (z|y) is not available, and for 

convenience, we will compare  and , where z0 is the most probable 

realization under Q.

For calculating the log probability ratio of P, we return to the original probability model. 

From Eqn. (2.3) – Eqn. (2.5),

(A.1)

(A.2)

Then the log probability ratio for the exact posterior, P, is
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Working towards the probability ratio for the AMF approximate posterior, Q, using Eqn. 

(2.7) and using a similar technique,

Here it is easy to see that the most probable realization under Q is bounded by the zero level-

set of ϕ.

We may now write the log probability ratio for Q,

Subtracting the two probability ratios,

(A.3)

We now make use of the AMF equation, ϕ(x) − ψ(x) – υλκ(ϕ(x)) = 0, to establish 

relationships among the log probability ratios of p and q. We obtain

(A.4)

(A.5)

(A.6)

(A.7)
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(A.8)

(A.9)

The last two lines use the divergence theorem; c(s) is the boundary of z(x) oriented so that 

the outward normal points from z(x) = 1 towards z(x) = 0, and similarly for c0(x) and z0(x). 

N(x) is the outward normal vector to the curve in question (see Fig. 19).

Then

(A.10)

where

is the dot product of two unit vectors, the outward normal to the curve and the negative of 

the direction of the gradient of ϕ.

On the curve c0, β(x) = 1, because the boundary of z0 is a level-set of ϕ(x). In that case the 

second and fourth terms cancel. Re-writing the third term as an integral over c,

(A.11)

Because β(x) is the dot product of two unit vectors, we may write β(x) = cos(α(x)), where α 
is the angle between the normal to the curve and the negative of the gradient direction of 

ϕ(x) (see Fig. 19). Then, using ,

Summarizing the comparison of the probability ratios of the exact and approximate 

distributions, P and Q, respectively we see the following:
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• For realizations that are bounded by level-sets of ϕ, α is zero, so the probability 

ratios agree.

• For realizations whose boundaries are in direction “close” to level-sets of ϕ, the 

probability ratios approximately agree (the disagreement is quadratic in α).

• For curves where α is not small, the probability ratio for Q will be larger than for 

P, i.e., Q underestimates the length penalty of P.

We saw above that the zero level-set of ϕ is the boundary of the most probable realization 

under the approximate distribution, Q(z; θ) (and it is unique). Since the probability ratios 

agree for z0 (a level set of ϕ), and the Q ratio upper-bounds the P ratio, we conclude that it is 

also the boundary of the MAP realization under P(z|y). In summary, z0, whose boundary is 

the zero level-set of ϕ, satisfies
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Fig. 1. 
Ambiguous segmentation scenario. Left: original image, middle: noisy image, right: class 

conditional distributions. Distributions clearly overlap which should result in a segmentation 

ambiguity for the upper part of the circle which was deliberately chosen to have intensities 

in between the background and the foreground (bottom part of the circle). Background class 

conditional distribution displayed as a solid black line, foreground class conditional 

distribution displayed as a dash-dotted black line
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Fig. 2. 
(a) Noise-free foreground label probabilities based on the noise-free image of Fig. 1 (which 

is not available in practice). (b) Noisy label probabilities based on the noisy image of Fig. 1. 

The upper part of the circle is clearly ambiguous with foreground label probability of P = 

0.5. (c) Estimated label probabilities using the AMF model. (d) Estimated MAP solution 

(binarization at P = 0.5) from the AMF-estimated label probabilities. Clearly, the AMF 

model captures more information – the MAP solution completely loses the ambiguity of the 

upper part of the circle.
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Fig. 3. 
Left: estimated label probabilities by the AMF model. Middle: noise-free label probabilities. 

Right: difference between the probabilities. Differences exist primarily at the segmentation 

boundaries, which is expected since the AMF model includes spatial regularization effects 

while the noise-free label probabilities are computed strictly locally. Overall, there is a good 

agreement between the probabilities.
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Fig. 4. 
Single realizations of ground truth label maps and corresponding noisy images generated 

from Matérn processes with length-scale parameter varied between 1, 3 and 5.
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Fig. 5. 
Histograms of the correlation coefficient between the posterior probability of the Gibbs 

samples as measured by P and Q. Each histogram is across the realizations of the synthetic 

binary maps and noisy images, i.e., one correlation coefficient per pair, for the various 

settings of Matérn length scale parameter l and image noise σ.
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Fig. 6. 
Scatter plots of the mean foreground area (as a fraction of total area) as measured under P 

(via Gibbs sampling) and Q (in closed form). Each point is one realization of the synthetic 

binary maps and noisy images for the various settings of Matérn length scale parameter l and 

image noise σ.
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Fig. 7. 
Scatter plots of the variance of the fractional foreground area as measured under P (via 

Gibbs sampling) and Q (in closed form). Each point is one realization of the synthetic binary 

maps and noisy images for the various settings of Matérn length scale parameter l and image 

noise σ.
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Fig. 8. 
Left: ultrasound image of the heart. Middle: ultrasound image of the heart with overlaid 

expert segmentations of blood pool (red), myocardium (blue) and valves (yellow). Right: 

intensity distributions for the blood pool (red) and the areas outside of the heart (black) for 

the intensity-normalized image (I ∈ [0, 1]). Intensity distributions clearly overlap making an 

intensity- only segmentation challenging.
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Fig. 9. 
Intensity-based segmentation results of the heart from an ultrasound image for the AMF 

model. Increased regularization captures increasingly consistent regions. Moderate to high 

regularization retains high probabilities of the blood pool while estimating low probabilities 

for the surroundings. Very large regularization yields ambiguous label probabilities 

throughout the complete image. Magenta contour indicates expert segmentation of the 

blood-pool, blue contour indicates the 0.5 probability isocontour of the AMF solution.
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Fig. 10. 
Left: ultrasound image of the prostate. Right: prostate probability map obtained by a 

machine-learning approach.
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Fig. 11. 
Probability-map-based segmentation results of the prostate from an ultrasound image for the 

AMF model. Input to the AMF is the prostate probability map of Fig. 10(right). Increased 

regularization captures increasingly consistent regions. Moderate to high regularization 

retain high probabilities of the prostate while estimating low probabilities for the 

surroundings. Very large regularizations yield ambiguous label probabilities throughout the 

complete image. Blue contour indicates the 0.5 probability isocontour of the AMF solution.
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Fig. 12. 
Left: Fabio image. Middle: Otsu-thresholded Fabio image. Right: intensity distributions for 

the intensity-normalized image (I ∈ [0, 1]) based on the classes determined by Otsu 

thresholding.
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Fig. 13. 
Intensity-based segmentation results for the Fabio image for the AMF model.
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Fig. 14. 
Left: Scatter plot for Dice segmentation scores for all the objects of the icgbench database. 

Comparison between obtained Dice scores through the random forest (RF) and after 

applying the AMF model (AMF). Values are logit transformed before plotting for better 

visualization: logit(p) = ln(p/(1−p)). In the vast majority of the cases, AMF improves the 

Dice score. Line indicates equal values for RF and AMF model, i.e., values above the line 

indicate a better performance of the AMF model compared to the RF. Right: Scatter plot 

between Dice segmentation score and area-normalized posterior approximation Q of the 

AMF. Values are also logit transformed for better visualization. High Dice scores are 

generally related to high Q values. A clear linear trend is visible for the logit-transformed 

variables. Line indicates a least-squares fit to the logit transformed Q/Dice value pairs. 

Sample (p, logit(p)) pairs are as follows: (0.01, −4.60), (0.25, −1.10), (0.5, 0), (0.75, 1.10), 

(0.9, 2.20), (0.99, 4.60).
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Fig. 15. 
Unusual case: Segmentation with high confidence, but low Dice score indicating a 

segmentation of low quality. (a) Original Image; (b) Seeds to train the random forest; (c) 

Expert segmentation; (d) AMF segmentation; (e) label probabilities for plane object 

computed by random forest ; (f) AMF-computed label probabilities for the plane object; (g) 

masked AMF-computed label probabilities, only showing areas where the plane object is 

most probable ; (h) AMF-computed label probabilities for the correct expert labels at each 

location (white image, θ = 1 would be a perfect result). As the color values for the plane 

seeds (dark blue) are similar to regions in the sky, the random forest classifier (e) is overly 

confident from which the AMF (f) cannot recover. Hence, there is poor overlap between the 

resulting segmentation (d and h) and the expert labeling (c). At the same time, the overall 

confidence for this example is high due to the high certainty of the random forest approach. 

The Dice score for the quasi-multi-label AMF and for the binary AMF is 0.49. The mean 

Qarea score for both approaches is 0.94.
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Fig. 16. 
Unusual case: Segmentation with low confidence, but high Dice score indicating a 

segmentation of high quality. (a) Original Image; (b) Seeds to train the random forest; (c) 

Expert segmentation; (d) AMF segmentation; (e) random forest label probabilities for 

cobble-stone object on the top-right; (f) corresponding label probabilities computed by 

AMF; (g) masked AMF-computed label probabilities, only showing areas where the cobble-

stone object is the most probable; (h) AMF-computed label probabilities for the correct 

expert labels at each location (white image, θ = 1 would be a perfect result). In this example, 

the seed points for the cobble-stone object (b; cyan) essentially fully segment the object of 

interest. However as the color values are ambiguous with respect to the other classes (in 

particular the red seed label) the overall segmentation result is not highly confident (f and g) 

resulting in a lower Qarea score. However, the most probable labelings also agree with the 

experts’ opinion (d and h). The Dice score for the quasi-multi-label AMF is 0.97 and for the 

binary AMF 0.93. The mean Qarea scores are 0.71 and 0.67 respectively.
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Fig. 17. 
Sample segmentation results for highly confident high quality segmentations. Top row: 

original images; 2nd row: seeds used for training the random forest; 3rd row: expert 

segmentations; 4th row: AMF segmentation result; last row: label probabilities computed by 

AMF with respect to the object segmented by the expert (i.e., given an expert label the 

corresponding probability for that label as computed by the AMF is displayed; a perfect 

result would be a totally white image). Dice scores for the quasi-multi label approach 

applied to the AMF segmentation, majority voting (first value), and the mean for all binary 

segmentations for a given image respectively. Qarea scores are the means over all the 

segmented objects for the quasi-multi-label approach (first value) and the binary 

segmentation approach (second value).
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Fig. 18. 
Sample segmentation results for highly confident high quality segmentations. Top row: 

original images; 2nd row: seeds used for training the random forest only; 3rd row: expert 

segmentation; 4th row: AMF segmentation result; last row: label probabilities of AMF with 

respect to the object segmented by the expert (i.e., given an expert label the corresponding 

probability for that label as computed by the AMF is displayed; a perfect result would be a 

totally white image). Dice scores for the quasi-multi label approach applied to AMF 

segmentation, majority voting (first value) and the mean for all binary segmentations for a 

given image respectively. Qarea scores are the means over all the segmented objects for the 

quasi-multi-label approach (first value) and the binary segmentation approach (second 

value).
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Fig. 19. 
Level sets and normals.
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