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Abstract

Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. 

In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we 

extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent 

reaction-subdiffusion computational framework. Two different possible models of chemical 

reaction are revealed and some basic dynamic properties are derived. In certain cases those 

mesoscopic models have a direct interpretation at the macroscopic level as fractional partial 

differential equations in a bounded time interval. Through analysis and numerical experiments we 

estimate the macroscopic effects of reactions under subdiffusive mixing. The models display 

properties observed also in experiments: for a short time interval the behavior of the diffusion and 

the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times 

the behavior is ordinary again.
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1. Introduction

Quantitative models of reaction-diffusion systems are important tools to theoretically and 

computationally study the dynamics of intracellular control systems. Macromolecules such 

as proteins, mRNA and DNA interact in regulatory pathways in which each chemical 

reaction occurs in a certain part of the cell. Molecules are transported via diffusion or active 

transport to arrive at the subcellular location needed to fulfill their function. As an example, 

in many gene regulatory pathways, proteins called transcription factors will diffuse and 

search for the correct binding site on DNA, where they modulate the translation of DNA into 

mRNA, which in turn will be translated into proteins. Apart from the spatial dynamics, 

realistic models need to account for large fluctuations in the copy numbers of the species 

due to the small reaction volume and thus the small number of molecules of key species 

such as transcription factors. To that end, spatial stochastic models based on a Markov 
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process formalism are popular due to their high level of biological realism compared to 

macroscopic partial differential equations (PDE), with only a moderate increase in 

computational complexity and cost. Such mesoscopic models, based on the so called 

Reaction-Diffusion Master Equation (RDME), have recently been used to address different 

biological phenomena such as regulation of cell division in E. coli [11], yeast polarization 

[31] and genetic oscillators [50].

A fundamental assumption in the RDME models is that molecules are point particles. Thus, 

the model does not account for molecular volume exclusion, something that can lead to 

anomalous diffusion in the crowded compartments of living cells. Especially on 2D 

membranes, crowding and anomalous diffusion behavior can be expected to have an impact 

on the reaction kinetics. For diffusion limited reactions, subdiffusion often results in a 

slower decay [54]. A reversible ligand binding bimolecular reaction on a 2D membrane is 

studied in [46] where anomalous diffusion is simulated with a continuous-time random walk 

(CTRW). The steady state distribution of the bound complex depends critically on the 

anomalous diffusion and its parameters. An irreversible bimolecular reaction is simulated in 

[1] with ordinary diffusion and a modified non-Fickian diffusion which is anomalous for 

intermediate time but tends to ordinary diffusion in the long term. The distribution of the 

reactant is sensitive to the type of diffusion. The conclusion in [40] is also that subdiffusion 

changes the reaction rate in a bimolecular reaction.

To capture effects of subdiffusion due to molecular crowding in stochastic reaction diffusion 

simulations, detailed Brownian Dynamics (BD) models based on a hard-sphere assumption 

can be used instead of the mesoscopic RDME model, since they account for the volume 

exclusion of molecules. However, this comes at the price of a very large increase in 

computational cost, making simulations on the timescales of interest in systems biology 

(minutes to hours) challenging. Thus there is a need to investigate less computationally 

demanding approximations of mesoscopic subdiffusion. A promising approach for 

mesoscopic anomalous diffusion simulation was suggested recently by Mommer and 

Lebiedz [38], in which a stochastic CTRW model [39] is approximated by an internal states 

model where all transitions between states have exponentially distributed waiting times. 

Hence, the subdiffusive process is simulated as a coupled reaction-diffusion system with 

ordinary diffusion, making it easily implemented in software frameworks based on the 

RDME [8, 18, 22].

Starting from the viewpoint that the mesoscopic model arises as an approximation of 

molecular crowding on the microscopic level, the internal states model can be viewed as a 

mathematical means to arrive at an approximate, faster simulation method. On a more 

general level, such internal states models arise also from the need to model for example 

conformational changes of macromolecules. Many proteins exist in a number of different 

states due to e.g. ligand binding, methylation, and conformational changes [4, 9]. In practical 

modeling, if each state is to be represented as a separate chemical species, an exponential 

growth in model complexity due to a combinatorial explosion in the number of states may be 

the consequence. To handle this from a practical point of view, special rule-based modeling 

languages have been developed, such as BioNetGen Language [3] and PySB [33]. This 

combinatorial explosion in states motivates the development of computational methods to 
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simulate models with these types of molecules more efficiently [49]. In this case, we start 

with an internal states model naturally arising from the biological model, and are then 

interested in how this model can be approximated on a phenomenological, macroscopic level 

as a fractional PDE (FPDE).

Molecules transported by subdiffusion move slower than with ordinary diffusion [36] which 

could be an effect of crowding in a biological cell. The governing equation for subdiffusion 

is a FPDE with a fractional time derivative and the Laplacian as the diffusive space operator. 

Chemical reactions can also be included in this framework. Three different models for 

monomolecular reactions with subdiffusion are derived and compared with analytical 

solutions in [21]. In one of the models where the fractional derivative acts only on the 

diffusion, the concentration of the species can become negative, making it less suitable. In 

the preferred model, where a special fractional derivative is derived for the diffusion, the 

equation for the homogeneous solution is recovered without a fractional derivative. The 

model where the fractional derivative is applied to both the diffusion and the reaction is used 

in [53] for a bimolecular reaction. A model with internal states is derived in [43] for the 

propagation of a reaction front in an inhomogeneous medium. The particles move by 

diffusion and react with each other at the front. Macroscopic equations are obtained after 

summation over the internal states. Analytical results show that the speed of the front 

depends on the type of reaction and the particle distribution between the internal states. That 

same model is suggested in [44] to explain the results in [46].

In this paper, we develop theory to extend the mesoscopic anomalous diffusion internal 

states model [38] to account also for chemical reactions, making it possible to model general 

reaction-diffusion processes. In particular, we develop theory for the connection between the 

model framework that thus emerges and existing models of anomalous reaction-diffusion 

processes on the macroscopic, FPDE level. As we will see, the proposed reactive internal 

states model is quite general and can, depending on the involved parameters, result in 

different mean-field equations. Some of these mesoscopic equations have a simple 

interpretation at the macroscopic level as a FPDE but in general this is not possible. In 

numerical simulations, the reaction-diffusion systems have the same behavior as observed in 

many experiments: in a short time interval after start we see ordinary behavior, then there is 

an anomalous phase, and finally the behavior is ordinary again but with different diffusion 

and reaction coefficients. These conclusions are supported theoretically in [23, 25, 30, 41]. 

The reaction-diffusion equations encompass many of the known models of subdiffusive 

reaction systems, making it promising as a general modeling framework.

The rest of the paper is organized as follows. In Section 2, we review some basic properties 

of stochastic models of diffusion and how they give rise to a phenomenological, 

macroscopic FPDE in the thermodynamic limit. Here, we will also see how the addition of 

chemical reactions on the macroscopic level can lead to two different, possible FPDE 

models. We introduce an internal states model of reaction-subdiffusion systems in Section 3 

and analyze its mean field properties. In Section 4, we relate the models in Sections 2 and 3 

to each other for linear and non-linear chemical reactions, and in Setion 5, numerical 

experiments are presented. Finally, the paper is concluded in Section 6.

BLANC et al. Page 3

Multiscale Model Simul. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Fractional partial differential equations as limits of continuous-time 

random walks

In this section, we recall some well-known facts about Brownian and, in particular, 

subdiffusive random movements. When approached in the proper macroscopic limit, FPDEs 

emerge as a convenient mathematical model for subdiffusion. Terms are added to the FPDEs 

to model chemical reactions.

The CTRW model was introduced by Montroll and Weiss for hopping transport on a 

disordered lattice [39]. In this model in continuous space, the particle is assumed to traverse 

the space by a series of jumps. The displacement and the waiting time to perform the next 

jump are drawn from a given probability density function (PDF) Ψ(x, t). We assume that the 

jump length PDF λ(x) and waiting time PDF ψ(t) are independent random variables. 

Consequently, Ψ(x, t) is written

(2.1)

Different diffusion processes can be categorized by the expected waiting time

(2.2)

and the jump length variance

(2.3)

where d is the dimension of the embedding space. If both Σ2 and τ∗ are finite, the long-time 

limit corresponds to Brownian motion. A diverging τ∗ with finite Σ2 gives rise to 

subdiffusion. On the contrary, a diverging Σ2 with a finite τ∗ induces superdiffusion [23, 36], 

which is beyond the scope of this article.

2.1. Brownian motion

We consider a Gaussian jump length PDF

(2.4)

and a Poissonian waiting time PDF

(2.5)
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Equations (2.2)–(2.3) lead to Σ2 = 2σ2 < ∞ and τ∗ = τ < ∞. Since Σ2 and τ∗ are finite, the 

long-time limit thus corresponds to Brownian motion. At the macroscopic scale, we recover 

the classical diffusion equation [23, 36] for the concentration U of the chemical species A

(2.6)

with

(2.7)

The linear time dependence of the mean squared displacement

(2.8)

is characteristic of Brownian motion.

2.2. Subdiffusion

We consider now instead a Gaussian jump length PDF (2.4) and a waiting time PDF [28, 35]

(2.9)

where

(2.10)

is the generalized Mittag-Leffler function. The Mittag-Leffler waiting time PDF has been 

observed experimentally, from polymer rheology [16], over ligand rebinding to proteins [15] 

and protein conformation dynamics [52], to financial market time series [34]. Equations 

(2.2)–(2.3) lead to Σ2 = 2 σ2 < ∞ and τ∗ = ∞, which give rise to subdiffusion. At the 

macroscopic scale, we obtain the FPDE [23, 36]

(2.11)

with
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(2.12)

At the boundary ∂Ω of the domain Ω, the molecules are reflected back implying 

homogeneous Neumann boundary conditions at ∂Ω. The operator  involved in (2.11) is a 

Caputo fractional derivative in time of order α, generalizing the usual derivative. It is 

defined as [5, 37]

(2.13)

The mean squared displacement is given by the power law

(2.14)

In the one dimensional (1D) case (d = 1) in free space, the Green’s function of the FPDE 

(2.11) is [36]

(2.15)

where the Fox function  is defined in Appendix A. In the particular case α = 1/2, the 

Green’s function (2.15) can be rewritten

(2.16)

where the Meijer-G function  is also defined in Appendix A. The Green’s function 

(2.16) will be used in numerical experiments in Section 5 as a reference solution.

2.3. Adding chemical reactions

In the following we discuss how chemical reactions can be added to the macroscopic 

subdiffusion model (2.11) for the cases of annihilation, reversible isomerization, and 

reversible bimolecular reactions. As we will see, in the first two cases two different FPDE 

models are possible, while only one of them turns out to be well defined for bimolecular 

association.
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2.3.1. Annihilation—We first consider one species A and the annihilation process 

. Two different FPDEs can be used to model an annihilation process. If a constant 

proportion of walkers are removed instantaneously at the start of each step then the long-

time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order 

temporal derivative operating both on the standard diffusion term and on the linear reaction 

kinetics term [21, 24, 42]:

(2.17)

In what follows, (2.17) is referred to as model I. The total amount Ū of A in a bounded 

domain Ω with boundary ∂Ω is defined as

(2.18)

The equation (2.17) is integrated over Ω

(2.19)

Since

(2.20)

for Neumann conditions at ∂Ω with normal n, Ū satisfies the fractional ordinary differential 

equation (ODE)

(2.21)

Consequently, the total amount of A is also affected by the subdiffusion. This behavior is 

called anomalous kinetics. In the 1D case in free space, the Green’s function of (2.17) is [21]

(2.22)

In the particular case of α = 1/2, (2.22) can be rewritten as
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(2.23)

If instead the walkers are removed at a constant per capita rate during the waiting time 

between steps then the long time asymptotic limit has a standard linear reaction kinetics 

term but a fractional order temporal derivative operating on a nonstandard diffusion term 

[21, 32, 45, 51]:

(2.24)

This case is referred to as model II in what follows. Integrating (2.24) and using (2.20) leads 

to

(2.25)

Ordinary kinetics is recovered: the total amount of A is not affected by the subdiffusion. The 

change of variables  in (2.24) leads to the FPDE (2.11). In the one dimensional 

case, the Green’s solution of (2.24) is then [21, 36]

(2.26)

2.3.2. Monomolecular reactions—Let two species A and B undergo the monomolecular 

reversible isomerization reaction  We assume that the jump length variance and the 

time scale involved in (2.12) are the same for each species: 

Consequently, the diffusion coefficients are also identical KAα = KBα = Kα. The 

concentrations of A and B are U and V, respectively. As in the case of annihilation, two 

different FPDEs can be used to model this reaction. Model I is here written

(2.27)

with U = (U V)T and  The reaction matrix R is diagonalizable, R = P Λr 

P−1, with
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(2.28)

\By setting Ũ = P−1 U, the governing system of evolution equations decouples to

(2.29)

In the 1D case without boundaries, the Green’s function of the FPDE (2.29) can be 

computed using (2.15) and (2.22).

Model II is written

(2.30)

The change of variables  in (2.30) leads to the FPDE (2.11). The Green’s function 

of the FPDE (2.30) in 1D can be computed using (2.26).

2.3.3. Bimolecular reactions—Finally, we consider three species A, B and C and the 

reversible bimolecular reaction  As previously, we assume that the jump length 

variance and the time scale involved in (2.12) are the same for all species, which implies that 

the diffusion coefficients are also identical. The concentrations of A, B and C are U, V and 

W, respectively. In the bimolecular case, due to the nonlinearity, only model I is defined. It 

is written

(2.31)

No analytical solution is available in this case. Nevertheless, the quantity U−V satisfies the 

FPDE (2.11). Consequently, the analytical solution of U−V is given by (2.15).

3. The internal states model

In this section, we introduce an internal states model of subdiffusion on the mesoscale. The 

molecules jump on a lattice and can react with each other when they are in the same lattice 

cell. Diffusion is here modeled by discrete jumps with a waiting time PDF ψ(t) and a jump 

length depending on the nearest neighbors in the lattice.
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3.1. Mesoscopic diffusion and reactions

In the stochastic mesoscopic model, the state of the system at time t is given by the number 

of molecules of each one of the N species in the state vector  The domain is 

partitioned into non-overlapping voxels or compartments , i = 1, …, M, with a mesh or a 

lattice. Each voxel has a vertex at xi in the center. The component yjk of yk is the number of 

molecules of species j in . The states are changed randomly at discrete time points tℓ 
depending on chemical reactions or a jump to a neighboring voxel due to diffusion. Between 

tℓ and tℓ+1, y is constant. The PDF is p(y, t) for the system to be in state y at time t, and 

satisfies a master equation [10, 26], commonly referred to as the Reaction-Diffusion Master 

Equation (RDME) in the context of chemical kinetics.

The jump coefficient λji for a diffusive jump of a molecule A from  to  is determined 

from the coefficients of a discretized diffusion equation in [10]. The rate for a jump is λjiyj 

where yj is the copy number of A in . After the diffusive jump, yj and yi are updated: yj := 

yj − 1, yi := yi + 1.

A bimolecular reaction between the molecular species A and B produces a C molecule in a 

voxel in

(3.1)

The propensity of the reaction is κ times the copy numbers y and z of A and B. If the 

reaction takes place at tℓ, then the state before the reaction  in the voxel is changed to 

 immediately after the reaction r, where νr is the stoichiometric vector 

associated with the reaction. In (3.1), y=y − 1, z:=z − 1, and the copy number of C increases 

by one.

A realization of the chemical system is generated by the stochastic simulation algorithm 

(SSA) [13] in a Monte Carlo method. In the limit of large copy numbers, the mean values of 

the concentrations of the species converge to the solution of the reaction rate equations [29]. 

These equations are stated in Section 3.3.

In the next section, a master equation is derived for the PDF of a system with internal states. 

Internal states of the species are introduced in [38] to model subdiffusion. We will extend 

their model to include reactions between the species.

3.2. A generalized master equation

As a generalization of the classical chemical master equation (CME), we let a chemical 

species A have a number N of internal states Al, l = 1, …, N. The state Al can model a 

conformational state that can be difficult to observe and that is more or less hidden from a 

practical point of view as in a hidden Markov model. On the molecular level, the hidden 

states can model different things, for example, they can represent different geometrical 
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configurations of the molecule or the macromolecule can have different small molecules 

attached to it at different locations [4, 9].

We now consider a general event q which could be a diffusive jump, a change of internal 

states or a reaction. Assume that the molecule in the state j has a PDF for the waiting time 

with density ψqj(t) for the event q and that the molecule, due to the event, then changes state 

to i with probability πqij such that  Although formally ψqj(t) here is slightly 

different from the one in Section 2, the notation is retained since the observed effects are the 

same. Usually, the waiting time is assumed to be exponentially distributed and dependent on 

reaction rates and diffusion propensities.

The Laplace transform of a function f(t) is denoted by  An auxiliary function ϕqj(t) is 

defined by its Laplace transform involving the Laplace transform of the waiting time PDF 

(3.2)

Gillespie shows in [14] (see also [19, 27]) that there is a generalized master equation for the 

PDF pi of state i

(3.3)

If ψqi(t) = aqi exp(−aqit), then ϕqi(t) = aqi δ(t) where δ(t) is the Dirac delta and aqi is the 

reaction propensity. Then we obtain the usual master equation

(3.4)

Let state i be y and let state j be y − νq in (3.4) and identify aq(y − νq) with πqij aqj and aqi 

with aq(y) for event q. Let Q be the total number of events. If the waiting times are 

exponentially distributed then we recover the usual CME [26]

(3.5)

We consider six different elementary events listed in Table 3.1. The coefficients in (3.4) and 

waiting times in (3.2) defining the events are also found in Table 3.1. The copy numbers of 

the species Aj and Bi are yj and zi, respectively. The total rates away from the state in the 

table to all other states that can be reached are
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ensuring that  The waiting time distribution in the state is 

when one molecule is transformed in Table 3.1. The time scale τj of the transformations 

depends on the internal state j of A. We will find that if τi ≠ τj when i ≠ j then the 

annihilation, diffusion, reaction, or production is anomalous at the macroscopic level. If τi = 

τ then the transformation between the states is the ordinary one with the same waiting time 

for all states.

The scale τij of the bimolecular reaction depends on the states of A and B. By splitting the 

reaction rate into  with 0 ≤ θ ≤ 1, the time constant is 

 This τij is in agreement with the time scale obtained from [6]. 

Let DAi and DBi be the diffusion coefficients of species A and B in state i, kb the 

microscopic reaction rate, and ρr the reaction radius. Then the reaction rate κijk in [6] 

follows from Smoluchowski’s rate law and is a function of DAi and DBj

(3.6)

Let the diffusion coefficients of species A and B depend on the internal state such that 

 and  (2.7). Then with and for diffusion limited 

systems with a large kb compared to DAi + DBj, κijk is approximated by

(3.7)

When kb is small then the influence of the diffusion disappears in (3.6) and κijk ≈ kb without 

dependence on the states i and j.

With the master equation (3.4) or (3.5), we can derive reaction rate equations approximately 

satisfied by the mean values as in [26, 38].

3.3. Mean-field properties of the internal states model

The mean values of the concentrations of the species approximately satisfy a system of 

ODEs often denoted the reaction rate equations. These equations are derived from the PDF 

in the master equation (3.4) or (3.5), see [26]. When the reactions are such that all 

propensities are linear in the chemical system, see Table 3.1, then the solutions to the 

equations are the exact mean values. They are approximations if there is a bimolecular 

reaction in the chemical system.
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3.3.1. Diffusion—Let us first examine a system with one molecular species and N internal 

states. This is the problem investigated in [38]. We allow changes of internal state and 

diffusion between two voxels but without chemical reactions. The mean values of the 

concentrations of the N states  in voxel i are the solution of

(3.8)

The number of voxels directly connected to  is ni. Consequently, a diffusive jump between 

 i ≠ j, and  is possible. The elements of A follow from Table 3.1 and are  and 

 Let T be a diagonal matrix with Tii = 1/τi, μ a vector with non-negative 

components μi such that eT μ = 1 and e a vector with ei = 1 for all i. Then A in (3.8) can be 

written

(3.9)

The nullspace consists of one vector ũ∞ where

(3.10)

The left eigenvector of A corresponding to eigenvalue λ1 = 0 is e such that

(3.11)

The diffusion jump coefficients in (3.8) are derived such that the Laplacian is approximated 

in voxel i

(3.12)

On a Cartesian mesh with equal mesh spacing h, λji = 1/h2 and λi = 2d/h2 where d is the 

dimension. On an unstructured mesh, the coefficients can be derived by a finite element 

method as in [10]. With a continuous u(x, t) in space, the equation approximated by (3.8) is

(3.13)

The boundary conditions are of Neumann type at the boundary to preserve the total 

concentration of the species as in (2.20). The analysis is simplified in this section if we 
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consider the solution u(x, t) of (3.13) instead of the discrete solutions ui(t) in the voxels in 

(3.8).

With positive initial data, it is easy to see that there is a unique positive steady-state solution 

ũ∞ as t → ∞. This solution is space independent. We write this in the normalized form

(3.14)

where ‖u∞‖1 = 1 and u = ‖u(x, 0)‖1 by the preservation of mass. Since Δu∞ = 0 we have A 
u∞ = 0 and u∞ is given by (3.10) and (3.14).

Expand the solution of (3.13) in a cosine series in 1D

(3.15)

with x in [0, 2π] and insert into (3.13). Then each mode uω satisfies

(3.16)

The solution to the equation is

(3.17)

where S(ω) = (s1, s2, …, sN) is the eigenvector matrix of −ω2 σ2 T + A and the eigenvalues 

λj(ω) are on the diagonal of Λ. By Gerschgorin’s theorem for the eigenvalues of a matrix, 

the eigenvalues all satisfy ℜλj ≤ 0 for ω = 0 and ℜλj < 0 for ω > 0. Thus, as t increases all 

modes vanish except for one mode s1(0) = u∞ at ω = 0 with eigenvalue λ1 = 0.

The concentrations of the internal states are summed at the macroscopic level. Then U = eT 

u satisfies

(3.18)

where
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(3.19)

The macroscopic U satisfies a diffusion equation with a diffusion coefficient varying in 

space and time. For large t, the dominant mode in the spatially non-constant part of the 

solution is damped by the eigenvalue  at ω1. Then  and 

the steady-state macroscopic diffusion coefficient in (3.19) is

(3.20)

3.3.2. A reversible reaction—Consider next the simple case of a reversible 

isomerization,

(3.21)

which is to be understood in the sense that, for example, the rate for the jth internal state of a 

B-molecule to transform into the ith state of an A-molecule is λji. These are thus two 

monomolecular reactions with reaction rates in Table 3.1.

We assume that the variance of the jump length, the diagonal matrix T and the vector μ are 

the same for all species with identical matrices D and A. Taking the mean as in (3.8) we 

readily arrive at the coupled set of PDEs

(3.22)

(3.23)
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for some matrices K1, K2, and L1, L2 whose precise form we now determine. Define positive 

rate matrices K and L with Kij = κij and Lij = λij. From the prescription (3.21) we find that in 

(3.22)–(3.23), the ith state is affected by the reaction terms

(3.24)

(3.25)

Identifying terms we obtain that

(3.26)

(3.27)

where the notation diag(f) denotes a diagonal matrix with fi on the diagonal.

We are interested in the stable, space independent solutions to (3.22)–(3.23). Introduce

(3.28)

By construction and using (3.11) we have the crucial properties that

(3.29)

(3.30)

with M = 2N. Also, by inspection B is irreducible, i.e. there is no permutation matrix Q such 

that
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(3.31)

Taken together, B is a  and this provides us with certain general stability properties.

Lemma 3.1 : Suppose that a real, irreducible matrix H ∈ ℝM×M satisfies 

(3.29)–(3.31) (with B replaced by H). Then the system of ODEs

(3.32)

has a single stable equilibrium solution ξ∞ as t → ∞. Moreover, if initial data ξ(0) with 

positive mass eT ξ(0) > 0 is given, then eT ξ(t) = eT ξ(0) > 0 for all t > 0.

This particular formulation is discussed in detail in [26, Chap. V.3] and we note that it can 

also be shown to follow from the Perron-Frobenius theorem. To get some further insight into 

the stability we present some alternative arguments as outlined in [26, Chap. V.9, p. 129].

Proof: Consider the adjoint problem

(3.33)

such that

(3.34)

Using (3.29) we see that

(3.35)

By the irreducibility of H, the largest element in η decreases and the smallest element 

increases with time such that an all-constant vector η∞ emerges in the limit. With η(0) = ei, 

the ith unit vector, we recover from (3.34) the unique equilibrium solution . Also, with 

η(0) = e we have η(t) = e and mass is a preserved quantity. ❑

Apply the lemma to B in (3.28) with ξT = (uT, vT). Then it follows that there is a steady 

state ( , ) and the initial mass eT u(0) + eT v(0) is conserved for all t.
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We now turn our attention to the equivalent reaction rates as induced by the subdiffusive 

reactions (3.21). We write the unique equilibrium solution ,  in the normalized form 

, , where ║u∞║1 = ║v∞║1 = 1. Using (3.26)–(3.27) we readily find 

in good agreement that

(3.36)

Also, to mention just one example,

(3.37)

which can be understood as a kind of consistency result; at steady state the equivalent 

reaction rate applied to the sum of the internal states gives the same result as the sum of the 

individual subdiffusive rates.

To conclude, using the subdiffusion steady state solutions, which remain valid also when the 

coupling reactions (3.21) are ‘turned on’, we can read off the equivalent reaction rates as a 

function of the corresponding subdiffusive rates. Insert u(x, t) = u(x, t) u∞ and v(x, t) = v(x, 

t) v∞ into (3.22) and (3.23). Then we have

(3.38)

(3.39)

Multiply by eT and in the long-time limit we thus arrive at the familiarly looking 

macroscopic reaction-diffusion PDE

(3.40)

(3.41)

with γu = eT D u∞ and γv = eT D v∞.

3.3.3. A bimolecular reaction—We finally consider the case of a reversible 

dimerization,
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(3.42)

As in Section 3.3.2, the jump length variance, the diagonal matrix T and the vector μ are the 

same for each species and D and A are also identical. Due to the nonlinearities it is 

inconvenient to write this in a matrix form as in (3.22)–(3.23). Instead, for each internal state 

i we have the mean-field equations,

(3.43)

(3.44)

(3.45)

where for readability we write Kijk = κijk and Lijk = λijk. The difference ui − vi satisfies

(3.46)

If Kijk = Kjik and Lijk = Ljik in (3.46) and ui(x, 0) = vi(x, 0) for all i, then it follows that ui(x, 

t) = vi(x, t) for t > 0.

Assume that there is a positive steady state solution ( , , ) to (3.43)–(3.45) when t 

→ ∞. Let (  where ║u∞║1 = ║v∞║1 = 

║w∞║1 = 1. Small perturbations around the equilibrium solution are evolved by the 

Jacobian of the system. For (3.43)–(3.45), it can be written in the form

(3.47)

We identify after some tedious work
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(3.48)

(3.49)

(3.50)

(3.51)

The Jacobian B in (3.47) is not a : To understand why, note in (3.42) that the total 

sum of molecules is not a preserved quantity. However, if each C-molecule is counted twice, 

this new weighted sum is in fact preserved. Indeed, by inspection and after some work we 

find that multiplying B by a diagonal matrix with 1 on the diagonal in the first 2N rows and 

2 in the last N rows we have a . Using the  Lemma 3.1 it therefore follows 

that small perturbations around an equilibrium solution are stable.

Equivalent reaction rates can be defined as follows,

(3.52)

Insert u(x, t), v(x, t), and w(x, t) = w(x, t) w∞ into (3.43)–(3.45) as in (3.38) and let γw = eT 

D w∞. As expected we recover the reaction-diffusion PDE for u, v, and w

(3.53)

(3.54)
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(3.55)

4. The internal states approximation of the FPDE

In this section we start off with the promising observation made in [38] that non-Markovian 

waiting times can be arbitrarily well approximated by a set of Markovian waiting times, each 

associated with its own internal state. In turn, those states are to be visited according to a 

certain random walk model which again can be taken as Markovian, all in all resulting in a 

computationally quite attractive modeling framework for subdiffusion and reactions.

In Section 4.1, we recapitulate the basic internal states subdiffusive model and its relation to 

the FPDE, and in Section 4.2 we determine its asymptotic behavior for short and long times. 

In Section 4.3, we consider the same framework in the presence of reactions with two 

different mesoscopic models. In particular, we discuss the feasibility of obtaining coarse-

grained macroscopic coefficients in a FPDE from observations of subdiffusive systems.

4.1. Internal states diffusion system

The asymptotic behavior of the waiting time (2.9) at large time follows the power law

(4.1)

with

(4.2)

With a change of variable in the Euler’s Γ function, the diffusive representation of the totally 

monotone function  in (4.1) is [7, 17, 20, 48]

(4.3)

The diffusive representation of  (4.3) is approximated by using a quadrature formula in 

N points, with weights  and abscissae si:

(4.4)
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leading to the diffusive approximation [2].

Our objective is then to approximate the function  by 

in the time interval [tmin, tmax]. One possibility to quantify the error of the model εmod is

(4.5)

Based on the error (4.5), a nonlinear optimization is shown in [2] to be a better way to 

determine the parameters  and si than Gaussian quadrature. Consequently, this method is 

used in all what follows.

Setting

(4.6)

the approximation of the waiting time (4.1) is

(4.7)

The jump length variance Σ2 (2.3) is then computed using (2.12).

The waiting time PDF (2.9) and its asymptotic expansion (4.1) are compared in Figure 4.1. 

The parameters are those used in the numerical experiments in Section 5.2 (Table 5.1, 

second set of parameters). Anomalous diffusion is expected in the time range of interest 

[tmin, tmax]. In this time interval, the expansion (4.1) is already accurate as illustrated in 

Figure 4.1.

The CTRW algorithm in Section 2 is extended to a multistate CTRW (MCTRW) algorithm 

in [38] for a diffusive system with internal states. One diffusive jump in the algorithm is 

performed as follows. Firstly, a state i is drawn with probability μi. Secondly, the waiting 

time is sampled from an exponential distribution with the PDF . The PDF 

of the jump length in an internal state i is λi(x) as in (2.4) with variance . Finally, the 

length of the jump is drawn with the normal distribution of λi.

The combined PDFs for the jump length and the waiting time of the internal states are
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(4.8)

The reaction-diffusion system (3.13) in [38] is derived from the MCTRW algorithm and the 

approximation (4.7). In the ith internal state, the diffusion of ui is ordinary, whereas the sum 

of the concentrations of the internal states at the macroscopic level U = eTu diffuses 

anomalously within the time range [tmin, tmax]. A collection of internal states with waiting 

times ψi(t) are here approximated by one state with the waiting time ψ(t) in (4.7).

4.2. Diffusive behavior of the internal states model

To mimic a subdiffusive behavior and to define a Markov process, the waiting time PDF 

ψ(t) is approximated by a sum of N exponentials (4.7). Let us assume that τ1 < τ2 <⋯< τN. 

Equation (4.7) implies the following.

• At small times, the Taylor expansion of ψ(t) is

(4.9)

with . At small times, ψ(t) is therefore 

equivalent to a Poisson law with parameter τeq. Hence, ordinary diffusion is 

expected for t ≪ τ1;

• As we see in (3.18), the macroscopic U satisfies a diffusion equation with a 

diffusion coefficient  (3.19) varying in space and time. For large t, the 

long-time diffusion coefficient is given by (3.20). It does not depend on space 

and time. Consequently, a return to ordinary diffusion is expected.

• For t ∈ [τ1, τN], a subdiffusive behavior is expected with subdiffusive exponent 

α.

This is in agreement with observations in physical experiments [23, 25, 30, 41]. Numerical 

illustrations are found in Section 5.

4.3. Internal states reaction-diffusion system

In this section, the mesoscopic model with N internal states of the participating molecules in 

Section 3 is compared to the macroscopic FPDE models I and II in Section 2.3. The 

annihilation reaction, monomolecular reactions and bimolecular reactions summarized in 

Table 3.1 are investigated. For mesoscopic models with certain reactions, there are 
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corresponding FPDE models but in other cases the macroscopic level with summation over 

the internal states is not so easily expressed as a FPDE.

4.3.1. Annihilation process—We consider one species A with N different internal states. 

Each internal state can be annihilated with rate ki

(4.10)

The internal states diffusion system (3.22) without v is then modified as follows

(4.11)

Let ki = k/τi in (4.10) as in Table 3.1. Then K1 = k T and (4.11) can be written

(4.12)

In model I (2.17), the fractional order temporal derivative  acts on both the Laplace 

operator and the reaction term. In the internal states diffusion system (4.11) and (4.12), the 

diffusion matrix is scaled by the waiting time matrix T to mimic an anomalous behavior. 

Scaling the reaction matrix K1 in the same way will approximate the macroscopic model I. 

The waiting time ψi(t) for diffusive and reactive events is the same for all internal states. The 

relation between k in (4.12) and k∗ in (2.17) is the same as between σ2 and Kα in (2.12),

(4.13)

For an approximation of model II, take K and K1 to be k I in (3.26). This corresponds to an 

annihilation case in Table 3.1 with all τi = 1. The right hand side of (4.11) is with this K1

(4.14)

The waiting time ψi(t) for diffusive and reactive events is different for the internal states.

If K1 and T and K1 and A commute then the equation for u in (4.14) can be written

(4.15)
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This equation corresponds to model II in Section 2.3.1 at the macroscopic level. The relation 

between k in (4.14) and k∗ in (2.24) is

(4.16)

After a change of variables Ũ = ek∗t U in the model II FPDE (2.24), the FPDE (2.30) is 

obtained. In the same manner, introduce a change of variables  u in (4.11). Then

(4.17)

A sufficient condition for K1 to commute with T and A is that K1 = k I as is the case in 

(4.14). If K1 does not commute with T and A, the macroscopic equation for U = eT u may 

not be as simple as (2.30).

Consider ū, the total amount of A in the different states in Ω, defined by

(4.18)

Integrating (4.11) and using the Neumann boundary condition in (2.19) and (2.20) leads to

(4.19)

The time evolution of ū is then

(4.20)

By Gerschgorin’s theorem for the eigenvalues of a matrix, the eigenvalues of A − K1 are 

strictly in the left half plane. By (4.19), the equation for the sum over all internal states Ū = 

eT ū is

(4.21)

with

(4.22)
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In model I with K1 = kT, k′ varies in time depending on ū, and the kinetics is then 

anomalous. Let λ1 be the eigenvalue of A − K1 with maximum real part and s1 the 

corresponding eigenvector. Then for large t

(4.23)

cf. (3.20). On the contrary, in model II k′ = k does not depend on time, and the kinetics is 

then ordinary. This conclusion agrees with the comments in Section 2.3.1.

4.3.2. Monomolecular reactions—We study two species A and B with N different 

internal states and the reversible reactions in (3.21). The internal states diffusion system is 

found in (3.22) and (3.23). The aim of this section is to choose the reaction matrices K and L 
in (3.26) and (3.27) to mimic either model I (2.27) or model II (2.30) and to discuss other 

alternatives.

The reaction rates are first chosen to be scaled by the waiting time matrix and one state i is 

transformed to the same state i in

(4.24)

Then Kii = k/τi and Lii = ℓ/τi, cf. Table 3.1. With K = k T and L = ℓ T in (3.22) and (3.23) we 

have

(4.25)

The diffusion and the reactions have the same waiting time as in model I in (2.27).

The steady state of model I in (4.25) has an analytical solution. Let u∞ span the nullspace of 

A (see (3.10)) and insert the constant solutions in space u u∞ and v u∞ with ‖u∞‖1 = 1 as u 
and v in (4.25). Then the right hand sides are

(4.26)

Both equations in (4.26) are satisfied if k u = ℓ v. Hence, the steady state solution is u(u∞, 

(k/ℓ) u∞), where u depends on the initial data. By mass conservation in Lemma 3.1

(4.27)
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The macroscopic reaction coefficients can be regarded as time and space dependent and the 

macroscopic equations can be expressed without fractional derivatives. Introduce small 

perturbations δu and δv around the steady state in (4.25)

Then for  and  we derive

(4.28)

where

(4.29)

The effective macroscopic reaction coefficients are K′ and L′ when t ≫ 0, cf. (3.36) with K1 

= kT.

With more general K and L in (3.21), the structure of the equations is the same as in (4.25) 

but there is no corresponding macroscopic FPDE. For example, let K = T e fT T and L = T e 
gT T with fT T e > 0 and gT T e > 0. Then K1 = k T with k = fT T e and L1 = ℓ T with ℓ = gT 

T e. The equations for u and v are

(4.30)

The macroscopic waiting time for the reactions is not obvious in this case.

As in (4.24), let one state i be transformed to the same state i and choose the reaction rates to 

be constant for all states Kii = k and Lii = ℓ with τi = 1 in Table 3.1. Insert K = k I and L = ℓ I 
into (3.22) and (3.23) to obtain

(4.31)
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Only the diffusion has different waiting times in different states while the waiting times for 

the reactions are the same in all states. Let Mr and Md be the reaction matrix and the 

operator for the diffusion and the change of state in (4.31)

(4.32)

There is a transformation from (4.14) via (4.15) to (4.17). Since Mr and Md commute in 

(4.32), there is a similar transformation for (4.31). As in (4.14), eT u and eT v approximate 

model II in (2.30).

If the diffusion rate is independent of the state but the waiting time for the reactions depends 

on the state in (4.24) then Dii = σ2 in (3.13), Kii = k/τi and Lii = ℓ/τi. The mesoscopic model 

is

(4.33)

We have the ordinary diffusion but the reactions behave anomalously at the macroscopic 

level with the waiting time ψi(t) depending on the state.

4.3.3. Bimolecular reactions—We consider three species A, B and C in N different 

internal states and the chemical reactions

(4.34)

This is a less general set of reactions than in (3.42) in that only molecules in the same 

internal state react with each other. The internal states reaction-diffusion system (3.43)–

(3.45) is then modified as follows for state i

(4.35)

The reaction coefficients in (4.35) are chosen to be Kiii = k/τi and Liii = ℓ/τi. Then at state i
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(4.36)

The reactions and the diffusion have the same waiting time in each state in (4.36) as in 

(4.25). Hence, the equations will approximate model I at the macroscopic level in (2.31). By 

letting Kiii = k and Liii = ℓ independent of the internal state in (4.35), equations similar to the 

model II equations (4.31) are obtained but there is no transformation (4.15) with a constant 

K1.

We have found that certain annihilation, monomolecular, and bimolecular reactions at the 

mesoscopic level have a macroscopic counterpart as a FPDE. Furthermore, the long time 

behavior of the reactions tends to that of ordinary reactions without internal states. This will 

be confirmed in numerical examples in the next section.

5. Numerical experiments

Since this paper focuses on the mesoscopic approximation of subdiffusion, we will 

investigate only the 1D reaction-diffusion system. However, the strategy proposed here can 

be extended straightforwardly to 2D and 3D geometries.

The integration of the internal states systems (3.13), (3.22)–(3.23) and (3.43)–(3.45) is 

detailed in Section 5.1. The general configuration of the numerical experiments is introduced 

in Section 5.2: physical parameters, numerical parameters of the discretization, and initial 

conditions. Then the numerical experiments are described. In Section 5.3, both the diffusive 

approximation introduced in Section 4.1 and the numerical method introduced in Section 5.1 

are verified in comparisons. In Sections 5.4 and 5.5, the method is applied to both model I 

and model II for reactive systems. The differences between the two models are also 

illustrated. Finally examples of bimolecular reactions, for which no analytical solutions are 

available, are presented in Section 5.6.

5.1. Numerical modeling

In order to integrate the internal states systems (3.13), (3.22)–(3.23) and (3.43)–(3.45), a 

uniform grid is introduced with mesh size h and time step Δt. The approximation of the 

exact solution u is denoted by  at xj and tn. The Laplace operators involved in the internal 

states systems (3.13), (3.22)–(3.23) and (3.43)–(3.45) are discretized using second order 

centered finite differences as in (3.12):
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(5.1)

The jump coefficients in (3.12) are λj1 = λj2 = 1/h2 and λj = 2/h2. The resulting system of 

ODEs in time can be written

(5.2)

where Fℓ contains the discrete Laplacian and the linear reaction terms and the Fnℓ the 

nonlinear reaction terms. The system of ODEs (5.2) is discretized using the following finite 

difference scheme

(5.3)

In the case of an annihilation process and a monomolecular reaction, there is no nonlinear 

reaction term. Hence, Fnℓ is zero, and (5.3) reduces to the Crank-Nicholson scheme. It is 

second-order accurate in space and time and it is unconditionally stable. In the case of a 

bimolecular reaction, because of the nonlinearities, the method is first order accurate in time.

5.2. Configurations

In order to demonstrate the ability of the present method to be applied to a wide range of 

problems, we numerically test in Section 5.3 two different sets of parameters, given in Table 

5.1. Then only the first set of parameters is used in Sections 5.4, 5.5 and 5.6. In our code, α, 

Kα, tmin, tmax are input parameters, and σ2, τ, N, τi, μi are ouput parameters. The quadrature 

coefficients τi and μi in (4.7) are determined by nonlinear optimization [2] and the 

corresponding model error εmod (4.5) is also given in the table.

The computational domain is Ω = [−1, 1] in Figure 5.1 and [−10, 10] in Figure 5.2, is 

discretized with Nx = 128 grid points. Neumann boundary conditions are used. As the initial 

condition, we use a Gaussian g(x), centered at point (0, 0) and of variance , rather 

than a Dirac distribution to avoid spurious numerical artifacts. Moreover, each internal state 

is initialized by the weight μℓ

5.3. Subdiffusion

The aim of the first test is to check the accuracy of the numerical method above when no 

reaction occurs. The following initial conditions are used

(5.4)
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Figure 5.1 compares the numerical solution U = eT u obtained with the PDEs in the internal 

state diffusion system (3.13) with the analytical solution of the FPDE (2.16). Figure 5.1-(a) 

corresponds to the first set of parameters, given in Table 5.1, at time t1 = 5 · 10−3 s and 

Figure 5.1-(b) corresponds to the second set of parameters at time t2 = 1.5 · 10−1 s. Note in 

Table 5.1 that the macroscopic parameters α and Kα, involved in (2.11), are the same for 

both sets of parameters. Consequently, they approximate the same macroscopic FPDE, but 

in two different time intervals [tmin, tmax]. In both cases, the final time of the simulation in 

Figure 5.1 is inside this interval. Excellent agreement is found between the two solutions.

Two errors should be mentioned here: the modeling error, defined as the difference between 

the internal states diffusion model and the FPDE model, and the numerical error εnum, 

resulting from the numerical discretization of the internal states diffusion system. The 

modeling error is dependent on εmod in (4.5). The error εmod is given in Table 5.1 and the 

total error εtot is measured in Figure 5.1 as the difference between the numerical solution 

obtained with the PDE model (red circles) with the analytical solution obtained with the 

FPDE model (black solid line). In Figure 5.1-(a) εtot ≃ 2.33 · 10−2 and in Figure 5.1-(b) εtot 

≃ 3.65 · 10−2.

Figure 5.2 shows the mean square displacement divided by the time, which is constant for 

ordinary diffusion, see (2.8). According to the analysis in Section 4.2, ordinary diffusion is 

observed for  and for  For intermediate times, the diffusion is 

anomalous by construction, cf. Section 4.1. The subdiffusive exponent α is measured by 

linear regression: α ≃ 0.4997 in Figure 5.2-(a) and α ≃ 0.5454 in Figure 5.2-(b). In both 

cases the measured subdiffusive exponent is close to the theoretical one.

5.4. Annihilation process

The purpose of the second test is to investigate the accuracy of the numerical method in the 

case of an annihilation process. Two different models are possible in Section 2.3.1

(5.5)

The reaction coefficient k used in the simulations and the corresponding macroscopic 

reaction rate k∗ (4.13)–(4.16) are given in Table 5.2. The rate k has been chosen such that 

the two models have the same macroscopic reaction rates in (4.13) and (4.16). Note the 

order-of-magnitude difference between the value of k in model I and II, which is explained 

by the fact that the units of k and k∗ are are different. The initial conditions are the same as 

in the previous test. Figure 5.3 compares the numerical solution U = eTu obtained with the 

internal state reaction-diffusion system (4.11) with the analytical solutions of the FPDEs in 

(2.22) and (2.26) at time t1 = 10−2 s. For both models, there is excellent agreement between 

the two solutions. The analytical solution is also given in the case where no reaction occurs 

(k = 0). For a small macroscopic reaction rate (first run, top of Figure 5.3), no reaction takes 

place yet in the case of model II. For large macroscopic reaction rate (second run, bottom of 
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Figure 5.3), all particles have disappeared in model I. The differences between the two 

models are clearly illustrated in Figure 5.3.

The time development of k′ (4.22) is plotted in Figure 5.4. In model I (first run in Table 

5.2), k′ is almost constant at small t and at large t, meaning that the kinetics is ordinary 

there but at intermediate t k′ varies in time implying that the kinetics is anomalous. This is 

illustrated in Figure 5.5, where the time evolution of the total amount of A, i.e. Ū in (4.21), 

is found. Exponential decay characterizing ordinary kinetics is observed for t < tmin and t > 

tmax. The exponential parameters are measured by linear regression in Figure 5.5 resulting in 

k′(0) ≈ 28.97 and  when t → ∞. In both cases, the measured exponential 

parameter is close to the theoretical one in (4.22) (blue values in Figure 5.4). For tmin < t < 

tmax, Ū does not decrease exponentially. In model II (second run in Table 5.2), Figure 5.4 

shows that k′ = k does not depend on time and exponential decay is observed for all times in 

Figure 5.5. The measured exponential parameter k′ ≈ 50.00 is close to the theoretical one. 

These observations agree with the analysis in Sections 2.3.1 and 4.3.1.

5.5. Monomolecular reaction

The numerical method is here applied to monomolecular reversible reactions. Consider the 

reactions

(5.6)

where the coefficients k and ℓ used in the simulations are given in Table 5.3. As discussed in 

Section 4.3.2, these cases correspond to the macroscopic FPDEs (2.27) and (2.30) with 

macroscopic reaction rates k∗ and ℓ∗ given in Table 5.3. The rates k and ℓ have been chosen 

such that the two models have the same macroscopic reaction rates k∗ and ℓ∗ and the same 

steady states. Figure 5.6 then illustrates the differences between the two models. The 

following initial conditions are used

(5.7)

Figure 5.6 compares the numerical solutions of U = eT u and V = eT v obtained with the 

internal state reaction-diffusion system (3.22)–(3.23) with the analytical solutions of the 

FPDEs in Section 2.3.2. The difference between the models is obvious in Figure 5.6-(a) 

corresponding to model I at time t1 = 10−2 s and Figure 5.6-(b) with the model II at the same 

time. For both models, good agreement is found between the mesoscopic PDE and the 

macroscopic FPDE solutions.

The numerical solution of the internal states reaction-diffusion system at time t2 = 10 s is 

depicted in Figure 5.7 when the steady state is reached. We note that the numerical values of 

the steady states are close to the theoretical ones, given by the kernel of the matrix B in 
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(3.28). Using (3.36), the equivalent reactions rates keq and ℓeq are computed, cf Table 5.3, 

and the property keq u∞ = ℓeq v∞ when t → ∞ in (3.40) and (3.41) is verified.

5.6. Bimolecular reaction

The purpose of the last example is to establish whether the numerical methods presented in 

this paper can be used to handle more complex reactions. As an example, we consider the 

following bimolecular reversible reactions

(5.8)

The reaction rates are found in Table 3.1 with τij for reaction II chosen as in (3.7) with θ = 

1/2 since A and B diffuse with the same speed. The rates of reactions I and III are as in 

model I and II in Sections 4.3.1 and 4.3.2 but reaction II is more general. The initial 

conditions are

(5.9)

The numerical solutions U = eT u, V = eT v and W = eT w of the internal states reaction-

diffusion system are shown in Figure 5.6 at time t1 = 10−2 s (top) and at time t2 = 10 s 

(bottom) when the steady state is reached. For reaction I, we expect that the internal states 

model in (4.36) approximates the macroscopic FPDE model I (2.31). No analytical solution 

of the FPDE is available in this case. For reaction II and reaction III, the macroscopic level 

with summation over the internal states is not so easily expressed as a FPDE. Using (3.48)–

(3.52), the equivalent reactions rates keq and ℓeq are computed in Table 5.4 and the property 

keq u∞ v∞ = ℓeq w∞ when t → ∞ in (3.53)–(3.55) is verified.

6. Conclusion

A numerical method is presented here for simulating fractional-in-time reaction-diffusion 

equations. A diffusive representation transforms the function , involved in the 

mesoscopic CTRW on a lattice, into a continuum of decreasing exponentials, approximated 

by quadrature formulae. The CTRW model is then replaced by an approximation, much 

more tractable numerically. Contrary to the approach used in [38], the coefficients of the 

diffusive approximation are determined by a nonlinear optimization procedure, leading to a 

smaller number of internal states. At the macroscopic level, the internal states diffusion 

system thus obtained corresponds to the fractional diffusion equation in a chosen time 

interval. In contrast to the FPDE model, the diffusion in the internal states model is ordinary 
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at small and large times, but it is anomalous at intermediate times. This behavior can also be 

observed in crowded systems of hard-spheres due to caging effects, and hence the model 

used herein may actually be a better model for microscopic crowding than the traditional 

FPDE description.

The internal states model for diffusion in [38] is here extended to account for chemical 

reactions. On the macroscopic FPDE level, two different models for reactions with 

subdiffusion are investigated. In model I the fractional derivative acts on both on the 

standard diffusion term and the reaction term, whereas in model II the fractional derivative 

acts only on the diffusion term. Both macroscopic FPDE models correspond to a mesoscopic 

internal states model with particular reaction coefficients. However, the opposite is not true; 

mesoscopic models with general reactions may not have a simple interpretation at the 

macroscopic level. In model I, the reactions are subdiffusion controlled, that is the reaction 

kinetics is ordinary at small and large times, whereas it is anomalous at intermediate times. 

In model II, the reaction kinetics is ordinary for all times. Which one of these models 

provides a better description of a reaction system subject to subdiffusion does not have a 

simple answer. In either case, the present work provids a theoretical foundation for practical 

and efficient mesoscopic simulations.
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Appendix A. Special functions

The Fox-H function is defined as a Mellin-Barnes integral [12]

(A.1)

where L is a certain contour separating the poles of the two factors in the numerator. The 

special case for which the Fox-H function reduces to the Meijer-G function is Aj = Bk = C, 

C > 0 for j = 1, ⋯, p and k = 1, ⋯, q [47]
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(A.2)
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Fig. 4.1. 
Section 4.1. Waiting time PDF (2.9) (blue solid line), and its asymptotic expansion (4.1) (red 

dotted line). The scales are logarithmic on both axes.
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Fig. 5.1. 
Section 5.3. Comparison between the numerical values (circle) and the analytical values 

(solid line) of the concentration U = eT u of A. (a): Set 1 of parameters at t1 = 5 · 10−3 s, (b): 

Set 2 of parameters at t2 = 1.5 · 10−1 s.
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Fig. 5.2. 
Section 5.3. Mean square displacement as a function of time. (a): Parameters set 1, (b): 

Parameters set 2. The scales are logarithmic on both axes.
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Fig. 5.3. 
Section 5.4 Comparison between the numerical values (circles) and the analytical values 

(black line) of the conecntration U = eT u of A at time t = 10−2 s. Top: First run, bottom: 

Second run.
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Fig. 5.4. 
Section 5.4 k′ in (4.22) in terms of time. Left: Model I, right: Model II. The scales are 

logarithmic on both axes.
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Fig. 5.5. 
Section 5.4. Total amount of A (4.21) in terms of time. Upper: Model I, lower: Model II. The 

scale is logarithmic on the y axis.
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Fig. 5.6. 
Section 5.5. Comparison between the numerical values (circles and triangles) and the 

analytical values (solid line and dashed line) of the concentration U = eT u, V = eT v of A 

and B at time t1= 10−2 s.
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Fig. 5.7. 
Section 5.5. Numerical values of the concentration U = eT u, V = eT v of A and B at time t2 

= 10 s.
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Fig. 5.8. 
Section 5.6. Numerical values of the concentration U = eT u, V = eT v, W = eT w of A, B 
and C at time t1 = 1 · 10−2 s (top) and t2 = 10 s (bottom).
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TABLE 3.1

Jump probabilities and propensities in (3.4) for different events.

event probability propensity

Change of internal state Aj → Ai πij = μi aj = yj/τj

Diffusion from voxel k to voxel ℓ Ajk → Ajℓ πℓk = λℓk/λk

Monomolecular reaction Aj → Bi πij = κji/κj aj = κj yj/τj

Bimolecular reaction Aj → Bi → Ck πij = κijk/κij aij = κij yi zj/τij

Production of one molecule ∅ → Ai πi0 = μi ai = k/τi

Annihilation Ai → ∅ π0i = 1 ai = k yj/τi
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Table 5.1

Parameters used in the numerical experiments.

Parameters Set 1 Set 2

Physical parameters α 0.5 0.5

Kα (m2 s−α) 0.04 0.04

tmin (s) 10−4 10−3

tmax (s) 5 · 10−2 1

σ2 (m2) 3.49 · 10−4 7.18 · 10−4

τ (s) 7.62 · 10−5 3.22 · 10−4

Optimization N 4 5

τ1 (s) 9.51 · 10−5 7.58 · 10−4

τ2 (s) 5.40 · 10−4 3.55 · 10−3

τ3 (s) 3.09 · 10−3 1.66 · 10−2

τ4 (s) 2.13 · 10−2 7.89 · 10−2

τ5 (s) – 4.78 · 10−1

μ1 4.96 · 10−1 3.23 · 10−1

μ2 2.07 · 10−1 1.48 · 10−1

μ3 8.80 · 10−2 6.84 · 10−2

μ4 4.42 · 10−2 3.24 · 10−2

μ5 – 1.85 · 10−2

εmod 5.25 · 10−2 2.92 · 10−2
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Table 5.2

Reaction rates of annihilation process.

First run Second run

Model I Model II Model I Model II

k 0.1 8.727 · 10−4 s−1 5.729 · 10−3 50 s−1

k∗ 8.727 · 10−4 s−α 8.727 · 10−4 s−1 50 s−α 50 s−1
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Table 5.3

Monomolecular reversible reaction. Reaction rates and theoretical steady state.

Model I Model II

k 1.719 · 103 15 s−1

ℓ 3.437 · 103 30 s−1

k∗ 15 s−α 15 s−1

ℓ∗ 30 s−α 30 s−1

u∞ (mol m−1) 8.698 · 10−3 8.698 · 10−3

v∞ (mol m−1) 4.349 · 10−3 4.349 · 10−3

keq (s−1) 1.047 · 106 15

ℓeq (s−1) 2.094 · 106 30
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Table 5.4

Bimolecular reversible reaction. Reaction rates and theoretical steady states.

Reaction I Reaction II Reaction III

k 37.5 m mol−1 37.5 m mol−1 7500 m mol−1 s−1

ℓ 0.25 0.25 5 s−1

u∞ (mol m−1) 8.204 · 10−3 5.826 · 10−3 3.772 · 10−3

v∞ (mol m−1) 6.573 · 10−3 4.195 · 10−3 2.141 · 10−3

w∞ (mol m−1) 1.582 · 10−3 3.959 · 10−3 6.014 · 10−3

keq (m mol−1 s−1) 2.450 · 103 1.187 · 105 2.483 · 101

ℓeq (s−1) 8.351 · 101 7.328 · 102 102
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